Compositions for the activation of pkr are provided, as well as therapeutic administration of the compositions for the treatment of pyruvate kinase-related medical conditions, such as pyruvate kinase deficiency (PKD).
|
1. A method of treating a patient diagnosed with pyruvate kinase deficiency, the method comprising administering to the patient a therapeutically effective amount of a pkr Activator Compound, or a pharmaceutically acceptable salt thereof, wherein the patient has a pkr mutation, and wherein the pkr mutation is G332S, wherein the pkr Activator Compound is:
##STR00003##
2. The method of
|
The present patent application is a continuation of U.S. patent application Ser. No. 16/245,654, filed Jan. 11, 2019, which is a continuation of U.S. patent application Ser. No. 15/926,236, filed Mar. 20, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/473,751, filed on Mar. 20, 2017, each of which is incorporated by reference in its entirety.
This disclosure relates to novel chemical compositions for activating the pyruvate kinase enzyme, useful in the treatment of pyruvate kinase-related medical conditions (e.g., pyruvate kinase deficiency).
Pyruvate Kinase (PK) is an enzyme involved in glycolysis (the conversion of glucose into pyruvate), and is critical for the survival of the cell. PK converts phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to pyruvate and adenosine triphosphate (ATP), respectively, which is the final step in glycolysis. PKR is one of several tissue-specific isoforms (e.g., PKR, PKL, PKM1, and PKM2) of pyruvate kinase that is present in red blood cells (RBCs). Glycolysis is the only pathway available for RBCs to maintain the production of adenosine-5′-triphosphate, or ATP, which is a form of chemical energy within cells. Accordingly, PK deficiency can result in a shortened life span for RBCs and is the most common form of non-spherocytic hemolytic anemia in humans.
PK deficiency (PKD) is a rare autosomal recessive genetic disorder that can result in severe hemolytic anemia, jaundice, and lifelong conditions associated with chronic anemia, as well as secondary complications due to inherited mutations in the pyruvate kinase enzyme within RBCs. Individuals with the PK deficiency produce PKR enzyme at only a fraction of the normal level of activity (generally <50%). There are many different possible mutant combinations, classified as either a missense mutation (causing a single amino acid change in the protein), generally resulting in some level of functional protein in the RBCs, or a non-missense mutation (any mutation other than a missense mutation), generally resulting in little functional protein in the RBCs. It is estimated that 58 percent of patients with PK deficiency have two missense mutations, 27 percent have one missense and one non-missense mutation, and 15 percent have two non-missense mutations.
There remains a need for novel compounds that activate PKR for the treatment of PK deficiency and other medical conditions that can therapeutically benefit from compounds that activate PKR.
Compositions disclosed herein include compounds useful for activating PKR. The invention is based in part on the discovery of the chemical compound 1 as a PKR Activator Compound, defined herein as a compound that provides an AC50 value of less than 1 μM using the Luminescence Assay described below:
##STR00001##
The discovery includes the use of 1-(5-((3,4-Dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one, and pharmaceutically acceptable salts thereof, in pharmaceutical preparations for the treatment of patients diagnosed with a pyruvate kinase-related condition, such as pyruvate kinase deficiency. The compositions comprising compound 1 and pharmaceutically acceptable salts thereof can be obtained by certain processes also provided herein.
Compositions comprising compound 1 can be prepared as shown in the scheme below:
##STR00002##
To a solution of tert-butyl 3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (0.7 g, 3.33 mmol, 1.00 equiv) in acetonitrile (20 mL) and DIEA (1.7 mL, 9.76 mmol, 2.93 equiv) is added 4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-sulfonyl chloride (0.96 g, 3.50 mmol, 1.05 equiv) in 1,4 dioxane (17 mL). The resulting mixture is stirred at RT overnight. The reaction mixture is worked up with saturated ammonium chloride solution and EtOAc. The combined organics are washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure to provide tert-butyl 5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2) (1.5 g, 3.33 mmol, 100% yield).
Tert-butyl 5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (2) (1.5 g, 3.33 mmol, 1.00 equiv) is dissolved in a mixture of MeOH (30 mL), DCE (10 mL) and 4 M HCl in 1,4-dioxane (5 mL). The reaction is heated at 50° C. for 2 h. The solvents are evaporated under reduced pressure and the reaction mixture is azeotropically dried with toluene and dried further under vacuum overnight to provide 1-(6-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)ethan-1-one hydrochloride (3) (1.21 g, 3.13 mmol, 94% yield, over two steps). LCMS: m/z=350 [M+H]+.
Into an 8-mL vial purged and maintained with an inert atmosphere of nitrogen is added 2-hydroxy-2-methylpropanoic acid (0.050 g, 0.48 mmol, 1.20 equiv), DIEA (154.8 mg, 1.20 mmol, 3.00 equiv), 1-(6-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)ethan-1-one hydrochloride (3) (0.154 g, 0.40 mmol, 1.00 equiv), HATU (0.167 g, 0.44 mmol, 1.10 equiv), and dichloromethane (4 ml). The solution is stirred for 4 h at room temperature, then concentrated under vacuum. The crude product is purified by prep-TLC to provide 1-(5-((4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (4).
Into an 8-mL vial is placed 1-(5-((4(4-acetyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (4) (0.087 g, 0.20 mmol, 1.00 equiv) and a solution of sodium hydroxide (0.032 g, 0.80 mmol, 4.00 equiv) in methanol (2 ml) and water (0.5 ml). The solution is stirred for 4 h at room temperature, then the pH is adjusted to 9 with hydrochloric acid (2 mol/L). The mixture is concentrated under vacuum. The residue is purified by silica gel column chromatography. The crude product is further purified by Prep-HPLC to provide 1-(5-((3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-2-hydroxy-2-methylpropan-1-one (1). LCMS m/z: 394.
The ability of compound 1 to activate PKR was determined using the following Luminescence Assay. The effect of phosphorylation of adenosine-5′-diphosphate (ADP) by PKR (wild type) is determined by the Kinase Glo Plus Assay (Promega) in the presence or absence of FBP [D-Fructose-1,6-diphosphate; BOC Sciences, CAS: 81028-91-3] as follows. Unless otherwise indicated, all reagents are purchased from Sigma-Aldrich. All reagents are prepared in buffer containing 50 mM Tris-HCl, 100 mM KCl, 5 mM MgCl2, and 0.01% Triton X100, 0.03% BSA, and 1 mM DTT. Enzyme and PEP [Phospho(enol) pyruvic acid] are added at 2× to all wells of an assay-ready plate containing serial dilutions of test compounds or DMSO vehicle. Final enzyme concentrations for PKR(wt), PKR(R510Q), and PKR(G332S) are 0.8 nM, 0.8 nM, and 10 nM respectively. Final PEP concentration is 100 μM. The Enzyme/PEP mixture is incubated with compounds for 30 minutes at RT before the assay is initiated with the addition of 2×ADP [Adenosine-5′-diphosphate] and KinaseGloPlus. Final concentration of ADP is 100 μM. Final concentration of KinaseGloPlus is 12.5%. For assays containing FBP, that reagent is added at 30 μM upon reaction initiation. Reactions are allowed to progress for 45 minutes at RT until luminescence is recorded by the BMG PHERAstar FS Multilabel Reader. The compound is tested in triplicate at concentrations ranging from 42.5 μM to 2.2 nM in 0.83% DMSO. An AC50 measurement for compound 1 of between 0.1 and 1.0 μM for the G332S PKR mutant, and between 0.1 and 1.0 μM for the PKR wild type enzyme was obtained by the standard four parameter fit algorithm of ActivityBase XE Runner (max, min, slope and AC50). The AC50 value for a compound is the concentration (μM) at which the activity along the four parameter logistic curve fit is halfway between minimum and maximum activity.
Compounds and compositions described herein are activators of wild type PKR and certain PKR mutants having lower activities compared to the wild type. Such mutations in PKR can affect enzyme activity (catalytic efficiency), regulatory properties and/or thermostability of the enzyme. One example of a PKR mutation is G332S. Methods of treatment (e.g., by activating wild type PKR) can comprise administering to a subject in need thereof a therapeutically effective amount of (1) a compound disclosed herein or a pharmaceutically acceptable salt thereof; (2) a pharmaceutical composition comprising a compound disclosed herein or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier. The pharmaceutical compositions may be orally administered in any orally acceptable dosage form. In some embodiments, to increase the lifetime of red blood cells, a compound, composition or pharmaceutical composition described herein is added directly to whole blood or packed cells extracorporeally or provided to the subject (e.g., the patient) directly. The compositions described herein can modulate (e.g., activate) PKR. Accordingly, a patient and/or subject can be selected for treatment using a compound described herein by first evaluating the patient and/or subject to determine whether the subject is in need of modulation (e.g., activation) of PKR, and if the subject is determined to be in need of modulation of PKR, then administering to the subject a composition described herein.
The present disclosure enables one of skill in the relevant art to make and use the inventions provided herein in accordance with multiple and varied embodiments. Various alterations, modifications, and improvements of the present disclosure that readily occur to those skilled in the art, including certain alterations, modifications, substitutions, and improvements are also part of this disclosure. Accordingly, the foregoing description and drawings are by way of example to illustrate the discoveries provided herein.
Zheng, Xiaozhang, Mitchell, Lorna, Gustafson, Gary, Lancia, Jr., David R., Green, Neal, Shelekhin, Tatiana
Patent | Priority | Assignee | Title |
11980611, | Sep 19 2018 | FORMA THERAPEUTICS, INC | Treating sickle cell disease with a pyruvate kinase R activating compound |
12053458, | Sep 19 2018 | FORMA THERAPEUTICS, INC | Treating sickle cell disease with a pyruvate kinase R activating compound |
12071440, | Mar 20 2017 | Novo Nordisk Health Care AG | Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators |
12128035, | Mar 19 2021 | FORMA THERAPEUTICS, INC | Activating pyruvate kinase R |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2018 | ZHENG, XIAOZHANG | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Aug 29 2018 | LANCIA, DAVID R , JR | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Sep 04 2018 | SHELEKHIN, TATIANA | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Oct 04 2018 | MITCHELL, LORNA | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Oct 10 2018 | GREEN, NEAL | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Oct 17 2018 | GUSTAFSON, GARY | FORMA THERAPEUTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052215 | /0213 | |
Oct 04 2019 | FORMA Therapeutics, Inc. | (assignment on the face of the patent) | / | |||
Oct 14 2022 | FORMA THERAPEUTICS, INC | NOVO NORDISK HEALTH CARE AG, | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064100 | /0452 |
Date | Maintenance Fee Events |
Oct 04 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 22 2019 | SMAL: Entity status set to Small. |
Dec 30 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Apr 18 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 17 2023 | 4 years fee payment window open |
May 17 2024 | 6 months grace period start (w surcharge) |
Nov 17 2024 | patent expiry (for year 4) |
Nov 17 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 17 2027 | 8 years fee payment window open |
May 17 2028 | 6 months grace period start (w surcharge) |
Nov 17 2028 | patent expiry (for year 8) |
Nov 17 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 17 2031 | 12 years fee payment window open |
May 17 2032 | 6 months grace period start (w surcharge) |
Nov 17 2032 | patent expiry (for year 12) |
Nov 17 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |