A compact ground robot includes a vehicle body, a forward pair of track assemblies mounted to the vehicle body, and a rearward pair of track assemblies mounted to the vehicle body. All the track assemblies are foldable underneath the vehicle body for compact transport of the robot. All the track assemblies unfold to a deployed position supporting the vehicle body for deployment of the robot. Each track assembly may include a drive sprocket, a flipper, and a tack about the sprocket and flipper.
|
1. A compact ground robot comprising:
a vehicle body;
a forward pair of track assemblies mounted to the vehicle body;
a rearward pair of track assemblies mounted to the vehicle body;
the forward pair of track assemblies foldable underneath the vehicle body for transport of the robot;
the rearward pair of track assemblies foldable underneath the vehicle body for transport of the robot;
the forward pair of track assemblies unfoldable to a deployed position supporting the vehicle body for deployment of the robot; and
the rearward pair of track assemblies unfoldable to a deployed position supporting the vehicle body for deployment of the robot.
20. A compact ground robot comprising:
a vehicle body including a forward pair of brackets and a rearward pair of brackets;
a forward pair of track assemblies each including an arm lockable with respect to the forward bracket to deploy the forward pair of track assemblies and the arm rotatable with respect to the forward bracket to fold the forward track assemblies underneath the vehicle body; and
a rearward pair of track assemblies each including an arm lockable with respect to the rearward bracket to deploy the rearward pair of track assemblies and each arm rotatable with respect to a rearward bracket to fold the rearward track assemblies underneath the vehicle body.
24. A compact ground robot comprising:
a vehicle body including a forward pair of brackets and a rearward pair of brackets;
a forward pair of track assemblies each including a track driven by a sprocket rotatable about a shaft coupled to a front arm lockable into the forward bracket to deploy the forward pair of track assemblies and said arm rotatable with respect to the forward bracket to fold the forward track assemblies underneath the vehicle body;
a rearward pair of track assemblies each including a track driven by a sprocket rotatable about a shaft coupled to a rear arm lockable with respect to the rearward bracket to deploy the rearward pair of track assemblies and said arm rotatable with respect to the rearward bracket to fold the rearward track assemblies underneath the vehicle body.
29. A compact ground robot comprising:
a vehicle body;
a forward pair of track assembles mounted to the vehicle body;
a rearward pair of track assemblies mounted to the vehicle body;
each track assembly including a drive sprocket, a flipper, and a track about the sprocket and flipper;
the drive sprocket and flipper rotatable about a shaft connected to the vehicle body;
a first motor coupled to the shaft for rotating the drive sprocket and a second motor coupled to the shaft for rotating the flipper;
the drive sprocket housing the first and second motors therein; and
the vehicle body including brackets for the track assemblies and the track assemblies each is an arm coupled to the track assembly shaft, the arms and the brackets configured to deploy the track assemblies and to fold them underneath the vehicle body.
32. A compact ground robot comprising:
a vehicle body;
a forward pair of track assemblies mounted to the vehicle body;
a rearward pair of track assemblies mounted to the vehicle body;
each track assembly including a drive sprocket, a flipper, and a track about the sprocket and flipper;
the drive sprocket and flipper rotatable about a shaft connected to the vehicle body;
a first motor coupled to the shaft for rotating the drive sprocket and a second motor coupled to the shaft for rotating the flipper;
the drive sprocket housing the first and second motors therein;
one or more gears between the sprocket and the first motor and a flipper drive gear between the flipper and the second motor; and
the flipper is coupled to the flipper drive gear and rotatable about the shaft and rotatable with respect to the drive sprocket.
2. The robot of
5. The robot of
6. The robot of
7. The robot of
8. The robot of
9. The robot of
10. The robot of
12. The robot of
13. The robot of
14. The robot of
15. The robot of
18. The robot of
19. The robot of
21. The robot of
22. The robot of
23. The robot of
26. The robot of
27. The robot of
28. The robot of
30. The robot of
31. The robot of
|
This application claims benefit of and priority to U.S. Provisional Application Ser. No. 62/529,562 filed Jul. 7, 2017, under 35 U.S.C. §§ 119, 120, 363, 365, and 37 C.F.R. § 1.55 and § 1.78, which is incorporated herein by this reference.
This invention relates to mobile, radio controlled, ground robots.
Several existing ground robots are fairly maneuverable but are fairly heavy and too large to fit in a soldier's backpack. See, for example, U.S. Pat. Nos. 8,201,649; 5,022,812 and 7,597,162 all incorporated herein by this reference. Other robots are smaller in weight and can be placed in a backpack but are not maneuverable enough, for example, to climb stairs. See also U.S. Pat. No. 9,180,920 and published U.S. Patent Application No. 2009/0266628 both incorporated herein by this reference.
Featured is a light weight, compact, man-packable robot which, in some examples, is highly mobile and includes stair climbing abilities. The ground robot is particularly useful for clearing buildings, caves, and other restricted terrain where close quarters combat is likely.
Featured is a compact ground robot comprising a vehicle body, a forward pair of track assemblies mounted to the vehicle body, and a rearward pair of track assemblies mounted to the vehicle body. The forward and rearward pair of track assemblies are foldable underneath the vehicle body for transport of the robot. The forward and rearward pair of track assemblies are also unfoldable to a deployed position supporting the vehicle body for deployment of the robot.
In some cases, each track assembly includes a drive sprocket, a flipper, and a track about the sprocket and flipper. The flipper may terminate in a pulley. The flipper may be motorized for rotation. In some examples, each track assembly sprocket and flipper rotate about a shaft connected to the vehicle body. Then, each track assembly may be connected to an arm. There is a bracket mounted to the vehicle body for each track assembly, and the arm is locked to the bracket for deployment and unlocked from the bracket for transport of the robot. The arm may include one or more pins and the bracket includes one or more slots receiving said pins therein. In one version, the forward track assembly arm includes a first pin receivable in a first slot in the bracket and a second pin in a second slot in the bracket. The rearward track assembly arm may include a portion with first and second pins. Then, the bracket for the rearward track assembly arm includes a first slot for the first pin and second slot for the second pin oriented 90° with respect to the first slot. Preferably, the brackets are made of high-durometer elastomeric material.
In one preferred embodiment, each track assembly includes a first motor coupled to the shaft for rotating the sprocket and a second motor coupled to the shaft for rotating the flipper. There may be one or more gears between the sprocket and the first motor and one or more gears between the flipper and the second motor. In one example, the drive sprocket includes a housing rotatable with respect to the shaft and enclosing the first and second motors therein. The flipper may be coupled to a flipper drive gear in the sprocket housing rotatable about the shaft and rotatable with respect to the housing.
The robot may further include a robot arm mounted to the vehicle body. There may be an end effector for the robot arm. In one example, the end effector includes compliant first and second pivoting jaws and a driven tendon connected to the jaws. A linear actuator may be included to drive the tendon to open and close the jaws.
Also featured is a compact ground robot comprising a vehicle body including a forward pair of brackets and a rearward pair of brackets, a forward pair of track assemblies each including an arm lockable with respect to a forward bracket to deploy the forward pair of track assemblies and the arm rotatable with respect to a forward bracket to fold the forward track assemblies underneath the vehicle body, and a rearward pair of track assemblies each including an arm lockable with respect to a rearward bracket to deploy the rearward pair of track assemblies and each arm rotatable with respect to a rearward bracket to fold the rearward track assemblies underneath the vehicle body.
In one example, a compact ground robot includes a vehicle body including a forward pair of brackets and a rearward pair of brackets. A forward pair of track assemblies each include a track driven by a sprocket rotatable about a shaft coupled to a front arm lockable into a forward bracket to deploy the forward pair of track assemblies. The arm is rotatable with respect to a forward bracket to fold the forward track assemblies underneath the vehicle body. The rearward pair of track assemblies each include a track driven by a sprocket rotatable about a shaft coupled to a rear arm lockable with respect to a rearward bracket to deploy the rearward pair of track assemblies. The arm is rotatable with respect to a rearward bracket to fold the rearward track assemblies underneath the vehicle.
In some embodiments, each track assembly further includes a flipper. The forward track assembly front arm may include a first pin receivable in a first slot in the bracket and a second pin rotatable 90° in a second slot in the bracket. The rearward track assembly rear arm may include a portion with first and second pins. The rearward track assembly rear arm may include a first slot for the first pin and second slot for the second pin oriented 90° with respect to the first slot.
In some examples, a compact ground robot comprises a vehicle body, a forward pair of track assemblies mounted to the vehicle body and a rearward pair of track assemblies mounted to the vehicle body. Each track assembly may include a drive sprocket, a flipper, and a track about the sprocket and flipper.
The drive sprocket and flipper are preferably rotatable about a shaft connected to the vehicle body. A first motor may be coupled to the shaft for rotating the drive sprocket and a second motor may be coupled to the shaft for rotating the flipper. The drive sprocket preferably houses the first and second motors therein.
The track assemblies may further include one or more gears between the sprocket and the first motor and one or more gears between the flipper and the second motor. The flipper may be coupled to a flipper drive gear in the drive sprocket and rotatable about the shaft and rotatable with respect to the drive sprocket. The vehicle body may include brackets for the track assemblies and the track assemblies each include an arm coupled to the track assembly shaft. The arms and the brackets are configured to deploy the track assemblies and to fold them underneath the vehicle body.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
Other objects, features, and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
In one example, robot 10,
Preferably, each track assembly includes a puck shaped drive sprocket hub 20,
In one design, front brackets 40a, 40b,
For deployment, the arms are locked into their respective brackets. For stowage, the arms are unlocked from their respective brackets as shown in
As shown in
To fold the forward track assemblies as shown in
For the rear track assemblies, the arm 52b is coupled to a shaft about which sprocket hub 20 and flipper arm 22 rotate. The arm 52b, shown in
For storage, pin 88a is driven out of slot 90a by moving tube 88 downward as shown by arrow 92. Then, pin 84a is driven out of slot 86a in the direction of arrow 94. By sliding tube 52a as shown by arrow 98 in
Preferably, the track modules are light weight (each weighing, for example, 1 Kg) and each are equipped with a cable extending to the vehicle body electronics section. Power is thus supplied from the battery or batteries housed in the vehicle body to the motor or motors in the sprocket hub via the cable. The cable may also transmit signals to and from the sprocket hub to the electronics section of the robot. Maneuvering the robot tends to seat the respective arm pins in their respective bracket slots. The brackets are preferably made of a high durometer elastomeric material to absorb impacts. Preferably the weight of a complete system is less than 20 pounds. A complete system would include an operator control unit (see e.g., U.S. Pat. No. 9,014,874 incorporated herein by this reference). In the stowed or folded configuration shown in
Also shown in
As shown in
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.
Patent | Priority | Assignee | Title |
11155275, | Sep 23 2019 | China University of Mining and Technology | Rope climbing robot capable of surmounting obstacle and obstacle surmounting method thereof |
Patent | Priority | Assignee | Title |
10119246, | Aug 12 2013 | The Charles Machine Works, Inc. | Vehicle with non-symmetrical drive members |
10471589, | Sep 20 2016 | Foster-Miller, Inc. | Remotely controlled packable robot |
1592654, | |||
3215219, | |||
3306250, | |||
3417832, | |||
3869011, | |||
4337846, | Apr 24 1979 | Mitsubishi Denki Kabushiki Kaisha | Elevator relevelling control apparatus |
4702331, | May 28 1985 | Mitsubishi Denki Kabushiki Kaisha | Self-traveling machine |
4709773, | Jun 21 1985 | Commissariat a l'Energie Atomique | Variable geometry track vehicle |
4727949, | Mar 05 1984 | Watercraft Offshore Canada Ltd. | All terrain vehicle and method of operating same |
4932491, | Mar 21 1989 | The United States of America as represented by the Administrator of the | Body steered rover |
4932831, | Sep 26 1988 | Northrop Grumman Corporation | All terrain mobile robot |
4977971, | May 17 1989 | UNIVERSITY OF FLORIDA, 223 GRINTER HALL, GAINESVILLE, FL 32611 | Hybrid robotic vehicle |
5022812, | Sep 26 1988 | Northrop Grumman Systems Corporation | Small all terrain mobile robot |
5337846, | Aug 08 1990 | Kabushiki Kaisha Komatsu Seisakusho | Disaster relief robot and operation controller therefor |
6263989, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
6431296, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
6668951, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
7348747, | Mar 30 2006 | VECNA ROBOTICS, INC | Mobile robot platform |
7475745, | May 11 2006 | High mobility vehicle | |
7546891, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
7556108, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
7581605, | Feb 22 2006 | MGA Entertainment | Quad tracked vehicle |
7597162, | Dec 24 2003 | FLIR DETECTION, INC | Robotic platform |
7926598, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robotic vehicle |
8074752, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robotic vehicle |
8100205, | Apr 06 2010 | GUOXINRUIBO TECHNOLOGY CO LTD | Robotic system and method of use |
8113304, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
8122982, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robot systems and methods |
8162083, | Jan 25 2007 | Topy Kogyo Kabushiki Kaisha | Crawler device and automatic attitude control of the same |
8176808, | Sep 13 2007 | Foster-Miller, Inc. | Robot arm assembly |
8201649, | Dec 14 2007 | Foster-Miller, Inc. | Modular mobile robot |
8353373, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robotic vehicle |
8365848, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
8397842, | Apr 06 2010 | GUOXINRUIBO TECHNOLOGY CO LTD | Robotic system and method of use |
8573335, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robotic vehicle |
8616308, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robot systems and methods |
8644991, | Oct 06 2006 | FLIR DETECTION, INC | Maneuvering robotic vehicles |
8763732, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
9014874, | Jan 29 2013 | Foster-Miller, Inc | Tactical robot controller |
9180920, | Dec 09 2008 | FLIR DETECTION, INC | Mobile robotic vehicle |
9193066, | Oct 06 2006 | FLIR DETECTION, INC | Maneuvering robotic vehicles having a positionable sensor head |
9211648, | Apr 05 2012 | FLIR DETECTION, INC | Operating a mobile robot |
9216781, | Oct 06 2006 | FLIR DETECTION, INC | Maneuvering robotic vehicles |
9227654, | Sep 30 2014 | ROBO-TEAM DEFENSE LTD | Ground robot drive system |
9248874, | Mar 27 1998 | FLIR DETECTION, INC | Robotic platform |
9248875, | Apr 17 2012 | ROBO-TEAM DEFENSE LTD | Driving flipper with robotic arm |
9457850, | Jun 14 2013 | UNVERFERTH MANUFACTURING COMPANY, INC | Dual track |
9650089, | Oct 06 2006 | FLIR DETECTION, INC | Maneuvering robotic vehicles having a positionable sensor head |
9656704, | Oct 06 2006 | FLIR DETECTION, INC | Robotic vehicle |
20020062999, | |||
20040155554, | |||
20040168837, | |||
20040216931, | |||
20040216932, | |||
20070209844, | |||
20080083344, | |||
20080093131, | |||
20080121097, | |||
20080179115, | |||
20080196946, | |||
20090071281, | |||
20090229894, | |||
20090266628, | |||
20100068024, | |||
20100139995, | |||
20100263524, | |||
20100263948, | |||
20100267311, | |||
20110040427, | |||
20110106339, | |||
20110168460, | |||
20110190933, | |||
20120190491, | |||
20120199407, | |||
20120200149, | |||
20120215358, | |||
20120261204, | |||
20130078888, | |||
20130152724, | |||
20130268118, | |||
20130340560, | |||
20140031977, | |||
20140065586, | |||
20140110183, | |||
20140166377, | |||
20140231156, | |||
20140277718, | |||
20160176452, | |||
20180079070, | |||
20180079073, | |||
20180104815, | |||
20180236666, | |||
20180313715, | |||
20190032433, | |||
CN1861333, | |||
CN2933748, | |||
EP197020, | |||
WO2018027219, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 05 2018 | Foster-Miller, Inc. | (assignment on the face of the patent) | / | |||
Aug 01 2018 | NICHOL, JAMIE GORDON | Foster-Miller, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046752 | /0102 |
Date | Maintenance Fee Events |
Jul 05 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 12 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 12 2024 | 4 years fee payment window open |
Jul 12 2024 | 6 months grace period start (w surcharge) |
Jan 12 2025 | patent expiry (for year 4) |
Jan 12 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 12 2028 | 8 years fee payment window open |
Jul 12 2028 | 6 months grace period start (w surcharge) |
Jan 12 2029 | patent expiry (for year 8) |
Jan 12 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 12 2032 | 12 years fee payment window open |
Jul 12 2032 | 6 months grace period start (w surcharge) |
Jan 12 2033 | patent expiry (for year 12) |
Jan 12 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |