A strut and IGV configuration in a gas turbine engine positioned at an upstream of a rotor includes a plurality of radial struts, for example for bearing engine loads, and a plurality of inlet guide vanes positioned axially spaced apart from the struts. The number of inlet guide vanes is greater than the number of struts. The struts are circumferentially aligned with the inlet guide vanes.
|
1. A method of providing an aircraft gas turbine engine, the method comprising:
providing a plurality of circumferentially-spaced struts radially extending across an inlet flow passage leading to an engine rotor, the plurality of circumferentially-spaced struts bearing structural loads of the aircraft gas turbine engine;
providing a plurality of variable inlet guide vanes between the struts and the rotor, the number of variable inlet guide vanes being greater than the number of struts, wherein each of the plurality of variable inlet guive vanes is individually rotatable about a respective rotation axis; and
circumferentially positioning the variable inlet guide vanes to allow the struts to circumferentially align with a respective one of the variable inlet guide vanes; including:
during a design phase of the aircraft gas turbine engine, setting a position of the respective rotation axis of each variable inlet guide vane of the plurality of variable inlet guide vanes such that in use a flow direction of air passing around each strut of the plurality of circumferentially-spaced struts forms a respective strut wake which is then substantially redirected by a correspondingly aligned variable inlet guide vane of the plurality of variable inlet guide vanes when the correspondingly aligned variable inlet guide vane is in a maximum setting angle or in a design point setting angle, including selecting a chordwise position of the respective rotation axis of each variable inlet guide vanes of the plurality of variable inlet guide vanes between a leading edge and a trailing edge of each of the plurality of variable inlet guide vanes so that the plurality of variable inlet guide vanes substantially block the respective strut wakes downstream of the struts at both the design point setting angle and the maximum setting angle.
2. The method as defined in
3. The method as defined in
4. The method as defined in
5. The method as defined in
6. The method as defined in
7. The method as defined in
|
The present application is a divisional of U.S. application Ser. No. 14/207,957 filed Mar. 13, 2014 the content of this application being incorporated herein by reference.
The application relates generally to aircraft gas turbine engines and, more particularly, to a strut and inlet guide vane (IGV) configuration for such engines.
In an aircraft gas turbine engine, air is pressurized by rotating blades and mixed with fuel and then ignited for generating hot combustion gases which flow downstream through a turbine for extracting energy therefrom. The air is channelled through rows of fan and/or compressor blades which pressurize the air in turn. In order to aerodynamically guide the air to the respective rotor stages, corresponding stators are disposed upstream therefrom. A conventional stator includes a row of struts extending radially inwardly from a supporting annular casing, with a row of inlet guide vanes positioned downstream of the struts and is configured for decelerating and guiding the air to the corresponding row of rotor blades. The struts are often configured as airfoils thicker and with larger chord lengths than the inlet guide vanes, in order to bear structural loads. In an inlet air flow entering the rotor, the struts cause thick wakes which tend to penetrate through the downstream inlet guide vane row, as schematically shown in
Therefore, an improved strut and inlet guide vane configuration is needed.
In one aspect, there is provided an aircraft gas turbine engine comprising a rotor having a rotation axis, an inlet flow passage leading to the rotor, a plurality of circumferentially-spaced struts radially extending between an outer casing and an inner hub and disposed in the inlet flow passage upstream of the rotor, and a plurality of circumferentially-spaced inlet guide vanes radially extending between the outer casing and the inner hub and disposed in the inlet flow passage upstream of the rotor, the inlet guide vanes being downstream of and axially spaced apart from the struts, each of the inlet guide vanes having an airfoil profile including leading and trailing edges and pressure and suction surfaces, a maximum thickness between the pressure and suction surfaces of the inlet guide vanes being smaller than a circumferential maximum thickness of the struts, the number of the inlet guide vanes being greater than the number of the struts, the struts circumferentially aligning with a respective one of the inlet guide vanes.
In another aspect, there is provided a method of providing an aircraft gas turbine engine, the method comprising: a) providing a plurality of circumferentially-spaced struts radially extending across an inlet flow passage leading to an engine rotor; b) providing a plurality of variable inlet guide vanes between the struts and the rotor, the number of variable inlet guide vanes being greater than the number of struts; c) circumferentially positioning the variable inlet guide vanes to allow the struts to circumferentially align with a respective one of the variable inlet guide vanes; and d) adjusting a position of a rotation axis of the respective variable inlet guide vanes such that in use a flow direction of air passing around each strut forms a wake which is then substantially redirected by a variable inlet guide vane when the variable inlet guide vane is in a maximum setting angle.
Reference is now made to the accompanying drawings in which:
It should be noted that the terms “upstream” and “downstream” used herein and hereinafter refer to the direction of a inlet flow passing through the main fluid path of the engine. It should also be noted that the terms “axial”, “radial” and “circumferential” are used with respect to the central axis 11.
Referring to
Each of the variable inlet guide vanes 30 may have an airfoil profile including leading and trailing edges (not numbered) and pressure and suction surfaces (not numbered) extending between the leading and trailing edges. The struts 24 may also have an airfoil profile. The struts 24 may be designed as thick airfoils (thick in a circumferential dimension) with a large chord length which is measured between the leading and trailing edges of the airfoil, in order to bear the structural loads of the engine 10. The respective struts 24 may be substantially identical or may have a different maximum thickness in the circumferential dimension thereof. There may be a few thick struts and a few thin struts. The variable inlet guide vanes 30 may each be configured to be smaller than the respective struts 24 either in airfoil thickness (the maximum thickness between the pressure and suction surfaces) or in chord length. In this embodiment, the number of variable inlet guide vanes may be much larger than the number of struts. For example the number of variable inlet guide vanes may be a multiple of the number of struts, and the variable inlet guide vanes 30 may be circumferentially positioned to be evenly spaced apart.
The circumferentially spaced variable inlet guide vanes 30 may be positioned such that each of the struts 24 is substantially axially aligned with one of the variable inlet guide vanes 30, as illustrated in
As above-described, the variable inlet guide vanes 30 are rotatable about the radial axis 32 such that the variable inlet guide vanes 30 may be rotated to provide a maximum closing setting angle which may vary from 50 to 70 degrees and is referred to as “IGV closed” and a maximum open setting angle which may vary from 15 to 25 degrees and is referred to as “IGV open”. A design point setting angle of the variable inlet guide vanes 30 is referred to as “IGV=0”.
It should be understood that the position of an airfoil of the variable inlet guide vanes at IGV closed or IGV open, may vary relative to the axially aligned strut 24 when the position of the rotating axis 32 relative to the airfoil is adjusted. For example, if the rotating axis 32 is positioned to radially extend through the variable inlet guide vane 30 close to its leading or trailing edges, the variable inlet guide vane at IGV closed or IGV open may deviate from the originally designed aligning position with the strut 24. Therefore, it may be desirable to adjust the position of the rotating axis 32 relative to the respective variable inlet guide vanes 30 during the design process of the strut and IGV configuration 20 such that a flow direction of each strut wake 34 is substantially blocked (i.e. a flow is substantially redirected) by one of the variable inlet guide vanes 30 which is substantially axially aligned with a strut 24 and is in an IGV closed setting. Therefore, no strut wakes 34 can impact the rotor blades 15 of the compressor section 14 which are located downstream of the variable inlet guide vanes 30.
The variable inlet guide vanes 30 according to this embodiment, may be substantially identical and may be axially spaced apart from the struts 24 by an axial gap G for example as measured between a strut 24 and a circumferentially aligned variable inlet guide vane 30 at IGV=0, as shown in
The above-described embodiment of the strut and IGV configuration advantageously prevents the strut wakes 34 created in the inlet flow 22, from penetrating through the row of variable inlet guide vanes 30 into the rotor of the compressor section 14, in order to reduce a forced vibration on the rotor blades 15 which could be caused by the wakes 34 of the thick struts 24. The strut and inlet guide vane losses in the inlet air flow 22, and pressure distortion at both design and off design IGV settings (including IGV open and IGV closed) may therefore be reduced.
Referring to
Referring to
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the described subject matter. For example, in the above-described embodiments the strut and IGV configuration is positioned immediately upstream of a compressor section. However, such a configuration may be positioned immediately upstream of a fan rotor in a turbofan gas turbine engine to guide inlet flow entering the fan rotor. The strut and IGV configuration may have stationary inlet guide vanes instead of variable inlet guide vanes. An example of a turbofan engine having a compressor with axial and centrifugal stages is illustrated in
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2844001, | |||
3442493, | |||
3572960, | |||
3723021, | |||
4874289, | May 26 1988 | United States of America as represented by the Secretary of the Air Force | Variable stator vane assembly for a rotary turbine engine |
5045325, | Sep 26 1990 | Cadbury Adams USA LLC | Continuous production of chewing gum using corotating twin screw extruder |
5520511, | Dec 22 1993 | SNECMA | Turbomachine vane with variable camber |
5619916, | Nov 20 1992 | Shinsei Industries Co., Ltd. | Printer with a mechanism for idling setting wheels |
5623823, | Dec 06 1995 | United Technologies Corporation | Variable cycle engine with enhanced stability |
6439838, | Dec 18 1999 | General Electric Company | Periodic stator airfoils |
6607353, | Jul 26 2001 | Mitsubishi Heavy Industries, Ltd. | Centrifugal compressor |
6715983, | Sep 27 2001 | General Electric Company | Method and apparatus for reducing distortion losses induced to gas turbine engine airflow |
6905303, | Jun 30 2003 | General Electric Company | Methods and apparatus for assembling gas turbine engines |
7114911, | Aug 25 2004 | General Electric Company | Variable camber and stagger airfoil and method |
7118331, | May 14 2003 | Rolls-Royce plc | Stator vane assembly for a turbomachine |
7444802, | Jun 18 2003 | Rolls-Royce plc | Gas turbine engine including stator vanes having variable camber and stagger configurations at different circumferential positions |
7549839, | Oct 25 2005 | RTX CORPORATION | Variable geometry inlet guide vane |
7850420, | Mar 24 2006 | SCHAEFFLER TECHNOLOGIES AG & CO KG | Two-part stator blade |
8206097, | Dec 21 2006 | MITSUBISHI POWER, LTD | Compressor |
20130259672, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 21 2014 | YU, HONG | Pratt & Whitney Canada Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047190 | /0594 | |
Feb 21 2014 | DUTTON, RONALD | Pratt & Whitney Canada Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047190 | /0594 | |
Sep 05 2018 | Pratt & Whitney Canada Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 05 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Mar 21 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 20 2023 | 4 years fee payment window open |
Apr 20 2024 | 6 months grace period start (w surcharge) |
Oct 20 2024 | patent expiry (for year 4) |
Oct 20 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 20 2027 | 8 years fee payment window open |
Apr 20 2028 | 6 months grace period start (w surcharge) |
Oct 20 2028 | patent expiry (for year 8) |
Oct 20 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 20 2031 | 12 years fee payment window open |
Apr 20 2032 | 6 months grace period start (w surcharge) |
Oct 20 2032 | patent expiry (for year 12) |
Oct 20 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |