A six-part conveyor system sharing a common line of dependency for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window from one segment of a conveyor system to another. The window manufacturing conveyor line is designed to streamline the manufacture of windows. This system and method allows a user to easily move glass panels, speeding up productivity and provide efficiency by putting holding clips on glass in a first station, applying fast drying sealant to a tipped piece of glass in a second station, and moving to a final station where the glass window is prepared for shipping wherein the shipping cart is moved into position around the final station and window is lowered onto the cart.
|
1. A conveyor system for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window from one segment of a conveyor system to another, comprising:
a six-part conveyor system sharing a common line of dependency, wherein a first-part of said six-part conveyor system includes a crane with multi-directional movement and a vacuum lift for placing window material on to a second-part of said six-part system;
said second-part and a fourth-part each include a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members;
said second-part and fourth-part are positioned facing opposite directions sharing said common line of dependency;
said second-part, fourth-part, and fifth-part exist at a fixed fifteen degree tilt from a vertical axis in order to cradle said window materials;
a third-part of said six-part system includes a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members;
said third-part is configured to pivot plus or minus fifteen degrees from a vertical axis in order to allow for application of sealant to both sides of said window materials;
said tipping is achieved through use of a pivot point located on the bottom of the enclosure and an actuating member driven by a motor that is configured to push and pull the top of the enclosure;
said third-part of said six-part system having a slidable enclosure, wherein said enclosure includes a support surface parallel and equal in dimension to said perpendicular support surface, wherein in an open position, said slidable enclosure is positioned vertically above said perpendicular support surface, and in a closed position said slidable enclosure is opposite of said perpendicular support surface;
said slidable enclosure forming a containment area for said window materials when in said closed position to facilitate tipping of said window materials from fifteen degrees from a vertical position to fifteen degrees from a vertical position in the opposite direction, wherein said window materials may be supported on both vertical sides by said containment area as said tipping transfers weight from one of said support surfaces to another;
a fifth-part of said six-part system, wherein said fifth-part includes a shorter conveyor surface than other said parts, configured to be shorter than said window materials to facilitate transfer to a sixth-part of the system, which includes a moveable cart;
said fifth-part of the system includes wheels to facilitate lateral movement of a support frame of said conveyor surface, wherein said lateral movement is to and away from the remaining parts of the six-part conveyor system;
said fifth-part achieves movement through use of a motor which actuates a guiding member located parallel to and attached to said support structure, wherein said motor is spaced further behind said support structure than said motor in said second, third, and fourth-parts, to avoid a tipping moment on said wheels of said fifth-part;
said second-part, third-part, fourth-part, and fifth-part of the system all including an assembly for raising and lowering said window materials, wherein said assembly includes a structural support frame, at least two beams for raising and lowering said structural support frame with vertical and horizontal conveyor surfaces cradling said window materials, wherein the beams are each supported by at least two jacks for raising and lowering said structural support frame, said jacks are each connected to a gear assembly driven by a shaft, wherein each shaft is connected to a main gear assembly, which connects to a main shaft, which is powered by a motor; and
said assembly for raising and lowering said structural support frame of said second-part, third-part, fourth-part, and fifth-part of the system includes:
(i) said motor;
(ii) said main shaft connected to said motor and parallel to said structural support frame;
(iii) said gear assembly at the distal ends of said main shaft, wherein each said gear assembly connects perpendicularly to another shaft configured to rotate therein raising and lowering said sets of jacks located at distal ends of each structural support frame; and
(iv) said beam resting atop of each said set of jacks therein supporting said structural support frame and allowing said structural support frame to raise and lower when said motor is engaged thereby rotating the main shaft, which engages the gear assemblies to rotate the perpendicular shafts, which engage each set of said jacks to raise and lower said beams supporting the structural support frame;
a sixth-part of the system including a specialized cart configured to engage with said fifth-part, wherein the height of the lower surface of said cart is configured to be lower than the structural supporting frame of the fifth-part when said structural supporting frame is raised, but wherein the lower surface of the cart is above the lower part of the structural supporting frame when said structural supporting frame is lowered;
said cart having a lower surface with a space in the center allowing said structural support frame of said fifth-part to lower past the lower surface of the specialized cart; and
said cart having a vertical surface to allow users to push and pull said cart.
2. A method for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window from one segment of a conveyor system to another, comprising:
providing:
a six-part conveyor system sharing a common line of dependency, wherein a first-part of said six-part conveyor system includes a crane with multi-directional movement and a vacuum lift for placing window material on to a second-part of said six-part system;
said second-part and a fourth-part each include a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members;
said second-part and fourth-part are positioned facing opposite directions sharing said common line of dependency;
said second-part, fourth-part, and fifth-part exist at a fixed [number] degree tilt from a vertical axis in order to cradle said window materials;
a third-part of said six-part system includes a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members;
said third-part is configured to pivot plus or minus [number] degrees from a vertical axis in order to allow for application of sealant to both sides of said window materials;
said tipping is achieved through use of a pivot point located on the bottom of the enclosure and an actuating member driven by a motor that is configured to push and pull the top of the enclosure;
said third-part of said six-part system having a slidable enclosure, wherein said enclosure includes a support surface parallel and equal in dimension to said perpendicular support surface, wherein in an open position, said slidable enclosure is positioned vertically above said perpendicular support surface, and in a closed position said slidable enclosure is opposite of said perpendicular support surface;
said slidable enclosure forming a containment area for said window materials when in said closed position to facilitate tipping of said window materials from [number] degrees from a vertical position to [number] degrees from a vertical position in the opposite direction, wherein said window materials may be supported on both vertical sides by said containment area as said tipping transfers weight from one of said support surfaces to another;
a fifth-part of said six-part system, wherein said fifth-part includes a shorter conveyor surface than other said parts, configured to be shorter than said window materials to facilitate transfer to a sixth-part of the system, which includes a moveable cart;
said fifth-part of the system includes wheels to facilitate lateral movement of a support frame of said conveyor surface, wherein said lateral movement is to and away from the remaining parts of the six-part conveyor system;
said fifth-part achieves movement through use of a motor which actuates a guiding member located parallel to and attached to said support structure, wherein said motor is spaced further behind said support structure than said motor in said second, third, and fourth-parts, to avoid a tipping moment on said wheels of said fifth-part;
said second-part, third-part, fourth-part, and fifth-part of the system all including an assembly for raising and lowering said window materials, wherein said assembly includes a structural support frame, at least two beams for raising and lowering said structural support frame with vertical and horizontal conveyor surfaces cradling said window materials, wherein the beams are each supported by at least two jacks for raising and lowering said structural support frame, said jacks are each connected to a gear assembly driven by a shaft, wherein each shaft is connected to a main gear assembly, which connects to a main shaft, which is powered by a motor; and
said assembly for raising and lowering said structural support frame of said second-part, third-part, fourth-part, and fifth-part of the system includes:
(i) said motor;
(ii) said main shaft connected to said motor and parallel to said structural support frame;
(iii) said gear assembly at the distal ends of said main shaft, wherein each said gear assembly connects perpendicularly to another shaft configured to rotate therein raising and lowering said sets of jacks located at distal ends of each structural support frame; and
(iv) said beam resting atop of each said set of jacks therein supporting said structural support frame and allowing said structural support frame to raise and lower when said motor is engaged thereby rotating the main shaft, which engages the gear assemblies to rotate the perpendicular shafts, which engage each set of said jacks to raise and lower said beams supporting the structural support frame;
a sixth-part of the system including a specialized cart configured to engage with said fifth-part, wherein the height of the lower surface of said cart is configured to be lower than the structural supporting frame of the fifth-part when said structural supporting frame is raised, but wherein the lower surface of the cart is above the lower part of the structural supporting frame when said structural supporting frame is lowered;
said cart having a lower surface with a space in the center allowing said structural support frame of said fifth-part to lower past the lower surface of the specialized cart; and
said cart having a vertical surface to allow users to push and pull said cart;
picking up window material with said vacuum lift;
using said crane to move said window material to a second-part of the system;
assembling a front part of a window from said window material;
rolling said window material from said second-part of the system to said third-part of the system;
engaging the motor to tip said enclosure of said third-part to align with said fourth-part;
raising said enclosure so that a reverse side of said window can be assembled;
sliding said window materials from said third-part of the system to said fourth-part of the system;
finishing said assembly of said window from window materials;
rolling said finished window from said fourth-part of the system to said fifth-part of the system;
moving said fifth-part of said system away from said fourth-part of said system by running said motor which pulls said guiding member;
engaging a sixth-part of the system, including said specialized cart;
lowering said structural support frame of said fifth-part of said system past the lower surface of said cart, wherein the weight of the window shifts from said fifth-part to said sixth-part; and
carting said window to another location.
|
This application claims the benefit under 35 USC 119(e) of the U.S. provisional patent application Ser. No. 62/674,294 filed May 21, 2018, and the same is incorporated in its entirety.
The window manufacturing conveyor line is designed to streamline the manufacture of windows.
Presently most window manufacturers use saw horses to stage window frames. The glass is carried to the window frame and inserted into the frame. The upper side of the window is mounted into the frame. Several people then turn the window over and the other side is finished.
Window is packaged and then several people lift and set the window on a shipping cart.
In the case of heavy hurricane windows the lifting process can involve 5 people.
The present invention provides for a conveyor system for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window from one segment of a conveyor system to another, comprising a six-part conveyor system sharing a common line of dependency, wherein a first-part of said six-part conveyor system includes a crane with multi-directional movement and a vacuum lift for placing window material on to a second-part of said six-part system. A second-part and a fourth-part each include a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members. The second-part and fourth-part are positioned facing opposite directions sharing said common line of dependency. The second-part, fourth-part, and fifth-part exist at a fixed degree tilt of about fifteen degrees from a vertical axis in order to cradle said window materials. A third-part of said six-part system includes a lower shelf and a perpendicular supporting structure to hold said window materials, wherein the shelf includes horizontal rolling cylindrical members and said perpendicular supporting structure includes vertical rolling cylindrical members, wherein said third-part is configured to pivot plus or minus about fifteen degrees from a vertical axis in order to allow for application of sealant to both sides of said window materials and tipping is achieved through use of a pivot point located on the bottom of the enclosure and an actuating member driven by a motor that is configured to push and pull the top of the enclosure. The third-part of said six-part system having a slidable enclosure, wherein said enclosure includes a support surface parallel and equal in dimension to said perpendicular support surface, wherein in an open position, said slidable enclosure is positioned vertically above said perpendicular support surface, and in a closed position said slidable enclosure is opposite of said perpendicular support surface, and slidable enclosure forming a containment area for said window materials when in said closed position to facilitate tipping of said window materials from about fifteen degrees from a vertical position to about fifteen degrees from a vertical position in the opposite direction, wherein said window materials may be supported on both vertical sides by said containment area as said tipping transfers weight from one of said support surfaces to another. A fifth-part of said six-part system, wherein said fifth-part includes a shorter conveyor surface than other said parts, configured to be shorter than said window materials to facilitate transfer to a sixth-part of the system, which includes a moveable cart. The fifth-part of the system includes wheels to facilitate lateral movement of a support frame of said conveyor surface, wherein said lateral movement is to and away from the remaining parts of the six-part conveyor system, and the fifth-part achieves movement through use of a motor which actuates a guiding member located parallel to and attached to said support structure, wherein said motor is spaced further behind said support structure than said motor in said second, third, and fourth-parts, to avoid a tipping moment on said wheels of said fifth-part. The second-part, third-part, fourth-part, and fifth-part of the system all including an assembly for raising and lowering said window materials, wherein said assembly includes a structural support frame, at least two beams for raising and lowering said structural support frame with vertical and horizontal conveyor surfaces cradling said window materials, wherein the beams are each supported by at least two jacks for raising and lowering said structural support frame, said jacks are each connected to a gear assembly driven by a shaft, wherein each shaft is connected to a main gear assembly, which connects to a main shaft, which is powered by a motor. The assembly for raising and lowering said structural support frame of said second-part, third-part, fourth-part, and fifth-part of the system includes a motor, a main shaft connected to said motor and parallel to said structural support frame, a gear assembly at the distal ends of said main shaft, wherein each said gear assembly connects perpendicularly to another shaft configured to rotate therein raising and lowering said sets of jacks located at distal ends of each structural support frame, and a beam resting atop of each said set of jacks therein supporting said structural support frame and allowing said structural support frame to raise and lower when said motor is engaged thereby rotating the main shaft, which engages the gear assemblies to rotate the perpendicular shafts, which engage each set of said jacks to raise and lower said beams supporting the structural support frame. A sixth-part of the system included a specialized cart configured to engage with said fifth-part, wherein the height of the lower surface of said cart is configured to be lower than the structural supporting frame of the fifth-part when said structural supporting frame is raised, but wherein the lower surface of the cart is above the lower part of the structural supporting frame when said structural supporting frame is lowered. The cart having a lower surface with a space in the center allowing said structural support frame of said fifth-part to lower past the lower surface of the specialized cart, and said cart having a vertical surface to allow users to push and pull said cart.
Yet further provided is a method for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window from one segment of a conveyor system to another, comprising providing the structural embodiment recited above, picking up window material with said vacuum lift, using said crane to move said window material to a second-part of the system, assembling a front-part of a window from said window material, rolling said window material from said second-part of the system to said third-part of the system, engaging the motor to tip said enclosure of said third-part to align with said fourth-part, raising said enclosure so that a reverse side of said window can be assembled, sliding said window materials from said third-part of the system to said fourth-part of the system, finishing said assembly of said window from window materials, rolling said finished window from said fourth-part of the system to said fifth-part of the system, moving said fifth-part of said system away from said fourth-part of said system by running said motor which pulls said guiding member, engaging a sixth-part of the system, including said specialized cart, lowering said structural support frame of said fifth-part of said system past the lower surface of said cart, wherein the weight of the window shifts from said fifth-part to said sixth-part, and carting said window to another location.
It is an object of the present invention to provide a system that allows a user to easily move glass panels, speeding up productivity and provide efficiency.
It is yet another object of this invention to provide a system that reduces the need for users to lift materials used in window manufacturing.
It is yet another object of this invention to provide a system that allows users to easily reach both front and back sides of a window during manufacturing.
The above and yet other objects and advantages of the present invention will become apparent from the hereinafter set forth Brief Description of the Drawings, Detailed Description of the Invention and Claims appended herewith.
The window manufacturing conveyor line is designed to streamline the manufacture of windows. This system and method allow a user to easily move glass panels, speeding up productivity and provide efficiency by putting holding clips on glass in a first station, applying fast drying sealant to a tipped piece of glass in a second station, and moving to a final station where the glass window is prepared for shipping wherein the shipping cart is moved into position around the final station and window is lowered onto the cart.
The window manufacturing conveyor system allows for faster and easier production of windows in an assembly line. A window being manufactured is lifted on to a conveyor segment, the second-part, by a crane with a vacuum lift. The segments cradles the window material because it exists on an angle, fully supporting the window. Users of the system then assemble one side of the window. The segments may raise and lower allowing users to reach different parts of the window. When one side of the window is assembled, the window is rolled on to a second segment, the third-part, which is calibrated to be at the same height and angle as the prior segment allowing an easy transition from one segment to the next. On the third-part, an enclosure encasement is lowered by a hoist to fit over the window, securing the window on both sides, allowing the window to be tipped in the opposite direction to allow users access to the back side of the window. A motor drives a horizontal member, such as a shaft or rod, which pushes the top of the enclosure allowing the bottom to pivot, thus adjusting the enclosure to an opposite angulation. When the window is tipped in this third-part, the result is that of calibration equal in height and angulation to that of a third segment, the fourth-part. This fourth-part is facing in an opposite direction, respective to a common line of dependency, than that of the second-part, allowing the user access to the back of the window. The window is then rolled on to this fourth-part for further assembly. Once the back of the window is assembled, the window is rolled on to a fourth and final segment, the fifth-part, which is shorter than the width of the window, to allow for packaging for shipment. The fifth-part is able to move in the direction to and away from the conveyor system through utilization of wheels, and a motor driven actuator. Once the window is rolled on to a fifth-part, the fifth-part is moved away from the remainder of the system, and the window is packaged for shipment. A specialized cart is then engaged with the fifth-part, allowing easy transfer of the window away from the conveyor system.
The system as a whole is shown in
The first-part 2, shown in
The second-part 4, as may be seen in
As may be noticed in
As may be seen in
The third-part 6, similarly to the second-part, includes a structural supporting frame 200, conveyor surfaces 204 and 208, which have rolling cylindrical members 206 and 210. However, unlike the second-part 4, the fourth-part 8, and fifth-part 10, the third-part 6 includes an enclosure 262 with vertical rolling cylindrical members 214, pivot joint 216, and an upper tipping means made up of a shaft 218 actuated by a motor 222 to push and pull the top of the structural supporting frame 200 in order to pivot the surface to allow for said surfaces to line up with the second-part 4 when tipped, and the fourth-part 8 when un-tipped. The pivot joint 216 allows the enclosure 262 to move about fifteen degrees in either direction to from a vertical position.
Upon sliding a window on to enclosure 262 conveyor surface 214, structural supporting frame surface 200, and conveyor surface 208, the enclosure 262 is tipped in the opposite direction by retracting the shaft 218. The orientation of the enclosure 262 will go from complemental positioning of the structural support frame 100 of the second-part 4 to complemental positioning of the structural support frame 300 the fourth-part 8. At this point, the weight of the window 14 will be on conveyor surfaces 204 and 208 of the structural supporting frame 200. The enclosure is then hoisted up along guide rails 225. Once the enclosure 262 is raised, a user may work on the opposite side of a window 14.
Stated another way, the slidable enclosure 262 forms a containment area for the window 14 when in a closed position to facilitate tipping of the window from about fifteen degrees from a vertical position to about fifteen degrees in the opposite direction from a vertical position, wherein the window 14 is supported on both vertical sides 214 and 204 of the containment area as the tipping transfers weight from one of said support surfaces to another.
As may be appreciated in
The fourth-part 8, as may be seen in
As may be noticed in
The fourth-part 8 and the second-part are generally similar in structure, but are facing opposite directions from a common line of dependency 16 as shown in
As may be noticed, the fifth-part of the conveyor system 10 includes a shorter conveyor surface 404 and 408 than other parts of the conveyor system, configured to be shorter than the window 14 to facilitate transfer of the window 14 to moveable carts 500 of a sixth-part 12 of the conveyor system.
The fifth-part 10 achieves movement through use of a motor 454 which pulls and pushes an actuated guiding member 456 located parallel to and attached to said support structure 400.
As may be appreciated from
Because the fifth-part 10 is on wheels 416, the motor 434 of the fifth-part 10 is further away from structural support frame 400 to avoid a tipping moment due to weight of the window 14 and structural support frame 400. This may also be seen by viewing
Shown in
This invention also includes a method for the streamlined manufacturing of windows allowing both sides of the window to be easily worked on without the need for users to lift and move the window 14 from one segment of a conveyor system to another. This can be visualized by looking at
While there has been shown and described above the preferred embodiment of the instant invention it is to be appreciated that the invention may be embodied otherwise than is herein specifically shown and described and that, within said embodiment, certain changes may be made in the form and arrangement of the parts without departing from the underlying ideas or principles of this invention as set forth in the Claims appended herewith.
Patent | Priority | Assignee | Title |
ER6884, |
Patent | Priority | Assignee | Title |
10689208, | Jul 12 2016 | LISEC AUSTRIA GMBH | Conveying apparatus |
3923167, | |||
6739819, | Mar 28 2002 | Drywall / paneling lift | |
6857836, | Jun 02 2000 | Wheeled transports | |
7014413, | Apr 04 2002 | Door attaching apparatus | |
7597527, | Jul 14 2006 | Raytheon Company | System and method for transporting an object in multiple directions |
7997845, | May 05 2004 | Quantum Workhealth Programmes Pty Ltd | Glass handling systems |
9004509, | Feb 28 2012 | Cartovators, LLC. | Transport cart with tilting load carrier |
20170151491, | |||
20180100306, | |||
20190218042, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jul 18 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jul 31 2019 | MICR: Entity status set to Micro. |
Dec 27 2019 | PTGR: Petition Related to Maintenance Fees Granted. |
Jun 17 2024 | REM: Maintenance Fee Reminder Mailed. |
Dec 02 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 27 2023 | 4 years fee payment window open |
Apr 27 2024 | 6 months grace period start (w surcharge) |
Oct 27 2024 | patent expiry (for year 4) |
Oct 27 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 27 2027 | 8 years fee payment window open |
Apr 27 2028 | 6 months grace period start (w surcharge) |
Oct 27 2028 | patent expiry (for year 8) |
Oct 27 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 27 2031 | 12 years fee payment window open |
Apr 27 2032 | 6 months grace period start (w surcharge) |
Oct 27 2032 | patent expiry (for year 12) |
Oct 27 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |