filter devices and methods of fabrication are disclosed. A filter device includes a piezoelectric plate attached to a substrate, portions of the piezoelectric plate forming diaphragms spanning respective cavities in the substrate. A conductor pattern formed on a surface of the piezoelectric plate includes a plurality of interdigital transducers (IDTs) of a respective plurality of acoustic resonators including a shunt resonator and a series resonator, interleaved fingers of each of the plurality of IDTs disposed on one of the diaphragms. Radio frequency signals applied to the IDTs excite respective primary shear acoustic modes in the respective diaphragms. A thickness of a first dielectric layer disposed on the front surface between the fingers of the IDT of the shunt resonator is greater than a thickness of a second dielectric layer disposed on the front surface between the fingers of the IDT of the series resonator.
|
1. A filter device, comprising:
a substrate;
a single-crystal piezoelectric plate having front and back surfaces, the back surface attached to a surface of the substrate, portions of the single-crystal piezoelectric plate forming one or more diaphragms spanning respective cavities in the substrate;
a conductor pattern formed on the front surface, the conductor pattern including a plurality of interdigital transducers (IDTs) of a respective plurality of acoustic resonators including a shunt resonator and a series resonator, interleaved fingers of each of the plurality of IDTs disposed on a respective diaphragm of the one or more diaphragms;
a first dielectric layer having a first thickness disposed on the front surface between the fingers of the IDT of the shunt resonator, and
a second dielectric layer having a second thickness disposed on the front surface between the fingers of the IDT of the series resonator, wherein
the piezoelectric plate and all of the plurality of IDTs are configured such that radio frequency signals applied to the IDTs excite respective primary shear acoustic modes within the respective diaphragms, and
the first thickness is greater than the second thickness.
13. A method of fabricating a filter device on a piezoelectric plate having front and back surfaces, the back surface attached to a substrate, the method comprising:
forming one or more cavities in the substrate such that respective portions of the piezoelectric plate form one or more diaphragms suspended over the cavities;
forming a conductor pattern on the front surface, the conductor pattern including a plurality of interdigital transducers (IDTs) of a respective plurality of resonators including a shunt resonator and a series resonator, wherein interleaved fingers of each of the plurality of IDTs are disposed on a respective diaphragm of the one or more diaphragms;
forming a first dielectric layer having a first thickness, the first dielectric layer disposed on the front surface between the fingers of the IDT of the shunt resonator; and
forming a second dielectric layer having a second thickness, the second dielectric layer disposed on the front surface between the fingers of the IDT of the series resonator, wherein
the piezoelectric plate and all of the plurality of IDTs are configured such that radio frequency signals applied to the IDTs excite respective primary shear acoustic modes in the respective diaphragms, and
the first thickness is greater than the second thickness.
2. The filter device of
a difference between a resonance frequency of the series resonator and a resonance frequency of the shunt resonator is determined, in part, by a difference between the first thickness and the second thickness.
3. The filter device of
4. The filter device of
5. The filter device of
6. The filter device of
7. The filter device of
8. The filter device of
9. The filter device of
a z-axis of the piezoelectric plate is normal to the front and back surfaces.
10. The filter device of
the fingers of all of the plurality of IDTs are parallel to an x-axis of the piezoelectric plate.
11. The filter device of
the plurality of resonators includes two or more shunt resonators, and
the first dielectric layer is disposed on the front surface between the fingers of all of the two or more shunt resonators.
12. The filter device of
the plurality of resonators includes two or more series resonators, and
the second dielectric layer is disposed on the front surface between the fingers of all of the two or more series resonators.
14. The method of
a difference between a resonance frequency of the series resonator and a resonance frequency of the shunt resonator is determined, in part, by a difference between the first thickness and the second thickness.
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
a z-axis of the piezoelectric plate is normal to the front and back surfaces.
22. The method of
the fingers of all of the plurality of IDTs are parallel to an x-axis of the piezoelectric plate.
23. The method of
the plurality of resonators includes two or more shunt resonators, and
the first dielectric layer is disposed on the front surface between the fingers of all of the two or more shunt resonators.
24. The method of
the plurality of resonators includes two or more series resonators, and
the second dielectric layer is disposed on the front surface between the fingers of all of the two or more series resonators.
|
This patent is a continuation of application Ser. No. 16/230,443, entitled TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATOR, filed Dec. 21, 2018 now U.S. Pat. No. 10,491,192 B2, which claims priority from the following provisional patent applications: application 62/685,825, filed Jun. 15, 2018, entitled SHEAR-MODE FBAR (XBAR); application 62/701,363, filed Jul. 20, 2018, entitled SHEAR-MODE FBAR (XBAR); application 62/741,702, filed Oct. 5, 2018, entitled 5 GHZ LATERALLY-EXCITED BULK WAVE RESONATOR (XBAR); application 62/748,883, filed Oct. 22, 2018, entitled SHEAR-MODE FILM BULK ACOUSTIC RESONATOR; and application 62/753,815, filed Oct. 31, 2018, entitled LITHIUM TANTALATE SHEAR-MODE FILM BULK ACOUSTIC RESONATOR.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to filters for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low signal loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “pass-band” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one pass-band and at least one stop-band. Specific requirements on a pass-band or stop-band depend on the specific application. For example, a “pass-band” may be defined as a frequency range where the insertion loss of a filter is better than a defined value such as 1 dB, 2 dB, or 3 dB. A “stop-band” may be defined as a frequency range where the rejection of a filter is greater than a defined value such as 20 dB, 30 dB, 40 dB, or greater depending on application.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of cellular base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
The desire for wider communication channel bandwidths will inevitably lead to the use of higher frequency communications bands. The current LTE™ (Long Term Evolution) specification defines frequency bands from 3.3 GHz to 5.9 GHz. These bands are not presently used. Future proposals for wireless communications include millimeter wave communication bands with frequencies up to 28 GHz.
High performance RF filters for present communication systems commonly incorporate acoustic wave resonators including surface acoustic wave (SAW) resonators, bulk acoustic wave BAW) resonators, film bulk acoustic wave resonators (FBAR), and other types of acoustic resonators. However, these existing technologies are not well-suited for use at the higher frequencies proposed for future communications networks.
Throughout this description, elements appearing in figures are assigned three-digit or four-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having the same reference designator.
Description of Apparatus
The XBAR 100 is made up of a thin film conductor pattern formed on a surface of a piezoelectric plate 110 having parallel front and back surfaces 112, 114, respectively. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. In the examples presented in this patent, the piezoelectric plates are Z-cut, which is to say the Z axis is normal to the surfaces. However, XBARs may be fabricated on piezoelectric plates with other crystallographic orientations.
The back surface 114 of the piezoelectric plate 110 is attached to a substrate 120 that provides mechanical support to the piezoelectric plate 110. The substrate 120 may be, for example, silicon, sapphire, quartz, or some other material. The piezoelectric plate 110 may be bonded to the substrate 120 using a wafer bonding process, or grown on the substrate 120, or attached to the substrate in some other manner. The piezoelectric plate may be attached directly to the substrate, or may be attached to the substrate via one or more intermediate material layers.
The conductor pattern of the XBAR 100 includes an interdigital transducer (IDT) 130. The IDT 130 includes a first plurality of parallel fingers, such as finger 136, extending from a first busbar 132 and a second plurality of fingers extending from a second busbar 134. The first and second pluralities of parallel fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 130 is the “length” of the IDT.
The first and second busbars 132, 134 serve as the terminals of the XBAR 100. A radio frequency or microwave signal applied between the two busbars 132, 134 of the IDT 130 excites an acoustic wave within the piezoelectric plate 110. As will be discussed in further detail, the excited acoustic wave is a bulk shear wave that propagates in the direction normal to the surface of the piezoelectric plate 110, which is also normal, or transverse, to the direction of the electric field created by the IDT fingers. Thus, the XBAR is considered a transversely-excited film bulk wave resonator.
A cavity 125 is formed in the substrate 120 such that the portion of the piezoelectric plate 110 containing the IDT 130 is suspended over the cavity 125 without contacting the substrate 120. “Cavity” has its conventional meaning of “an empty space within a solid body.” The cavity 125 may be a hole completely through the substrate 120 (as shown in Section A-A and Section B-B) or a recess in the substrate 120. The cavity 125 may be formed, for example, by selective etching of the substrate 120 before or after the piezoelectric plate 110 and the substrate 120 are attached. As shown in
For ease of presentation in
A front-side dielectric layer 214 may optionally be formed on the front side of the piezoelectric plate 110. The “front side” of the XBAR is, by definition, the surface facing away from the substrate. The front-side dielectric layer 214 has a thickness tfd. The front-side dielectric layer 214 is formed between the IDT fingers 238. Although not shown in
The IDT fingers 238 may be aluminum or a substantially aluminum alloy, copper or a substantially copper alloy, beryllium, gold, or some other conductive material. Thin (relative to the total thickness of the conductors) layers of other metals, such as chromium or titanium, may be formed under and/or over the fingers to improve adhesion between the fingers and the piezoelectric plate 110 and/or to passivate or encapsulate the fingers. The busbars (132, 134 in
Dimension p is the center-to-center spacing or “pitch” of the IDT fingers, which may be referred to as the pitch of the IDT and/or the pitch of the XBAR. Dimension w is the width or “mark” of the IDT fingers. The IDT of an XBAR differs substantially from the IDTs used in surface acoustic wave (SAW) resonators. In a SAW resonator, the pitch of the IDT is one-half of the acoustic wavelength at the resonance frequency. Additionally, the mark-to-pitch ratio of a SAW resonator IDT is typically close to 0.5 (i.e. the mark or finger width is about one-fourth of the acoustic wavelength at resonance). In an XBAR, the pitch p of the IDT is typically 2 to 20 times the width w of the fingers. In addition, the pitch p of the IDT is typically 2 to 20 times the thickness ts of the piezoelectric slab 212. The width of the IDT fingers in an XBAR is not constrained to one-fourth of the acoustic wavelength at resonance. For example, the width of XBAR IDT fingers may be 500 nm or greater, such that the IDT can be fabricated using optical lithography. The thickness tm of the IDT fingers may be from 100 nm to about equal to the width w. The thickness of the busbars (132, 134 in
In
Considering
An acoustic resonator based on shear acoustic wave resonances can achieve better performance than current state-of-the art film-bulk-acoustic-resonators (FBAR) and solidly-mounted-resonator bulk-acoustic-wave (SMR BAW) devices where the electric field is applied in the thickness direction. In such devices, the acoustic mode is compressive with atomic motions and the direction of acoustic energy flow in the thickness direction. In addition, the piezoelectric coupling for shear wave XBAR resonances can be high (>20%) compared to other acoustic resonators. Thus high piezoelectric coupling enables the design and implementation of microwave and millimeter-wave filters with appreciable bandwidth.
The simulated XBAR exhibits a resonance at a frequency FR of 4693 MHz and an anti-resonance at a frequency FAR of 5306 MHz. The Q at resonance QR is 2645 and the Q at anti-resonance QAR is 4455. The absolute difference between FAR and FR is about 600 MHz, and the fractional difference is about 0.12. The acoustic coupling can be roughly estimated to the 24%. Secondary resonances are evident in the admittance curve at frequencies below FR and above FAR.
Acoustic RF filters usually incorporate multiple acoustic resonators. Typically, these resonators have at least two different resonance frequencies. For example, an RF filter using the well-known “ladder” filter architecture includes shunt resonators and series resonators. A shunt resonator typically has a resonance frequency below the passband of the filter and an anti-resonance frequency within the passband. A series resonator typically has a resonance frequency within the pass band and an anti-resonance frequency above the passband. In many filters, each resonator has a unique resonance frequency. An ability to obtain different resonance frequencies for XBARs made on the same piezoelectric plate greatly simplifies the design and fabrication of RF filters using XBARs.
The solid line 710 is a plot of the admittance of an XBAR with tfd=0 (i.e. an XBAR without dielectric layers). The dashed line 720 is a plot of the admittance of an XBAR with tfd=30 nm. The addition of the 30 nm dielectric layer reduces the resonant frequency by about 145 MHz compared to the XBAR without dielectric layers. The dash-dot line 730 is a plot of the admittance of an XBAR with tfd=60 nm. The addition of the 60 nm dielectric layer reduces the resonant frequency by about 305 MHz compared to the XBAR without dielectric layers. The dash-dot-dot line 740 is a plot of the admittance of an XBAR with tfd=90 nm. The addition of the 90 nm dielectric layer reduces the resonant frequency by about 475 MHz compared to the XBAR without dielectric layers. The frequency and magnitude of the secondary resonances are affected differently than the primary shear-mode resonance.
Importantly, the presence of the dielectric layers of various thicknesses has little or no effect on the piezoelectric coupling, as evidenced by the nearly constant frequency offset between the resonance and anti-resonance of each XBAR.
The solid line 1110 is a plot of the admittance of an XBAR on a lithium niobate plate. The dashed line 1120 is a plot of the admittance of an XBAR on a lithium tantalate plate. Notably, the difference between the resonance and anti-resonance frequencies of the lithium tantalate XBAR is about 5%, or half of the frequency difference of the lithium niobate XBAR. The lower frequency difference of the lithium tantalate XBAR is due to the weaker piezoelectric coupling of the material. The measured temperature coefficient of the resonance frequency of a lithium niobate XBAR is about −71 parts-per-million per degree Celsius. The temperature coefficient of frequency (TCF) for lithium tantalate XBARs will be about half that of lithium niobate XBARs. Lithium tantalate XBARs may be used in applications that do not require the large filter bandwidth possible with lithium niobate XBARs and where the reduced TCF is advantageous.
The three series resonators 1410A, B, C and the two shunt resonators 1420A, B of the filter 1400 are formed on a single plate 1430 of piezoelectric material bonded to a silicon substrate (not visible). Each resonator includes a respective IDT (not shown), with at least the fingers of the IDT disposed over a cavity in the substrate. In this and similar contexts, the term “respective” means “relating things each to each”, which is to say with a one-to-one correspondence. In
Series Resonators
Shunt Resonators
Parameter
1410A
1410B
1410C
1420A
1420B
p
1.475
1.475
1.525
3.52
3.52
w
0.53
0.53
0.515
0.51
0.51
AP
12.8
8.6
13.8
33
40
L
250
250
250
500
500
The performance of the first filter was simulated using a 3D finite element modeling tool. The curve 1510 is a plot of the magnitude of S21, the input-output transfer function, of the first filter as a function of frequency. The filter bandwidth is about 800 MHz, centered at 5.15 GHz. The simulated filter performance includes resistive and viscous losses. Tuning of the resonant frequencies of the various resonators is accomplished by varying only the pitch and width of the IDT fingers.
Series Resonators
Shunt Resonators
Parameter
1410A
1410B
1410C
1420A
1420B
p
4.189
4.07
4.189
4.2
4.2
w
0.494
0.505
0.494
0.6
0.6
AP
46.4
23.6
46.4
80.1
80.1
L
1000
1000
1000
1000
1000
tfd
0
0
0
0.106
0.106
The performance of the filter was simulated using a 3D finite element modeling tool. The curve 1610 is a plot of S21, the input-output transfer function, of the simulated filter 1400 as a function of frequency. The filter bandwidth is about 800 MHz, centered at 4.75 GHz. The simulated performance does not include resistive or viscous losses.
A first dielectric layer having a first thickness may be deposited over the IDT of the shunt resonators and a second dielectric layer having a second thickness may be deposited over the IDT of the series resonators. The first thickness may be greater than the second thickness.
The first and second filters (whose S21 transmission functions are shown in
Description of Methods
The piezoelectric plate may be, for example, Z-cut lithium niobate or lithium tantalate as used in the previously presented examples. The piezoelectric plate may be some other material and/or some other cut. The substrate may preferably be silicon. The substrate may be some other material that allows formation of deep cavities by etching or other processing.
At 1710, the piezoelectric plate is bonded to the substrate. The piezoelectric plate and the substrate may be bonded by a wafer bonding process. Typically, the mating surfaces of the substrate and the piezoelectric plate are highly polished. One or more layers of intermediate materials, such as an oxide or metal, may be formed or deposited on the mating surface of one or both of the piezoelectric plate and the substrate. One or both mating surfaces may be activated using, for example, a plasma process. The mating surfaces may then be pressed together with considerable force to establish molecular bonds between the piezoelectric plate and the substrate or intermediate material layers.
A variation of the process 1700 is to grow the piezoelectric plate in situ on the substrate. In that process variation, bonding is not required and the action at 1710 would be redefined as “grow piezoelectric plate on substrate.”
At 1720, one or more cavities are formed in the substrate. A separate cavity may be formed for each resonator in a filter device. The one or more cavities may be formed using an anisotropic or orientation-dependent dry or wet etch to open holes from the back side of the substrate to the piezoelectric plate. Alternatively, cavities in the form of recesses in the substrate may be formed by etching the substrate using an etchant introduced through openings in the piezoelectric plate.
A variation of the process 1700 is to form the one or more cavities in the substrate prior to attaching the piezoelectric plate to the substrate. In that process variation, the actions at 1720 and 1730 occur before the action at 1710.
At 1730, a back-side dielectric layer may be formed. In the case where the cavities formed at 1720 are holes through the substrate, the back-side dielectric layer may be deposited through the cavities using a convention deposition technique such as sputtering, evaporation, or chemical vapor deposition. When the cavities formed at 1720 are recesses that do not fully penetrate the substrate, the back-side dielectric layer must be formed on the piezoelectric plate or the substrate prior to bonding the piezoelectric plate to the substrate. In that case, the actions at 1730 occur before the actions at 1710.
A conductor pattern, including IDTs of each XBAR, is formed at 1740 by depositing and patterning one or more conductor layer on the front side of the piezoelectric plate. The conductor layer may be, for example, aluminum, an aluminum alloy, copper, a copper alloy, or some other conductive metal. Optionally, one or more layers of other materials may be disposed below (i.e. between the conductor layer and the piezoelectric plate) and/or on top of the conductor layer. For example, a thin film of titanium, chrome, or other metal may be used to improve the adhesion between the conductor layer and the piezoelectric plate. A conduction enhancement layer of gold, aluminum, copper or other higher conductivity metal may be formed over portions of the conductor pattern (for example the IDT bus bars and interconnections between the IDTs).
The conductor pattern may be formed at 1740 by depositing the conductor layer and, optionally, one or more other metal layers in sequence over the surface of the piezoelectric plate. The excess metal may then be removed by etching through patterned photoresist. The conductor layer can be etched, for example, by plasma etching, reactive ion etching, wet chemical etching, and other etching techniques.
Alternatively, the conductor pattern may be formed at 1740 using a lift-off process. Photoresist may be deposited over the piezoelectric plate. and patterned to define the conductor pattern. The conductor layer and, optionally, one or more other layers may be deposited in sequence over the surface of the piezoelectric plate. The photoresist may then be removed, which removes the excess material, leaving the conductor pattern.
At 1750, a front-side dielectric layer may be formed by depositing one or more layers of dielectric material on the front side of the piezoelectric plate. The one or more dielectric layers may be deposited using a conventional deposition technique such as sputtering, evaporation, or chemical vapor deposition. The one or more dielectric layers may be deposited over the entire surface of the piezoelectric plate, including on top of the conductor pattern. Alternatively, one or more lithography processes (using photomasks) may be used to limit the deposition of the dielectric layers to selected areas of the piezoelectric plate, such as only between the interleaved fingers of the IDTs. Masks may also be used to allow deposition of different thicknesses of dielectric materials on different portions of the piezoelectric plate.
After the front-side and back-side dielectric layers are formed at 1750 and 1730, the filter device may be completed at 1760. Actions that may occur at 1760 including depositing and patterning additional metal layers to form conductors other than the IDT conductor pattern; depositing an encapsulation/passivation layer such as SiO2 or Si3O4 over all or a portion of the device; forming bonding pads or solder bumps or other means for making connection between the device and external circuitry; excising individual devices from a wafer containing multiple devices; other packaging steps; and testing. Another action that may occur at 1760 is to tune the resonant frequencies of the resonators within the device by adding or removing metal or dielectric material from the front side of the device. After the filter device is completed, the process ends at 1795.
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
Plesski, Viktor, Garcia, Bryant, Yantchev, Ventsislav, Turner, Patrick, Hammond, Robert B., John, Jesson, Yandrapalli, Soumya
Patent | Priority | Assignee | Title |
11139794, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator |
11146238, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Film bulk acoustic resonator fabrication method |
11171629, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator using pre-formed cavities |
11201601, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method |
11228296, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter |
11239816, | Jan 15 2021 | MURATA MANUFACTURING CO , LTD | Decoupled transversely-excited film bulk acoustic resonators |
11239822, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator using YX-cut lithium niobate for high power applications |
11264966, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack |
11264969, | Aug 06 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator comprising small cells |
11271539, | Aug 19 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with tether-supported diaphragm |
11271540, | Aug 19 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with tether-supported diaphragm |
11323089, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer |
11323090, | Nov 20 2016 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications |
11323091, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with diaphragm support pedestals |
11323095, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Rotation in XY plane to suppress spurious modes in XBAR devices |
11323096, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with periodic etched holes |
11329628, | Jun 17 2020 | MURATA MANUFACTURING CO , LTD | Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators |
11349450, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes |
11349452, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic filters with symmetric layout |
11356077, | Jul 18 2020 | MURATA MANUFACTURING CO , LTD | Acoustic resonators and filters with reduced temperature coefficient of frequency |
11368139, | Apr 20 2020 | MURATA MANUFACTURING CO , LTD | Small transversely-excited film bulk acoustic resonators with enhanced Q-factor |
11374549, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers |
11405020, | Nov 26 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage |
11418167, | Feb 28 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer |
11469733, | May 06 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress |
11476834, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors |
11482981, | Jul 09 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate |
11632096, | Aug 06 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator comprising small cells |
11658639, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband |
11671070, | Aug 19 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes |
11689185, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Solidly-mounted transversely-excited film bulk acoustic resonator with recessed interdigital transducer fingers using rotated y-x cut lithium niobate |
11728784, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters |
11728785, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator using pre-formed cavities |
11750168, | Aug 19 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with tether-supported diaphragm |
11811386, | Jan 15 2021 | MURATA MANUFACTURING CO , LTD | Decoupled transversely-excited film bulk acoustic resonators |
11817845, | Jul 09 2020 | MURATA MANUFACTURING CO , LTD | Method for making transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate |
11824520, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch |
11831289, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with reduced spurious modes |
11863160, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters |
11870420, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Acoustic matrix diplexers and radios using acoustic matrix diplexers |
11870424, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers |
11876498, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method |
11881835, | Nov 11 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with low thermal impedance |
11888460, | Jul 09 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate |
11888463, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Multi-port filter using transversely-excited film bulk acoustic resonators |
11888465, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Bandpass filter with frequency separation between shunt and series resonators set by dielectric layer thickness |
11894835, | Sep 21 2020 | MURATA MANUFACTURING CO , LTD | Sandwiched XBAR for third harmonic operation |
11901873, | Mar 14 2019 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors |
11901874, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer |
11901877, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband |
11901878, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer |
11909374, | May 06 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress |
11909381, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer |
11916539, | Feb 28 2020 | MURATA MANUFACTURING CO , LTD | Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators |
11916540, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with periodic etched holes |
11923821, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with reduced spurious modes |
11929727, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with reduced spurious modes |
11929731, | Feb 18 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch |
11929733, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements |
11936358, | Nov 11 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with low thermal impedance |
11936361, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators |
11942922, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch |
11949399, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack |
11949402, | Aug 31 2020 | MURATA MANUFACTURING CO , LTD | Resonators with different membrane thicknesses on the same die |
11955951, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors |
11967942, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic filters with symmetric layout |
11967943, | May 04 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with etched conductor patterns |
11973489, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters |
11984868, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer |
11984872, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Film bulk acoustic resonator fabrication method |
11984873, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Acoustic matrix diplexers and radios using acoustic matrix diplexers |
11990888, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Resonator using YX-cut lithium niobate for high power applications |
11996822, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Wide bandwidth time division duplex transceiver |
12057823, | May 07 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with concentric interdigitated transducer fingers |
12074584, | May 28 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with two-layer electrodes |
12075700, | May 07 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator fabrication using polysilicon pillars |
12081187, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator |
12088272, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Solidly-mounted transversely-excited film bulk acoustic resonator |
12088280, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator package |
12088281, | Feb 03 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer |
12095437, | Apr 05 2019 | MURATA MANUFACTURING CO , LTD | Method of fabricating transversely-excited film bulk acoustic resonator |
12095438, | Apr 05 2019 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator package and method |
12095443, | Jun 30 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with reduced substrate to contact bump thermal resistance |
12095444, | Jun 27 2019 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with lateral etch stop |
12095445, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | High power acoustic resonators |
12095448, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator package and method |
12113510, | Feb 03 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with multiple piezoelectric membrane thicknesses on the same chip |
12113512, | Mar 29 2021 | MURATA MANUFACTURING CO , LTD | Layout of XBARs with multiple sub-resonators in parallel |
12113517, | Jun 24 2019 | MURATA MANUFACTURING CO , LTD | Transversely-excited bulk acoustic resonator split ladder filter |
12119805, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Substrate processing and membrane release of transversely-excited film bulk acoustic resonator using a sacrificial tub |
12119806, | Oct 30 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with spiral interdigitated transducer fingers |
12119807, | Oct 05 2020 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters |
12119808, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator package |
12126316, | Apr 16 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator |
12126318, | Jan 15 2021 | MURATA MANUFACTURING CO , LTD | Filters using decoupled transversely-excited film bulk acoustic resonators |
12126328, | Mar 24 2021 | MURATA MANUFACTURING CO , LTD | Acoustic filters with shared acoustic tracks |
12149227, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator package |
12149229, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Filter using transversely-excited film bulk acoustic resonators with two frequency setting layers |
12155371, | Mar 29 2021 | MURATA MANUFACTURING CO , LTD | Layout of xbars with multiple sub-resonators in series |
12155374, | Apr 02 2021 | MURATA MANUFACTURING CO , LTD | Tiled transversely-excited film bulk acoustic resonator high power filters |
12160220, | Apr 30 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with oxide strip acoustic confinement structures |
12166472, | Feb 03 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators with multiple piezoelectric membrane thicknesses on the same chip |
12170513, | Jun 30 2021 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with reduced substrate to contact bump thermal resistance |
12184261, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator with a cavity having round end zones |
ER1374, | |||
ER1948, | |||
ER4166, | |||
ER5153, | |||
ER5405, | |||
ER5989, | |||
ER6344, | |||
ER6754, | |||
ER7460, | |||
ER814, | |||
ER8173, | |||
ER8588, | |||
ER882, |
Patent | Priority | Assignee | Title |
10284176, | Jun 03 2015 | Qorvo US, Inc | Temperature compensated surface acoustic wave device and methods of manufacturing the same |
10491192, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator |
10601392, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Solidly-mounted transversely-excited film bulk acoustic resonator |
10637438, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonators for high power applications |
10756697, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely-excited film bulk acoustic resonator |
10790802, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate |
10797675, | Jun 15 2018 | MURATA MANUFACTURING CO , LTD | Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate |
5726610, | Jun 19 1995 | CTS Corporation | Saw filter device for radio tranceiver utilizing different coupling coefficient ratios |
6710514, | May 26 1999 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
7535152, | Oct 19 2005 | Murata Manufacturing Co., Ltd. | Lamb wave device |
9425765, | Apr 22 2013 | Northeastern University | Nano- and micro-electromechanical resonators |
9525398, | May 27 2014 | National Technology & Engineering Solutions of Sandia, LLC | Single crystal micromechanical resonator and fabrication methods thereof |
9748923, | Nov 30 2010 | Murata Manufacturing Co., Ltd. | Elastic wave device and manufacturing method for same |
20110109196, | |||
20130234805, | |||
20140145556, | |||
20140151151, | |||
20150333730, | |||
20170179928, | |||
20170214387, | |||
20190068164, | |||
WO2016017104, | |||
WO2018003273, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 26 2018 | GARCIA, BRYANT | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 26 2018 | TURNER, PATRICK | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 26 2018 | JOHN, JESSON | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 27 2018 | YANDRAPALLI, SOUMYA | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 27 2018 | YANTCHEV, VENTSISLAV | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 30 2018 | PLESSKI, VIKTOR | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Dec 30 2018 | HAMMOND, ROBERT B | RESONANT INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051088 | /0708 | |
Nov 20 2019 | Resonant Inc. | (assignment on the face of the patent) | / | |||
Feb 08 2023 | RESONANT INC | MURATA MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 062957 | /0864 |
Date | Maintenance Fee Events |
Nov 20 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 10 2019 | SMAL: Entity status set to Small. |
Nov 03 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jul 31 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 09 2024 | 4 years fee payment window open |
Aug 09 2024 | 6 months grace period start (w surcharge) |
Feb 09 2025 | patent expiry (for year 4) |
Feb 09 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 09 2028 | 8 years fee payment window open |
Aug 09 2028 | 6 months grace period start (w surcharge) |
Feb 09 2029 | patent expiry (for year 8) |
Feb 09 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 09 2032 | 12 years fee payment window open |
Aug 09 2032 | 6 months grace period start (w surcharge) |
Feb 09 2033 | patent expiry (for year 12) |
Feb 09 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |