systems and methods are provided for a bladeless radiator cooling fan. In one example, a system may include a plurality of bladeless entrainment discs surrounded by a shroud, each bladeless entrainment disc including a hollow central opening that enables unrestricted ambient airflow through the cooling fan, and a source fan for providing airflow to the bladeless entrainment that is encased by a housing. In this way, airflow through the bladeless radiator cooling fan may be increased, decreasing powered fan usage and decreasing fan noise.
|
1. A method, comprising:
determining a cooling demand of components of an under-hood compartment of a vehicle based on a first set of operating conditions;
determining a combination of grille shutter opening and airflow generated by a bladeless cooling fan system that will provide the determined cooling demand based on a second set of operating conditions; and
adjusting the grille shutter opening and the airflow generated by the bladeless cooling fan system based on the determined combination, wherein the airflow generated by the bladeless cooling fan system is greater than an airflow output by a source fan of the bladeless cooling fan system that is driven by an electric motor at a fan speed determined based on the determined combination, the source fan and the electric motor enclosed in a housing with a helmholtz resonator positioned adjacent to the source fan within the housing.
2. The method of
the components of the under-hood compartment include an engine, a transmission, and an air conditioning system compressor;
the first set of operating conditions include at least one of a temperature of the engine, an output of the air conditioning system compressor, and a temperature of the transmission;
the second set of operating conditions include at least one of a vehicle speed and an ambient temperature; and
the bladeless cooling fan system comprises a plurality of bladeless entrainment discs, each bladeless entrainment disc including a hollow central opening, and wherein the plurality of bladeless entrainment discs are surrounded by a shroud coupled to a radiator.
3. The method of
4. The method of
|
The present application claims priority to U.S. Provisional Patent Application No. 62/455,461 entitled “Cooling Fans for Engine Cooling System,” filed on Feb. 6, 2017. The entire contents of the above-referenced application are hereby incorporated by reference in their entirety for all purposes.
The present application relates to cooling fans that may be used in a vehicle cooling system.
Vehicle cooling systems may include various cooling components such as radiators, cooling fans and blowers, condensers, liquid coolant, etc. An electrically driven engine cooling fan may be powered by an electric motor that is either variable speed or relay controlled. The cooling fan enables engine temperatures to be maintained in a target range. When engine temperatures (or engine coolant temperatures) exceed the target range, the cooling fan is operated to increase airflow through the engine, which carries the excess heat away to the outside air. The cooling fan is typically located in the engine compartment, at the front or rear of the radiator. As the cooling fan operates to direct air to the engine, the cooling air flows through radiator, also cooling the coolant.
The inventors herein have recognized various issues with cooling fans. As one example, cooling fans may be very noisy, especially when operated at high flow settings. The noise may be objectionable to vehicle customers. In particular, customers of luxury vehicles may demand quieter fan operation. As another example, cooling fans may reduce fuel economy. Although cooling fans are not on for a significant portion of a drive cycle, the blades and shrouds of the fan may continue to create a slight restriction, which reduces fuel economy and reduces airflow to the engine compartment. As yet another example, the location of the cooling fans relative to the radiator may make it difficult for a person (e.g., a service technician) to reach toward the radiator when the engine is running (e.g., during a service or cleaning procedure). Furthermore, the cooling fans may be inefficient.
In one example, the above issues may be addressed by an engine cooling system including a bladeless cooling fan. In one example, a system comprises: a plurality of bladeless entrainment discs surrounded by a shroud, the shroud coupled to a radiator and positioned between the radiator and an engine; a hollow central opening within each bladeless entrainment disc that enables unrestricted ambient airflow through the cooling fan; and a source fan for providing airflow to the bladeless entrainment discs, the source fan encased by a housing. In this way, a cooling fan with reduced noise and higher performance characteristics may be provided.
As one example, a Helmholtz resonator may be included within the housing, such as positioned adjacent to the source fan. By using a source fan that is coupled to a Helmholtz resonator, the efficiency of the fan is increased while using a lower power source fan. The lower power requirement of the fan reduces the noise output by the fan while consuming less engine power. By using a bladeless source fan, the noise output by the fan is reduced, as well as efficiency losses associated with flow restriction caused by fan blades. In addition, a service technician may be able to conveniently reach into the engine compartment while the fan is running.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The following description relates to a bladeless cooling fan for a vehicle cooling system, such as the cooling system of
In some examples, vehicle 102 may be a hybrid electric vehicle (HEV) with multiple sources of torque available to one or more of wheels 106. In other examples, vehicle 102 is a conventional vehicle with only an engine or an electric vehicle with only an electric machine(s). In the example shown, vehicle 102 includes engine 10 and an electric machine 52. Electric machine 52 may be a motor or a motor/generator. A crankshaft (not shown) of engine 10 and electric machine 52 are connected via transmission 54 to vehicle wheels 106 when one or more clutches 56 are engaged. In the depicted example, a first clutch 56 is provided between engine 10 (e.g., between the crankshaft of engine 10) and electric machine 52, and a second clutch 56 is provided between electric machine 52 and transmission 54. A controller 12 may send a signal to an actuator of each clutch 56 to engage or disengage the clutch, so as to connect or disconnect the crankshaft from electric machine 52 and the components connected thereto, and/or connect or disconnect electric machine 52 from transmission 54 and the components connected thereto. Transmission 54 may be a gearbox, a planetary gear system, or another type of transmission.
The powertrain may be configured in various manners, including as a parallel, a series, or a series-parallel hybrid vehicle. In electric vehicle embodiments, a system battery 58 may be a traction battery that delivers electrical power to electric machine 52 to provide torque to vehicle wheels 106. In some embodiments, electric machine 52 may also be operated as a generator to provide electrical power to charge system battery 58, for example, during a braking operation. It will be appreciated that in other embodiments, including non-electric vehicle embodiments, system battery 58 may be a typical starting, lighting, ignition (SLI) battery coupled to an alternator 72.
Alternator 72 may be configured to charge system battery 58 using engine torque via the crankshaft during engine running. In addition, alternator 72 may power one or more electrical systems of the engine, such as one or more auxiliary systems including a heating, ventilation, and air conditioning (HVAC) system, vehicle lights, an on-board entertainment system, and other auxiliary systems based on their corresponding electrical demands. In one example, a current drawn on the alternator may continually vary based on each of an operator cabin cooling demand, a battery charging requirement, other auxiliary vehicle system demands, and motor torque. A voltage regulator may be coupled to alternator 72 in order to regulate the power output of the alternator based upon system usage requirements, including auxiliary system demands.
Under-hood compartment 103 may further include a cooling system 100, which circulates coolant through internal combustion engine 10 to absorb waste heat and distributes the heated coolant to a radiator 80 and/or a heater core 55 via coolant lines 82 and 84, respectively. In one example, as depicted, cooling system 100 may be coupled to engine 10 and may circulate engine coolant from engine 10 to radiator 80 via an engine-driven water pump 86 and back to engine 10 via coolant line 82. Engine-driven water pump 86 may be coupled to the engine via a front end accessory drive (FEAD) 36 and rotated proportionally to engine speed via a belt, chain, etc. Specifically, engine-driven pump 86 may circulate coolant through passages in the engine block, head, etc., to absorb engine heat, which is then transferred via radiator 80 to ambient air. In one example, where engine-driven water pump 86 is a centrifugal pump, the pressure (and resulting flow) produced by the pump may be proportional to the crankshaft speed, which in the example of
Coolant may flow through coolant line 82, as described above, and/or through coolant line 84 to heater core 55 where the heat may be transferred to passenger compartment 104 before the coolant flows back to engine 10. Coolant may additionally flow through a coolant line 81 and through one or more of electric machine (e.g., motor) 52 and system battery 58 to absorb heat from the one or more of electric machine 52 and system battery 58, particularly when vehicle 102 is a HEV or an electric vehicle. In some examples, engine-driven water pump 86 may operate to circulate the coolant through each of coolant lines 81, 82, and 84.
One or more blowers (not shown) and cooling fans may be included in cooling system 100 to provide airflow assistance and augment a cooling airflow through the under-hood components. For example, cooling fans 91 and 95, coupled to radiator 80, may be operated when the vehicle is moving and the engine is running to provide cooling airflow assistance through radiator 80. The cooling fans may be coupled behind radiator 80 (when looking from a grille 112 toward engine 10). In one example, as elaborated with reference to
Cooling fans 91 and 95 may be coupled to battery-driven motors 93 and 97, respectively. Motors 93 and 97 may be driven using power drawn from system battery 58. In one example, system battery 58 may be charged using electrical energy generated during engine operation via alternator 72. For example, during engine operation, engine generated torque (in excess of what is required for vehicle propulsion) may be transmitted to alternator 72 along a drive shaft (not shown), which may then be used by alternator 72 to generate electrical power, which may be stored in an electrical energy storage device, such as system battery 58. System battery 58 may then be used to activate battery-driven (e.g., electric) fan motors 93 and 97. As elaborated with reference to
Under-hood compartment 103 may further include an air conditioning (AC) system comprising a condenser 88, a compressor 87, a receiver drier 83, an expansion valve 89, and an evaporator 85 coupled to a blower (not shown). Compressor 87 may be coupled to engine 10 via FEAD 36 and an electromagnetic clutch 76 (also known as compressor clutch 76), which allows the compressor to engage or disengage from the engine based on when the air conditioning system is turned on and switched off. Compressor 87 may pump pressurized refrigerant to condenser 88, mounted at the front of the vehicle. Condenser 88 may be cooled by cooling fans 91 and 95, thereby, cooling the refrigerant as it flows through. The high pressure refrigerant exiting condenser 88 may flow through receiver drier 83 where any moisture in the refrigerant may be removed by the use of desiccants. Expansion valve 89 may then depressurize the refrigerant and allow it to expand before it enters evaporator 85 where it may be vaporized into gaseous form as passenger compartment 104 is cooled. Evaporator 85 may be coupled to a blower fan operated by a motor (not shown), which may be actuated by system voltage.
System voltage may also be used to operate an entertainment system (radio, speakers, etc.), electrical heaters, windshield wiper motors, a rear window defrosting system, and headlights, amongst other systems.
Controller 12 may adjust the operation of cooling fans 91 and 95 based on vehicle cooling demands, vehicle operating conditions, and in coordination with engine operation. In one example, during a first vehicle moving condition, when the engine is operating and vehicle cooling and airflow assistance from the fan is desired, cooling fans 91 and 95 may be powered by enabling battery-driven motors 93 and 97 to provide airflow assistance in cooling under-hood components. The first vehicle moving condition may include, for example, an engine temperature or coolant temperature that is above a threshold temperature. The threshold temperature may refer to a non-zero, positive temperature value above which airflow assistance is provided for engine cooling in order to avoid engine overheating, for example. In another example, during a second vehicle moving condition, when airflow assistance is not desired (for example, due to sufficient vehicle motion-generated airflow through the under-hood compartment), fan operation may be discontinued by disabling the fan motor.
Turning now to
Cooling fan system 200 includes a plurality of entrainment (or induction) discs 204 arranged behind a radiator 202 (as seen from the engine). In the depicted example, the cooling fan system 200 includes four entrainment discs 204. The plurality of entrainment discs are arranged in a planar configuration to be parallel to a plane of a substantially square radiator 202 positioned therebehind.
Each of the entrainment discs 204 receives a primary airflow via an airflow passage 208 from operation of a source fan 206 located inside a housing 214. Housing 214 is located centrally in relation to the plane of the plurality of entrainments discs 204 and in relation to radiator 202. Source fan 206 may be operated via an electric motor, such as a DC brushless motor, and includes an inlet 212. A Helmholtz resonator (not shown in
Turning briefly to
Returning to
Like the entrainment discs of
Next,
As shown in
In comparison,
Responsive to a rise in engine or coolant temperature, an engine controller (e.g., controller 12 of
In addition to operating the cooling fan system for providing a target level of vehicle or engine cooling wherein all the entrainment discs receive the primary airflow from the source fan, the controller may selectively direct airflow from the source fan to selected entrainment discs. For example, based on the location of an entrainment disc relative to other engine compartment and under-hood components, and further based on cooling demands of those components, one or more entrainment discs may receive airflow from the source fan while others do not. As an example, during conditions when cooling of an AC condenser is indicated (such as when AC output is at or near a maximum output), one or more or all of the entrainment discs on a lower row of the cooling fan system may receive airflow given their proximity to the AC condenser.
At 502, the method includes estimating and/or measuring vehicle and engine operating conditions. Operating conditions may include, for example, vehicle speed, engine speed and load, driver torque demand, road conditions (e.g., road grade), weather conditions (e.g., presence of wind, rain, snow, etc.), the settings of grille shutters coupled to the front end of the vehicle, etc. The operating conditions may further include ambient conditions, such as ambient air temperature, pressure, and humidity; engine temperature; coolant temperature; transmission fluid temperature; engine oil temperature; cabin air settings (e.g., AC settings); boost pressure (if the engine is boosted); exhaust gas recirculation (EGR) flow; manifold pressure (MAP); manifold airflow (MAF); manifold air temperature (MAT); etc. When the vehicle is a HEV, operating conditions may further include a mode of operation, such as an engine-only mode (where all of the torque to propel the vehicle is supplied by the engine), an electric-only mode (where all of the torque to propel the vehicle is supplied by an electric machine), and an assist mode (where the torque to propel the vehicle is supplied by both the engine and the electric machine). Operating conditions may further include a temperature of the electric machine and/or a temperature of the system battery. In one example, the operating conditions may be estimated based on inputs from one or more sensors, such as an ACT sensor (for estimating air charge temperature), an ECT sensor (for estimating coolant temperature), a CHT sensor (for estimating a temperature of coolant circulating at the cylinder head), an MCT sensor (for estimating manifold charge temperature), etc. As another example, the temperature of the electric machine may be estimated based on an amount of torque provided by the electric machine, with the controller inputting the amount of torque into a look-up table, algorithm, or map and outputting a corresponding estimated temperature of the electric machine. As still another example, the temperature of the system battery may be estimated based on a current drawn on the system battery, with the controller inputting the current into a look-up table, algorithm, or map and outputting a corresponding estimated temperature of the system battery.
At 504, the method includes determining a vehicle cooling demand based on the estimated operating conditions. The vehicle cooling demand may include an engine cooling demand, as indicated at 505, an AC condenser cooling demand, as indicated at 506, a transmission cooling demand, as indicated at 507, and an electric machine or battery cooling demand, as indicated at 508. For example, the estimated engine temperature may be compared to a first threshold temperature, and if the engine temperature is higher than the first threshold temperature, it may be determined that active engine cooling is desired. For example, the first threshold temperature may be a non-zero, positive value threshold referring to a temperature above which active engine cooling is used to reduce and/or maintain the engine temperature to prevent engine overheating and related degradation. Therefore, the engine cooling demand 505 may be determined as a function of the difference between the estimated engine temperature and the first threshold temperature. As another example, based on an output of the AC condenser, it may be determined if active AC condenser cooling is indicated. The AC condenser cooling demand 506 may be determined as a function of an AC temperature setting selected by a vehicle operator relative to the ambient temperature (and ambient humidity). As a further example, the estimated transmission fluid temperature may be compared to a second threshold temperature, and if the transmission fluid temperature is higher than the second threshold temperature, it may be determined that transmission cooling is indicated. For example, the second threshold temperature may be a non-zero, positive value threshold referring to a temperature above which active transmission cooling is used to reduce and/or maintain the transmission temperature to prevent transmission overheating and related degradation. The second threshold temperature may be the same as or different from the first threshold temperature. Therefore, the transmission cooling demand 507 may be determined as a function of the difference between the estimated transmission fluid temperature and the second threshold temperature. Further, the estimated electric machine temperature or estimated system battery temperature may be compared to a third threshold temperature, and if the estimated electric machine temperature or estimated system battery temperature is greater than the third threshold temperature, it may be determined that electric machine or battery cooling is indicated. For example, the third threshold temperature may be a non-zero, positive value threshold referring to a temperature above which active electric machine or system battery cooling is used to reduce and/or maintain the temperature of the electric machine or the system battery. Similarly, coolant temperature may be compared to a fourth threshold temperature (which may be the same as or different from the first, second, and third threshold temperatures) to determine if coolant cooling is indicated.
At 509, based on the current engine operating conditions and the determined cooling demands, settings for one or more components of the vehicle cooling system may be determined. For example, a combination of settings for grille shutters (or louvers) coupled to the front end of the vehicle and a power output of the source fan of the cooling fan system may be determined. In one example, when the vehicle speed is higher than a threshold speed, at least a portion of the cooling demand may be met by adjusting the grille shutters to increase an opening of the shutters, thereby enabling a larger amount of ambient airflow to be drawn into the under-hood compartment. The threshold speed may be a non-zero speed that refers to a vehicle speed above which a larger amount of airflow is drawn rapidly into the under-hood compartment of the vehicle, and the combined effect of the larger air mass and larger airflow rate provides a significant amount of cooling. As an example, an amount of ram-air entering the under-hood compartment may be estimated based on the vehicle speed and the grille shutter position. For example, the controller may input the vehicle speed and the grille shutter position into a look-up table, algorithm, or map and output the amount of ram-air. Grille shutter opening may also be increased when the ambient temperature is lower and/or in the presence of wind. However, if the vehicle speed is not sufficiently high or if the grille shutters are already fully open (or their opening is otherwise constrained), at least a portion of the cooling demand may not be met using ambient airflow through the under-hood compartment (e.g., ram-air may be lower). A remainder of the cooling demand may then be met by operating the cooling fans of the cooling system (e.g., cooling fans 91 and 95 of
Turning briefly to
The example graph 1000 of
At lower vehicle speeds, such as vehicle speeds near 0 MPH, a higher proportion of the vehicle cooling demand may be met by the cooling fan (versus ambient airflow). For example, an amount of ram-air is lower at lower vehicle speeds. Thus, the bladeless cooling fan system (plot 1002) and the traditional bladed cooling fan system (plot 1006) may each be operated at a high (e.g., maximum) fan power to provide high cooling fan airflow output. Because entrainment discs of the bladeless cooling fan system have a larger (e.g., unrestricted) opening than the bladed discs of the traditional bladed cooling fan system, as the vehicle speed increases, the fan power of the bladeless cooling fan system (plot 1002) decreases more quickly than the fan power of the traditional bladed cooling fan system (plot 1006) due to increased ambient airflow through the bladeless cooling fan system providing a higher proportion of the vehicle cooling demand than for the traditional bladed cooling fan.
At higher vehicle speeds, a higher proportion of the vehicle cooling demand may be met by ambient airflow (e.g., through the grille shutters). For example, ram-air is higher at higher vehicle speeds. Therefore, the cooling fan (whether bladeless or bladed, as described further below) may be deactivated, with a cooling fan power of zero, at vehicle speeds above a threshold speed (e.g., as defined above at 508 of
Returning to
At 512, the method includes sending control signals to the grille shutters and the electric motor of the source fan based on the determined combination (e.g., as determined at 509) in order to provide (the determined portion of) the desired cooling flow through the grille and the cooling fan system, respectively. For example, the controller may send a control signal to the grille shutter system to adjust a degree of opening of the grille shutters and louvers to provide the desired ambient cooling airflow, and the controller may send a different control signal to the motor of the source fan to provide the remaining desired cooling. In one example, during the transition from providing no cooling airflow from the cooling fan to providing cooling airflow via the cooling fan, the control signal sent to the source fan motor may be adjusted so that the fan power gradually changes.
In some examples, each of the entrainment discs of the cooling fan system may be operated differently. For example, in bladeless cooling fan systems having a plurality of entrainment discs, such as the systems depicted at
In this way, a cooling demand is met without limiting fan operation based on NVH constraints. By using a cooling fan that provides an entrained, bladeless airflow, the NVH characteristics of a cooling fan may be decreased. In addition, a smaller motor may be used to provide the same cooling flow, increasing the efficiency and performance of both the fan as well as the vehicle's fuel economy. By using a fan that has induction discs, coverage of radiator grid edges can be increased as compared to a single circular opening, providing more effective cooling to radiators than a single circular fan. By making the cooling fan bladeless, the radiator area can be reached more easily, without impediments. Further, during conditions when the cooling fans are not operating at higher vehicle speeds, the lack of large fan blades causes less restriction to airflow across the engine, reducing drag and improving heat transfer. Overall, engine cooling is increased with less noise and without degrading fuel economy.
The technical effect of using a bladeless radiator cooling fan is that airflow through the bladeless radiator cooling fan is increased while cooling fan motor usage is decreased, decreasing vehicle noise and increasing vehicle fuel economy.
As one example, a vehicle system for a cooling fan comprises: a plurality of bladeless entrainment discs surrounded by a shroud, the shroud coupled to a radiator and positioned between the radiator and an engine; a hollow central opening within each bladeless entrainment disc that enables unrestricted ambient airflow through the cooling fan; and a source fan for providing airflow to the bladeless entrainment discs, the source fan encased by a housing. In the preceding example, additionally or optionally, each bladeless entrainment disc includes an annular outer wall and an annular inner wall, the annular outer wall and the annular inner wall defining a nozzle through which the airflow provided by the source fan enters the hollow central opening of each bladeless entrainment disc. In any or all of the preceding examples, additionally or optionally, the airflow provided by the source fan enters the housing from atmosphere via an inlet and exits the housing via an airflow passage, the airflow passage having outlets coupled to the nozzle of each of the bladeless entrainment discs. In any or all of the preceding examples, the system additionally or optionally further comprises a Helmholtz resonator proximal to the source fan within the housing. In any or all of the preceding examples, additionally or optionally, the source fan is driven by an electric motor, the electric motor included within the housing. In any or all of the preceding examples, additionally or optionally, an airflow output by the cooling fan is greater than the airflow provided by the source fan. In any or all of the preceding examples, additionally or optionally, the airflow output by the cooling fan is a combination of the airflow provided by the source fan and airflow generated via inducement and entrainment at the plurality of bladeless entrainment discs.
As another example, a cooling system, comprises: a coolant loop for circulating coolant to a motor or battery; and a bladeless fan system including: a source fan for generating an airflow via operation of a lower power motor, the fan and the motor enclosed within a housing; a Helmholtz resonator positioned adjacent to the fan within the housing; a plurality of hollow entrainment discs positioned in a planar arrangement, the entrainment discs coupled to the source fan and configured to receive the airflow from the source fan within an internal cavity of each of the entrainment discs via a nozzle; and a shroud covering a perimeter of each disc. In the preceding example, the system further comprises a radiator, and wherein the bladeless fan system is positioned between the motor or battery and the radiator. In any or all of the preceding examples, additionally or optionally, the planar arrangement of the discs is parallel to a plane of the radiator. In any or all of the preceding examples, additionally or optionally, the nozzle is annular. In any or all of the preceding examples, additionally or optionally, the source fan is coupled to the nozzle of each of the hollow entrainment discs via a passage. In any or all of the preceding examples, additionally or optionally, the motor or battery and the cooling system are included in an under-hood compartment of a vehicle, and the vehicle further comprises: a grille coupled to a front-end of the vehicle for providing ambient airflow to components of the under-hood compartment, the grille including adjustable shutters; and a control system, including a plurality of sensors, a plurality of actuators, and a controller, the controller holding instructions in non-transitory memory that, when executed, cause the controller to: operate the bladeless fan system to provide airflow to components of the under-hood compartment; and adjust the airflow provided by the bladeless fan system based on a cooling demand and an amount of the ambient airflow. In any or all of the preceding examples, additionally or optionally, the cooling demand is determined based on operating conditions measured by the plurality of sensors, and the amount of the ambient airflow is determined based on vehicle speed and a position of the grille shutters. In any or all of the preceding examples, additionally or optionally, adjusting the airflow provided by the bladeless fan system includes adjusting a duty cycle of a signal sent to the lower power motor, with the duty cycle increasing as the amount of the ambient airflow decreases and/or the cooling demand increases.
As another example, a method comprises: determining a cooling demand of components of an under-hood compartment of a vehicle based on a first set of operating conditions; determining a combination of grille shutter opening and airflow generated by a bladeless cooling fan system that will provide the determined cooling demand based on a second set of operating conditions; and adjusting the grille shutter opening and the airflow generated by the bladeless cooling fan system based on the determined combination. In the preceding example, additionally or optionally, the components of the under-hood compartment include an engine, a transmission, and an air conditioning system compressor; the first set of operating conditions include at least one of a temperature of the engine, an output of the air conditioning system compressor, and a temperature of the transmission; and the second set of operating conditions include at least one of a vehicle speed and an ambient temperature. In any or all of the preceding examples, additionally or optionally, the determined combination includes increasing a portion of the determined cooling demand provided by the bladeless cooling fan system when the vehicle speed is lower than a threshold speed and increasing a portion of the determined cooling demand provided by the grille shutter opening when the vehicle speed is at or above the threshold speed. In any or all of the preceding examples, additionally or optionally, adjusting the grille shutter opening and the airflow generated by the bladeless cooling fan system based on the determined combination includes increasing the grille shutter opening and decreasing the airflow generated by the bladeless cooling fan system as the portion of the determined cooling demand provided by the grille shutter opening increases. In any or all of the preceding examples, additionally or optionally, the airflow generated by the bladeless cooling fan system is greater than an airflow output by a source fan of the bladeless cooling fan system, the source fan driven by an electric motor at a fan speed determined based on the determined combination.
In another representation, a system for a vehicle cooling fan comprises: a plurality of bladeless entrainment discs surrounded by a shroud, the shroud coupled to a radiator and positioned between the radiator and an electric machine; a hollow central opening within each bladeless entrainment disc that enables unrestricted ambient airflow through the cooling fan; and a source fan for providing airflow to the bladeless entrainment discs, the source fan encased by a housing. In the preceding example, additionally or optionally, the source fan is driven by an electric motor, the electric motor included within the housing and drawing electric current from a system battery. In any or all of the preceding examples, additionally or optionally, the electric machine draws electric current from the system to provide torque to wheels of the vehicle. In any or all of the preceding examples, additionally or optionally, coolant circulates from the radiator through one or more of the electric machine and the system battery.
In another further representation, a method comprises: determining a cooling demand of components of an under-hood compartment of a hybrid electric vehicle based on a first set of operating conditions; determining a combination of grille shutter opening and airflow generated by a bladeless cooling fan system that will provide the determined cooling demand based on a second set of operating conditions; and adjusting the grille shutter opening and the airflow generated by the bladeless cooling fan system based on the determined combination. In the preceding example, additionally or optionally, the components of the under-hood compartment include an electric machine and a system battery; the first set of operating conditions include at least one of a temperature of the electric machine and a temperature of the system battery; and the second set of operating conditions include at least one of a vehicle speed and an ambient temperature. In any or all of the preceding examples, additionally or optionally, the determined combination includes increasing a portion of the determined cooling demand provided by the bladeless cooling fan system when the vehicle speed is lower than a threshold speed and increasing a portion of the determined cooling demand provided by the grille shutter opening when the vehicle speed is at or above the threshold speed. In any or all of the preceding examples, additionally or optionally, adjusting the grille shutter opening and the airflow generated by the bladeless cooling fan system based on the determined combination includes increasing the grille shutter opening and decreasing the airflow generated by the bladeless cooling fan system as the portion of the determined cooling demand provided by the grille shutter opening increases. In any or all of the preceding examples, additionally or optionally, the airflow generated by the bladeless cooling fan system is greater than an airflow output by a source fan of the bladeless cooling fan system, the source fan driven by an electric motor at a fan speed determined based on the determined combination. In any or all of the preceding examples, additionally or optionally, the system battery supplies electrical energy to one or more of the electric machine and the electric motor.
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the engine control system, where the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with the electronic controller.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Dudar, Aed, Miller, Kenneth, Martin, Douglas
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4076072, | Oct 09 1975 | Caterpillar Tractor Co. | Modular heat exchanger with pivotal cores |
4589379, | Oct 24 1983 | Kawasaki Jukogyo Kabushiki Kaisha | Cooling apparatus for water-cooled engines |
4825815, | Jan 29 1988 | ROTARY POWER INTERNATIONAL, INC | Pivotal cooling unit |
8308445, | Sep 04 2007 | Dyson Technology Limited | Fan |
8403650, | Sep 04 2007 | Dyson Technology Limited | Fan |
9249810, | Sep 04 2007 | Dyson Technology Limited | Fan |
20130340459, | |||
20190135084, | |||
GB2280021, | |||
JP2014015862, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 28 2017 | DUDAR, AED | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044271 | /0707 | |
Nov 29 2017 | MARTIN, DOUGLAS | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044271 | /0707 | |
Nov 30 2017 | MILLER, KENNETH | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044271 | /0707 | |
Dec 01 2017 | Ford Global Technologies, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 01 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Sep 16 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Jan 26 2024 | 4 years fee payment window open |
Jul 26 2024 | 6 months grace period start (w surcharge) |
Jan 26 2025 | patent expiry (for year 4) |
Jan 26 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 26 2028 | 8 years fee payment window open |
Jul 26 2028 | 6 months grace period start (w surcharge) |
Jan 26 2029 | patent expiry (for year 8) |
Jan 26 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 26 2032 | 12 years fee payment window open |
Jul 26 2032 | 6 months grace period start (w surcharge) |
Jan 26 2033 | patent expiry (for year 12) |
Jan 26 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |