A supplemental device configured for attachment to an injection device, the supplemental device comprising: a camera configured to generate camera output indicative of a scene viewable by the camera, and to be located on an optical path with a surface of an injection device attached to the supplemental device in use; a light source having an emission spectrum and configured to illuminate the surface with light within the emission spectrum in use; and a filter configured to be located on the optical path between the camera and the surface in use, the filter being substantially opaque to light across the entire emission spectrum of the light source and substantially transparent to light of at least one frequency outside the emission spectrum of the light source.
|
11. A supplemental device comprising:
a structure configured to releasably attach the supplemental device to a medicament injection device, the medicament injection device having a housing configured to contain a medicament container and having a dosage knob to select an amount of medicament to dispense from the medicament container;
a camera configured to generate a camera output indicative of a scene viewable by the camera, and configured to be located at an end of an optical path between a surface of the medicament injection device as attached to the supplemental device in use and the camera;
a light source having an emission spectrum and configured to illuminate the surface with light within the emission spectrum, wherein the light source is configured to be located between the camera and the surface;
a filter configured to be located along the optical path between the camera and the surface, the filter being substantially opaque to light across the emission spectrum of the light source and transparent to light of at least one frequency outside the emission spectrum of the light source; and
a protection window that is configured to be located along the optical path between the camera and the surface,
wherein the light source is configured to be located at gaps in the filter to emit light directly into and through the protection window, through the gaps in the filter.
1. A supplemental device comprising:
a structure configured to releasably attach the supplemental device to a medicament injection device, the medicament injection device having a housing configured to contain a medicament container and having a dosage knob to select an amount of medicament to dispense from the medicament container;
a camera configured to generate a camera output indicative of a scene viewable by the camera, and configured to be located at an end of an optical path between a surface of the medicament injection device as attached to the supplemental device in use and the camera;
a light source having an emission spectrum and configured to illuminate the surface with light within the emission spectrum, wherein the light source is configured to be located between the camera and the surface;
a filter configured to be located along the optical path between the camera and the surface, the filter being substantially opaque to light across the emission spectrum of the light source and transparent to light of at least one frequency outside the emission spectrum of the light source; and
a protection window that is configured to be located along the optical path between the camera and the surface, wherein at least a first part of the protection window comprises the filter, and
wherein the filter comprises transparent portions configured to perform a function of the protection window, and the transparent portions comprise part of the light source.
12. An injection device comprising:
a sleeve on which is formed one or more markings indicating a dose of medicament; and
a window through which a part of the sleeve is visible, the injection device being configured to change the part of the sleeve that is visible through the window as a medicament dose is dispensed,
wherein the one or more markings are formed of a fluorescent material that emits fluorescence when illuminated with a light source of a supplemental device, wherein the supplemental devices comprises:
a structure configured to releasably attach the supplemental device to the injection device,
a camera configured to generate a camera output indicative of a scene viewable by the camera, and configured to be located at an end of an optical path between a surface of the injection device as attached to the supplemental device in use and the camera,
a light source having an emission spectrum and configured to illuminate the surface with light within the emission spectrum, wherein the light source is located between the camera and the surface, and
a filter configured to be located along the optical path between the camera and the surface, the filter being substantially opaque to light across the emission spectrum of the light source and transparent to light of at least one frequency outside the emission spectrum of the light source; and
a protection window that is configured to be located along the optical path between the camera and the surface, wherein at least a first part of the protection window comprises the filter,
wherein the filter comprises transparent portions configured to perform a function of the protection window, and the transparent portions comprise part of the light source, and
wherein the fluorescence comprises at least one frequency outside the emission spectrum of said light source for which the filter of the supplemental device is substantially transparent.
2. The supplemental device of
4. The supplemental device of
5. The supplemental device of
6. The supplemental device of
7. The supplemental device of
8. The supplemental device of
9. The supplemental device of
10. The supplemental device of
|
This application is a U.S. national stage application under 35 USC § 371 of International Application No. PCT/EP2015/068323, filed on Aug. 10, 2015, which claims priority to European Patent Application No. 14181118.2 filed on Aug. 15, 2014, the entire contents of which are incorporated herein by reference.
The present disclosure relates to an injection device, such as an insulin injection device, and a supplemental device configured for attachment thereto.
A variety of diseases exist that require regular treatment by injection of a medicament. Such injection can be performed by using injection devices, which are applied either by medical personnel or by patients themselves. As an example, type-1 and type-2 diabetes can be treated by patients themselves by injection of insulin doses, for example once or several times per day.
WO2011/117212 discloses a supplemental device that can be attached to an injection device and used to record the quantity of medicament that a patient is injected with. In the case of a Sanofi Solostar™ injection device for instance, the amount of insulin a patient is injected with can be determined by analysing information which appears in a window of the injection device (referred to as the dosage window). This information is provided on a sleeve within the injection device and comprises a series of numbers. In use the sleeve rotates and causes the number aligned with the dosage window to either increase or decrease in amount depending on whether a quantity of insulin is being dialed or injected respectively.
The supplemental device in WO2011/117212 has an optical character recognition (OCR) reader to determine what particular number is viewable at a given time and uses this information to both determine and record how much insulin a person is injected with.
In order for this analysis to take place the supplemental device covers the dosage window, thereby preventing ambient light becoming incident on the window. A light source may be provided to illuminate the sleeve portion aligned with the dosage window. This improves the readability, by the OCR reader, of numbers on the sleeve aligned with the dosage window.
Disadvantageously, some light may reflect from the dosage window directly towards the OCR reader. This obscures the analysis of light which reflects from the sleeve where the number being analysed at a given time is provided. This decreases the reliability with which a number aligned with the dosage window at a given time can be determined. In other words, glare from the dosage window decreases the reliability with which a dialed quantity of insulin, or an injected quantity of insulin, can be determined.
Aspects of the present invention have been conceived with the foregoing in mind.
According to an aspect of the present invention there is provided a supplemental device configured for attachment to an injection device, the supplemental device comprising: a camera configured to generate camera output indicative of a scene viewable by the camera, and to be located on an optical path with a surface of an injection device attached to the supplemental device in use; a light source having an emission spectrum and configured to illuminate the surface with light within the emission spectrum in use; and a filter configured to be located on the optical path between the camera and the surface in use, the filter being substantially opaque to light across the entire emission spectrum of the light source and substantially transparent to light of at least one frequency outside the emission spectrum of the light source.
This may increase the reliability of the camera output obtained in use by preventing light from the light source being reflected into contact with the camera and influencing its output.
The supplemental device may further comprise a protection window that is configured to be located on the optical path between the filter and the surface in use, the protection window being substantially transparent to light of at least one frequency in the emission spectrum of the light source and to light of the at least one frequency outside the emission spectrum of the light source. In this arrangement the filter may be coupled to the protection window.
This may protect elements of the supplemental device located behind the protection window from dirt and/or water ingress. Coupling the filter to the protection window may enable the supplemental device to have a more compact size. Also, coupling the filter to the protection window may make it easier to arrange these components relative to one another, thereby increasing the ease and speed of manufacture of the supplemental device.
Alternatively, the supplemental device may further comprising a protection window, wherein the filter is configured to be located on the optical path between the protection window and the surface in use, the protection window being substantially transparent to light of at least one frequency in the emission spectrum of the light source and to light of the at least one frequency outside the emission spectrum of the light source. In this arrangement the filter may be coupled to the protection window.
This may protect elements of the supplemental device located behind the protection window from dirt and/or water ingress. Coupling the filter to the protection window may reduce the overall size of the supplemental device. Also, coupling the filter to the protection window may make it easier to arrange these components relative to one another, thereby increasing the ease and speed of manufacture of the supplemental device.
Alternatively, the supplemental device may further comprise a protection window that is configured to be located on the optical path between the camera and the surface in use, wherein at least part of the protection window comprises the filter. In this arrangement part of the protection window may be substantially transparent to light of at least one frequency in the emission spectrum of the light source.
This may protect elements of the supplemental device located behind the protection window from dirt and/or water ingress. Forming the filter as part of the protection window may reduce the overall size of the supplemental device and increase the ease and speed of manufacture of the supplemental device because the step of fixing the filter and protection window relative to one another no longer needs to be performed.
In all of the foregoing arrangements the light source may be configured to emit one of ultra violet, infrared and visible radiation, and the filter may be substantially transparent to another one of ultra violet, infrared and visible radiation.
The light source may be configured to emit ultraviolet radiation and the filter may be configured to block ultraviolet radiation while being transparent to visible radiation.
According to another aspect of the invention there is provided an injection device comprising: a sleeve on which is formed one or more markings indicating a dose of medicament; and a window through which a part of the sleeve is visible, the device being configured to change the part of the sleeve that is visible through the window as a medicament dose is dispensed; wherein the one or more markings are formed of a fluorescent material.
The fluorescent material may be provided on the sleeve in the shape of information that indicates a dose of medicament.
The fluorescent material may be provided on the sleeve such that the fluorescent material outlines the shape of information that indicates a dose of medicament.
The fluorescent material may be configured such that when illuminated with one of ultra violet, infrared and visible radiation the fluorescent material emits through the window optical fluorescence that is another one of ultra violet, infrared and visible radiation.
The fluorescent material is configured such that when illuminated with ultra violet radiation the fluorescent material emits visible radiation through the window.
Embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings.
The figures show:
The following disclosure will be described in the context of an insulin injection device however this is not intended to be limiting and the teachings herein may equally well be deployed with injection devices that eject other medicaments, or with other types of medical devices.
The injection device 1 of
Turning the dosage knob 12 causes a mechanical click sound to provide acoustical feedback to a user. The numbers displayed in dosage window 13 are printed on a sleeve that is contained in housing 10 and mechanically interacts with a piston in insulin container 14. When needle 15 is stuck into a skin portion of a patient, and then injection button 11 is pushed, the insulin dose displayed in display window 13 will be ejected from injection device 1. When the needle 15 of injection device 1 remains for a certain time in the skin portion after the injection button 11 is pushed, a high percentage of the dose is actually injected into the patient's body. Ejection of the insulin dose also causes a mechanical click sound, which is however different from the sounds produced when using dosage knob 12.
Before using injection device 1 for the first time, it may be necessary to perform a so-called “prime shot” to remove air from insulin container 14 and needle 15, for instance by selecting two units of insulin and pressing injection button 11 while holding injection device 1 with the needle 15 upwards.
For simplicity of presentation, in the following, it will be exemplarily assumed that the ejected doses substantially correspond to the injected doses, so that, for instance when making a proposal for a dose to be injected next, this dose equals the dose that has to ejected by the injection device. Nevertheless, differences (e.g. losses) between the ejected doses and the injected doses may of course be taken into account.
Supplemental device 2 contains optical and acoustical sensors for gathering information from injection device 1. At least a part of this information e.g. a selected dose (and optionally a unit of this dose), is displayed via display unit 21 of supplemental device 2. The dosage window 13 of injection device 1 is obstructed by supplemental device 2 when attached to injection device 1.
Supplemental device 2 further comprises three user input transducers, illustrated schematically as a button 22. These input transducers 22 allow a user to turn on/off supplemental device 2, to trigger actions (e.g. to cause establishment of a connection to another device), or to confirm something.
Information is displayed via display unit 21 of supplemental device 2. The dosage window 13 of injection device 1 is obstructed by supplemental device 2 when attached to injection device 1. Supplemental device 2 further comprises three user input buttons or switches. A first button 22 is a power on/off button, via which the supplemental device 2 may be turned on and off. A second button 33 is a communications button. A third button 34 is a confirm or OK button. The buttons may be any suitable form of mechanical switch.
Within the housing 20 of the supplemental device 2 illustrated in
In embodiments such as those shown in
Processor 24 controls a display unit 21, which may be embodied as a Liquid Crystal Display (LCD). Display unit 21 is used to display information to a user of supplemental device 2, for instance on present settings of injection device 1, or on a next injection to be given. Display unit 21 may also be embodied as a touch-screen display, for instance to receive user input.
Processor 24 also controls an optical sensor 25, embodied as an Optical Character Recognition (OCR) reader, that is capable of capturing images of the dosage window 13, in which a currently selected dose is displayed by way of numbers printed on the sleeve 19 contained in injection device 1, which numbers are visible through the dosage window 13. OCR reader 25 is further capable of recognizing numbers from the captured image and to provide this information to processor 24. Alternatively, unit 25 in supplemental device 2 may only be an optical sensor, e.g. a camera, for capturing images and providing information on the captured images to processor 24. Then processor 24 is responsible for performing OCR on the captured images.
Processor 24 also controls light-sources such as light emitting diodes (LEDs) 29 to illuminate the dosage window 13, in which a currently selected dose is displayed. A diffuser may be used in front of the light-sources, for instance a diffuser made from a piece of acrylic glass. Furthermore, the optical sensor may comprise a lens system, for instance including two aspheric lenses. The magnification ratio (image size to object size ratio) may be smaller than 1, for instance the magnification ratio may be in the range of 0.05 to 0.5. In some embodiments the magnification ratio may be 0.15.
Processor 24 may further control a photometer 26 (if one is provided), that is configured to determine an optical property of the housing 10 of injection device 1, for example a colour or a shading. Alternatively a colorimeter or a colour sensor system may be used instead of a photometer 26.
Processor 24 further controls (and/or receives signals from) an acoustic sensor 27, which is configured to sense sounds produced by injection device 1 which may occur when a dose is dialed by turning dosage knob 12 and/or when a dose is ejected/injected by pressing injection button 11, and/or when a prime shot is performed. These actions are mechanically similar but sound differently (this may also be the case for electronic sounds that indicate these actions). Either the acoustic sensor 27 and/or processor 24 may be configured to differentiate these different sounds, for instance to be able to safely recognize that an injection has taken place (rather than a prime shot only).
Processor 24 may further control an acoustical signal generator 23 (if one is provided), which is configured to produce acoustical signals that may be related to the operating status of injection device 1 e.g. as feedback to the user. For example, an acoustical signal may be launched by acoustical signal generator 23 as a reminder for the next dose to be injected or as a warning signal in case of misuse. Acoustical signal generator may for instance be embodied as a buzzer or loudspeaker. In addition to or as an alternative to acoustical signal generator 23, also a haptic signal generator (not shown) may be used to provide haptic feedback, for instance by way of vibration.
Processor 24 may control a wireless unit 28, which is configured to transmit and/or receive information to/from another device in a wireless fashion. Such transmission may be based on radio transmission or optical transmission. The wireless unit 28 may be a Bluetooth transceiver. In other embodiments information may be transmitted/received over a wired or optical fibre type connection instead of wirelessly.
Processor 24 may receive an input from a pen detection switch 30 (if one is provided), which is operable to detect whether the pen 1 is present, i.e. to detect whether the supplemental device 2 is coupled to the injection device 1.
A battery 32 powers the processor 24 and other components by way of a power supply 31.
The supplemental device 2 of
In step 502, a currently selected dose is determined, e.g. by OCR of information shown in a dosage window of the injection device. This information is then displayed to a user of the injection device in a step 503.
In a step 504, it is checked if an ejection has taken place, e.g. by sound recognition as described above. Therein, a prime shot may be differentiated from an actual injection (into a creature) either based on respectively different sounds produced by the injection device and/or based on the ejected dose (e.g. a small dose less than a pre-defined amount, e.g. 4 or 3 units, may be considered to be a prime shot, whereas larger doses are considered injections).
If an ejection has taken place, the determined data, i.e. the selected dose and—if applicable—the type of medicament (e.g. insulin), is stored in the main memory 241 and/or the supplementary memory 243, from where it may later be transmitted to another device, for instance a blood glucose monitoring system via the wireless unit 28. If a differentiation has been made concerning the nature of the ejection, e.g. if the ejection was performed as a prime shot or as an actual injection, this information may also be stored in the main memory 241 and/or the supplementary memory 243, and later transmitted. In the case of an injection having been performed, at step 505 the dose is displayed on the display 21. Also displayed is a time since the last injection which, immediately after injection, is 0 or 1 minute. The time since last dose may be displayed intermittently. For instance, it may be displayed alternately with the name or other identification of the medicament that was injected, e.g. Apidra or Lantus.
If ejection was not performed at step 504, steps 502 and 503 are repeated.
After display of the delivered dose and time data, flowchart 500 terminates.
In a step 901, a sub-image is captured by an optical sensor such as optical sensor 25 of supplemental device 2. The captured sub-image is for instance an image of at least a part of the dosage window 13 of injection device 1, in which a currently selected dose is displayed. For instance, the captured sub-image may have a low resolution and/or only show a part of sleeve 19 which is visible through dosage window 13. For instance, the captured sub-image could show the numbers printed on the part of sleeve 19 visible through dosage window 13. After capturing an image, it is, for instance, further processed as follows:
Several or all of these steps may be omitted if applicable, for instance if a sufficiently large optical sensor (a sensor with sufficiently large pixels) is used.
In step 902, it is determined whether or not there is a change in the captured sub-image. The currently captured sub-image may be compared to the previously captured sub-image(s) in order to determine whether or not there is a change. Therein, the comparison to previously captured sub-images may be limited to the sub-image of the previously captured sub-images that was captured immediately before the current sub-image was captured and/or to the sub-images of the previously captured sub-images that were captured within a specified period of time (e.g. 0.1 seconds) before the current sub-image was captured. The comparison may be based on image analysis techniques such as pattern recognition performed on the currently captured sub-image and on the previously captured sub-image(s). It may be analyzed whether the pattern of the number(s) visible through the dosage window 13 and shown in the currently captured sub-image and in the previously captured sub-image(s) is changed. It may be searched for patterns in the image that have a certain size and/or aspect ratio and these patterns may be compared with one or more previously saved patterns. Steps 901 and 902 may correspond to a detection of a change in the captured image.
If it is determined in step 902 that there is a change in the sub-image, step 901 is repeated. Otherwise in a step 903, an image is captured by an optical sensor such as optical sensor 25 of supplemental device 2. The captured image is for instance an image of the dosage window 13 of injection device 1, in which a currently selected dose is displayed. The captured image may have a resolution being higher than the resolution of the captured sub-image. The captured image at least shows the number(s) printed on the sleeve 19 of injection device 1 which are visible through the dosage window 13.
In step 904, optical character recognition is performed on the image captured in step 903 to recognize the number(s) printed on the sleeve 19 and visible through the dosage window 13, since the number(s) correspond to the (currently) selected dose. In accord to the recognized numbers, the selected dose is determined.
In step 905, it is determined whether or not there is a change in the determined selected dose and, optionally, whether or not the determined selected dose does not equal zero. The currently determined selected dose may be compared to the previously determined selected dose(s) in order to determine whether or not there is a change. Therein, the comparison to previously determined selected dose(s) may be limited to the previously determined selected dose(s) that were determined within a specified period of time (e.g. 3 seconds) before the current selected dose was determined. If there is no change in the determined selected dose and, optionally, the determined selected dose does not equal zero, the currently determined selected dose is returned/forwarded for further processing (e.g. to processor 24).
Thus, the selected dose is determined if the last turn of the dosage knob 12 is more than 3 seconds ago. If the dosage knob 12 is turned within or after these 3 seconds and the new position remains unchanged for more than 3 seconds, this value is taken as the determined selected dose.
How the supplemental device 2 and injection device 1 in
As is best seen from
A closure 68 extends from a shaft 59 of a hinge, the closure extending underneath the injection device. The closure 68 is connected to the supplemental device 2 on the right side (looking at the injection device 1 with the injection button closest to the viewer), extends underneath the injection device 1 and connects with the supplemental device on the left side thereof.
The supplemental device 2 includes two features that contribute to correct alignment of the supplemental device 2 on the injection device 1, and one feature that results in securing of the supplemental device 2 to the injection device 1. The features that contribute to correct alignment of the supplemental device 2 on the injection device 1 can be termed alignment arrangements. The features that contribute to securing of the supplemental device 2 to the injection device 1 can be termed a securing arrangement.
The correct alignment of the supplemental device 2 on the injection device 1, ensures that the OCR reader 25 is correctly aligned with the dosage window 13. Correct alignment allows correct operation and reliable readings. Ensuring that there can be correct alignment between the supplemental device 2 and the injection device 1 in use allows a simpler design for the OCR reader 25, in particular because it does not need to be designed to be able to accommodate different alignments between the devices 1, 2.
The first alignment feature is a locating channel 71 (see
As is best seen in
The thickness of the locating rib 70, the thickness being the dimension that is circumferential to the main body of the injection device 1, varies along the length of the locating rib 70. The thickness of the locating rib 70 is greatest at the end adjacent the dosage knob 12 and is least at the end adjacent the display window 13. The thickness of the locating rib 70 gradually decreases as one moves from the end of the locating rib adjacent the dosage knob 12 to the end of the locating rib that is adjacent the display window 13.
The cross-section of the locating rib, the cross-section being a section taken perpendicular to the longitudinal axis of the injection device 1, is of a rounded triangle. The cross-section of the locating rib 70 is approximately the same for its entire length, although of course the size varies.
The locating channel 71 is dimensioned so as to correspond closely to the shape and size of the locating rib 70 that is present on the injection device 1.
The locating channel 71 has a size and shape that corresponds closely to the size and shape of the locating rib 70. The locating channel 71 is slightly larger than the locating rib so as to ensure that the locating rib can be located within the locating channel 71. When the locating rib 70 is within the locating channel 71, the corresponding sizes ensure that the two features mate together. This assists in ensuring correct positioning of the supplemental device 2 on the injection device 1.
Other features of the supplemental device 2 and the injection device 1 that assist in ensuring correct alignment between the two devices will now be described. As best seen in
The left and right indents 51, 52 are relatively shallow depressions. The indents 51, 52 have sloping sides, that is the sides of the indents 51, 52 are not parallel. Also, they are not radial with respect to the longitudinal axis of the injection device 1. In these embodiments, the slope of the sides of the left and right indents 51, 52 is different for different parts of the indents. In particular, the gradient of the slope of the sides of the indents is less at the part of the indents that is furthest from the display window 13 and is greatest at the part of the indents 51, 52 that is closest to the display window 13. In these examples, the slope of the indents changes between these two extremes, for instance in a linear fashion.
The slope of the sides of the indent may for instance be between 30 and 70 degrees at the part that is furthest from the display window 13. The slope may for instance be between 60 and 80 degrees for the part that is closest to the display window 13. The greater angle of slope at the part closer to the display window 13 aids engagement of a face of a protuberance within the indent 51, 52 in such a way as to provide some resistance against removal of the supplemental device 2 in a direction radial to the longitudinal axis of the injection device 1.
As is best seen in
In these embodiments, the protuberance 53 is shaped to correspond closely to the shape of the indent 51. In this way, the protuberance 53 fits snugly within the indent 51 when the supplemental device 2 is correctly positioned on the injection device 1. The protuberance 54 is shaped similarly to the protuberance 53, although it is less tall. Put another way, it is like the protuberance 53 but with the top part missing or cut off. This is the reason for the end face of the protuberance 54 having a larger area than the protuberance 53. The different sizes for the protuberances 53, 54 helps the protuberances find engagement within the indents 51, 52. The protuberance 53 can be considered to be a master to the other protuberance, which is a slave.
The right protuberance 53 is located at the end of the right arm 55, which is best shown in
A biasing feature 67, in the form of a substantially u-shaped spring, is coupled to each of the right and left arms 55, 56. The effect of the biasing feature 67 is to bias the right and left arms into a certain position. The position into which the right and left arms 55, 56 are biased is such that the distance between the innermost surfaces of the right and left protuberances 53, 54 is slightly less than the distance between the bottoms of the right and left indents 51, 52. The effect of the biasing feature 67 is to resist movement of the protuberances 53, 54 and the arms 55, 56, away from one another.
Alternatively, instead of a biasing feature 67 skilled persons will realise that a compression spring may be located in the space between the flaps 60 and the respective arms 55, 56 to resist movement of the protuberances 53, 54 and the arms 55, 56, away from one another.
Because the slopes of the sides of the protuberances 53, 54 match the sides of the indents 51, 52, the sloped sides of the protuberances 53, 54 at the distal ends of the arms 55, 56 is relatively shallow. This assists in sliding the protuberances 53, 54 over the external surface of the body 10 of the injection device 1 as the supplemental device is being fitted. This is best demonstrated with reference to
As is shown in
The left and right arms 55, 56 are present behind flaps 60 that depend from the supplemental device 2 on both the left and right sides. As can be seen from
In order to mate the supplemental device 2 with the injection device 1, the user first arranges the supplemental device 2 with respect to the injection device 1 as shown in
After some further movement, the protuberances 53, 54 become aligned with the left and right indent 51, 52 and, due to the resilience of the spring 67, become engaged with the indents. Engagement provides haptic and audio feedback as the protuberances 53, 54 click or snap into the indents 51, 52. The feedback is enhanced by the force provided by the resilience of the spring 67. Once the protuberances 53, 54 are mated with the indents 51, 52, there is significant resistance to further movement of the supplemental device 2 relative to the injection device 1, due in part to the corresponding shapes of the protuberances 53, 54 and the indents 51, 52 and due in part to the biasing together of the arms 55, 56 by the spring 67.
Once the protuberances 53, 54 are mated in the indent 51, 52, the injection device 1 is fully located within the injection device receiving channel 58 as shown in
When the supplemental device 2 is located with respect to the injection device 1 such that the right and left protuberances 53, 54 are located within the right and left indents 51, 52 respectively, the locating rib 70 is engaged within the locating channel 71. Correct alignment of the supplemental device 2 with respect to the injection device 1 is thus provided in two ways: firstly, by the location of the locating rib 70 within the locating channel 71 and secondly by the locating of the protuberances 53, 54 within the indents 51, 52.
In the event that the user places the supplemental device 2 onto the injection device 1 at a location such that the supplemental device 2 is slightly at the right of the position shown in
If the user locates the supplemental device onto the injection device 1 such that the supplemental device is to the left of the position shown in
The supplemental device 2 may be provided with a closure 68, which has a primary function of clamping the supplemental device 2 to the injection device 1 when the two devices are mated with one another.
As best seen in
The closure 68 is moveable between an open position, shown in
As can be seen in
The material of the closure 68 has a generally uniform thickness. As such, the external surface of the closure 68, that is the surface that is furthest from the longitudinal axis of the injection device 1 when the supplemental device 2 is mated with the injection device 1, is generally cylindrical, or at least takes the form of part of a cylinder.
The closure 68 is provided with two cutaways 72, 73. The cutaways 72, 73 extend from an edge of the closure 68 that is furthest from the shaft 59 of the hinge formed at the other side of the supplemental device 2. The cutaways 72, 73 extend from this edge in a direction that is generally circumferential with respect to the injection device 1. The length of the cutaways is approximately equal to ⅙ or ⅕ of the circumference of the circle on which the closure 68 generally lies. The cutaways 72, 73 define a tab 61. The tab 61 is connected to the main part of the closure 68 at a location between the lowermost ends of the cutaways 72, 73. A free end 63 of the tab 61 is located between the uppermost ends of the cutaways 72, 73. As is best seen in
On the inside surface of the tab 61 is provided a latching edge 64. The latching edge 64 is provided at a junction between a latching face and another face. The latching edge 64 extends for the width of the tab 61. The latching face is in a plane that extends approximately radially with respect to the longitudinal axis of the injection device 1 when the closure 68 is in the closed position, as shown in
When the user has mated the supplemental device 2 onto the injection device 1, in particular mating the locating rib 70 within the locating channel 71 and locating the protuberances 53, 54 within the indents 51, 52, the user may secure the supplemental device 2 to the injection device 1. This is achieved by the user moving the closure 68 from the position shown in
At this point, the tendency of the closure 68 to adopt the shape shown in
Other configurations of both coupling and alignment features are envisaged. For instance, in some embodiments, the locating rib 70 and the locating channel 71 are absent. In these embodiments, the correct alignment between the supplemental device 2 and the injection pen device 1 is provided by mating of the protuberances 53, 54 and the indents 51, 52. In some other embodiments, the right and left arms 55, 56 and the protuberances 53, 54 are absent. In these embodiments, the correct alignment between the supplemental device 2 and the injection device 1 is provided by the locating rib 70 and the locating channel 71. Other alternative arrangements for ensuring a correct relative position between the supplemental device 2 and the injection device 1 will be envisaged by the skilled person. Also, the skilled person will be aware of alternative securing arrangements, for instance clamping, the supplemental device 2 to the injection device 1 once the correct relative position has been attained.
Details of an exemplary optical arrangement that enables optical character recognition to be implemented as heretofore described will now be set out.
The camera 25 in
Numbers on the dosage sleeve 19 of the injection device 1 may be printed in fluorescent material. A fluorescent material is one that emits fluorescence (or in other words, one that fluoresces) when illuminated with light of a particular frequency. When such material is illuminated with light of a particular frequency it absorbs the light and subsequently emits light having another, different, frequency. The supplemental device 2 comprises a plurality of light sources (e.g. LEDs) 29a-29d which are controllable by the processor 24 to illuminate the number(s) aligned with the dosage window 13 of the injection device 1, thereby causing the number(s) to emit fluorescence. The supplemental device 2 uses this fluorescence to perform OCR. Looking again at
In other words, the light sources 29a-29d are controllable by the processor 24 to illuminate the dosage sleeve 19 of an injection device 1 with optical illumination, so that material which defines numbers on the dosage sleeve 19 is caused to emit optical fluorescence that can be detected by the camera 25. The camera 25 then generates camera output, indicative of a scene in the field of view thereof, on the basis of the detected optical fluorescence.
A fuller discussion of the optical arrangement in
In
A protection window 80 may be located between the camera 25 and the dosage window 13. The protection window 80 includes a lowermost surface that falls on the curved surface of a cylinder having an axis aligned with the axis of the injection device 1. The uppermost surface of the protection window 80 has a smaller radius. Thus, the protection window 80 has a greater thickness at its central part, which is in the path directly between the camera 25 and the axis of the injection device 1, than it does at its edges. Thus, the protection window 80 has optical power. The protection window 80 is configured such that it forms part of the imaging system of the camera 25, along with the lens 25a. The lens 25a in these embodiments has two lenses, referred to as a lens for ease of explanation. The optical power of the protection window 80 allows a short track length and contributes to a compact arrangement.
In other embodiments, the protection window 80 does not have optical power, or put another way has zero optical power. Such arrangements may function equally well but may be less compact.
The protection window 80 may be formed of any suitable optically transparent material. For instance, the protection window is formed of optics grade plastics, for instance optics grade polycarbonate or PMMA (polymethyl methacrylate acrylic).
At the left edge of the window 80 is provided a feature 81 that connects with a left window support 83 that forms part of the body 20 of the supplemental device 2. A feature 82 on the right edge of the window is similarly configured to rest against a right window support 84 that forms part of the body 20 of the supplemental device 2. The left and right window supports 83, 84 serve to support the protection window 80 in a correct location with respect to other components of the supplemental device 2.
The protection window 80 is sealed with respect to the body. This prevents the ingress of dirt, dust and other debris into the body 20 and thus helps to maintain correct operation of the camera 25 and other parts of the optical system. Thus, the protection window 80 forms part of the mechanical configuration of the body 20 of the supplemental device 2 as well as part of the optical system. This helps to allow compactness in the overall arrangement.
As is best seen in
As can be best seen from
The first to fourth light sources 29a-29d are separated from a lens 25a of the camera 25. In this example, they are distributed around the lens 25a. The light sources 29a-29d are configured to illuminate the dosage sleeve 19, so that numbers on the dosage sleeve can be read by the camera 25. As can be seen best from
The optical system is perhaps best understood from
Although highly schematic,
The light sources 29a-29d are arranged so as to achieve substantially uniform illumination of the dosage sleeve 19. This is achieved by using light sources (e.g. LEDs) 29a-29d with substantially uniform illumination patterns within defined angular and spatial ranges. The light sources 29a-29d are positioned so that, taking into account the optical effects of the protection window 80 and the dosage window 13, a uniform illumination pattern is obtained at the dosage sleeve 19.
The light sources 29a-29d and the protection window 80 are arranged such that light paths meet boundaries between air and optical components at angles that are less than the angle of total internal reflection for the boundary. The protection window 80 is formed of a material that reflects relatively little light that is incident at angles less than the angle of total internal reflection.
With further reference to
As already explained,
For exemplary purposes,
The filter 131 in
Camera output comprising images generated by the camera 25 in
Various aspects of the optical system schematically illustrated in
In a broad sense, the light sources 29a-29d are configured to generate optical illumination of a first frequency f1 (or a narrow band of optical frequencies encompassing the first frequency f1). Optical illumination, otherwise referred to as light, comprises electromagnetic radiation of a wavelength in the ultra violet, visible or infrared part of the electromagnetic spectrum. Ultraviolet light has a wavelength between approximately 10 nm and 400 nm for instance, visible light has a wavelength between approximately 400 nm and 750 nm for instance, and infrared light has a wavelength between approximately 750 nm and 1 mm for instance.
The light sources 29a-29d may thus be configured to generate at least one frequency of ultraviolet radiation. Optionally the light sources 29-29d may comprise ultraviolet LEDs.
An optical arrangement that comprises ultraviolet LEDs 29a-29d may be used to illuminate a dosage sleeve 19 that fluoresces visible light when illuminated with UV light. The material defining numbers on such a dosage sleeve 19 may be configured to absorb UV light of at least one frequency f1 and thereby emit visible light of at least one frequency f2. Such material may comprise an FG series UV fluorescent pigment for example UVPN non-soluble white powder, which fluoresces white/blue when exposed to long wave UV (365 nm-400 nm) or UVSWR/G non-soluable powder which fluoresces red/green when exposed to short wave UV (254 nm) (see https://www.maxmax.com/aUVInvisiblePowders.asp). The filter 131 in this embodiment is configured to substantially block the passage of UV light (or at least to substantially block the passage of the or each frequency of UV light emitted by the ultraviolet LEDs 29a-29d). The filter 131 is further configured to be substantially transparent to visible light (or at least to be substantially transparent to the or each frequency of visible light emitted as fluorescence from the dosage sleeve 19).
Broadly speaking the optical system causes optical fluorescence to be generated by an injection device 1 upon illumination thereof (specifically upon illumination of an area of the dosage sleeve 19) with light of at least one frequency. The material used to generate the fluorescence (specifically, the material which defines numbers provided on the dosage sleeve 19) should be configured to generate fluorescence having a frequency f2 different to light emitted by the light sources 29a-129d having a frequency f1.
In view of the foregoing, the light sources 29a-29d may be configured to generate one of ultraviolet radiation, visible radiation and infrared radiation. The material provided on the dosage sleeve 19 that is used to generate fluorescence may thus be configured to generate fluorescence that comprises another of ultraviolet radiation, visible radiation and infrared radiation.
Alternatively, the material provided on the dosage sleeve 19, that is used to generate fluorescence, may be configured to generate fluorescence of the same kind of light as that emitted from the light sources, albeit of a different frequency. For instance the light sources 29a-29d may be configured to generate ultraviolet radiation, and the fluorescence capable of being generated by the material provided on the dosage sleeve 19 may also be ultraviolet radiation, albeit of a different frequency.
Reference is again made to
Such an injection device may be substantially of the kind heretofore described and may comprise, for instance, a Sanofi Solostar insulin injection device. However an injection device 1 capable of being used in conjunction with a supplemental device 2 of the kind in
Numbers provided on the dosage sleeve 19 are capable of being viewed through a protection window 13 of the injection device 1 (see
The material which defines numbers on the dosage sleeve 19 may comprise a pigment and it is the pigment that is capable of generating fluorescence. For example numbers on the dosage sleeve 19 may be provided, printed, drawn or applied thereon using material having a different colour to that of the surface on which they are located. In one example the dosage sleeve 19 may be white and the numbers provided thereon may be black. Notwithstanding the colour of the numbers, the material defining such numbers may be capable of fluorescing when illuminated with light of one or more particular frequencies. This material may comprise a pigment, or have such a pigment dispersed within it, and it is the pigment that is capable of generating the fluorescence.
Various alterations and modifications to the embodiments described above will now be discussed.
For instance, instead of the material on the dosage sleeve 19 that defines numbers being able to fluoresce, this material may not be configured to do so. Instead the surface of the dosage sleeve 19 surrounding the numbers defined by this material may be configured to generate fluorescence. In this embodiment OCR recognition could still be performed to determine what number is in the field of view of the camera 25. This is because numbers will be recognisable from the shape of the dark section(s) in images generated by the camera 25. For instance, if the surface surrounding a number provided on the dosage sleeve 19 is caused to fluoresce, the dark area that does not fluoresce will be apparent. The shape of the dark area is indicative of the number provided on the dosage sleeve and is capable of being detected and analysed using OCR to determine what number the shape of the dark area corresponds to.
Although embodiments have been described in the context of an injection device, aspects of the present disclosure are applicable to devices other than injection devices. For instance, injection devices 1 of the kind described herein could be modified so as to merely comprise liquid dispensing devices, or in other words devices that eject liquid but are not used to inject it. This may be achieved by a simple modification of the needle 15 to a nozzle type feature (see
In some embodiments the filter 131 may be configured to allow light having a frequency within a narrow band of optical frequencies centred on the second frequency f2 mentioned above to pass through it (i.e. the second frequency f2 being that of optical fluorescence emitted from the dosage sleeve 19). Also, in some embodiments the filter 131 may be configured to block light having a frequency within a narrow band of optical frequencies centred on the first frequency f1 mentioned above (i.e. the first frequency f1 being that of light emitted by the or each light source 29a-29d).
Information has been described as being provided on a dosage sleeve 19 in the form of one or more numbers. Also, this information has been described as being identified via the use of OCR. However, more generally, information provided on the dosage sleeve 19 could instead or additionally comprise one or more signs, symbols, letters or code segments. Instead of OCR, pattern recognition functionality could be used in a more general sense to identify signs, symbols, letters or parts of a code that are viewable through a dosage window 13. Such information could then be used to determine a selected (or dialed) dose amount. For instance a particular sign, symbol, letter or code segment could be associated with an amount of selected (dialed) dose. A table associating such signs, symbols, letters or code segments with quantities of dose selected might be stored in the main memory 241 or the supplementary memory 243 (see
Various other alternatives to the subject matter described herein will be apparent to the skilled person and all such alternatives are within the scope of the invention unless excluded by the scope of the claims.
For instance, instead of LEDs, any other suitable light sources may be used. Suitable light sources may include light bulbs, laser diodes and organic LEDs.
Although four light sources are included in the shown embodiments (e.g. illumination sources 29a-29d), in other embodiments there are one, two, three, five or more than five light sources. The choice of the number of light sources may depend on the particular light source type chosen, brightness, efficiency and cost requirements. Four light sources provides sufficient illumination of a dosage sleeve in most instances whilst having relatively little hardware.
Although the protection window 80 is described as being located close to the dosage window 13 when the supplemental device 2 is in position on an injection device 1 in the embodiments above, they may instead be separated by a significant distance. Providing the protection window 80 close to the dosage window 13 contributes to providing a compact arrangement.
The filter 131 may be coupled to the protection window 80.
Although the filter 131 is coupled to the upper side of the protection window 80 in
In other embodiments the filter 131 may be embedded in or comprise an integral part of the protection window 80, and may comprise for instance a tinted part of the protection window 80.
The filter 131 may be configured to either reflect or absorb light of the or each frequency emitted by the light sources 29a-29d.
In some embodiments the supplemental device 2 may be configured such that, in use, an optical path does not extend directly between the dosage sleeve 19 and the camera 25. For instance light may be reflected from the dosage sleeve 19, through the dosage window 13 and protection window 80, and then redirected by one or more reflective surfaces (e.g. a mirror) onto the camera 25. In such embodiments an optical path does not extend directly between the dosage sleeve 19 and the camera 25. Instead the optical path extends indirectly between the dosage sleeve 19 and the camera 25 via the one or more reflective surfaces (e.g. mirrors). Nevertheless the filter 131 is located on this optical path and occupies the whole of the cross sectional width thereof. The filter 131 thus restricts light of one or more frequencies being directed along this optical path onto the camera 25.
With reference to
Although supplemental device embodiments have been described as being provided with a protection window 80, such a protection window 80 is not strictly necessary although the absence of such a protection window increases the likelihood of dirt ingress into the supplemental device 2.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8036444, | Oct 15 2005 | SVM AUTOMATIK A S | Method and system for irradiating and inspecting liquid-carrying containers |
20010008513, | |||
20040263643, | |||
20060167419, | |||
20060217594, | |||
20080094623, | |||
20130006178, | |||
20130274596, | |||
20140132945, | |||
20140194826, | |||
CN102846308, | |||
CN103648555, | |||
CN1399528, | |||
EP2746771, | |||
JP2006187630, | |||
JP2008510982, | |||
JP2010537250, | |||
WO122870, | |||
WO2006021903, | |||
WO2010115762, | |||
WO2011117212, | |||
WO2013120776, | |||
WO2013180127, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 10 2015 | Sanofi-Aventis Deutschland GmbH | (assignment on the face of the patent) | / | |||
Sep 02 2015 | PRAGER, ROMAN | Sanofi-Aventis Deutschland GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043849 | /0635 |
Date | Maintenance Fee Events |
Apr 03 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 20 2023 | 4 years fee payment window open |
Apr 20 2024 | 6 months grace period start (w surcharge) |
Oct 20 2024 | patent expiry (for year 4) |
Oct 20 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 20 2027 | 8 years fee payment window open |
Apr 20 2028 | 6 months grace period start (w surcharge) |
Oct 20 2028 | patent expiry (for year 8) |
Oct 20 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 20 2031 | 12 years fee payment window open |
Apr 20 2032 | 6 months grace period start (w surcharge) |
Oct 20 2032 | patent expiry (for year 12) |
Oct 20 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |