A surgical instrument includes a first power source and a second power source. The first power source is configured to deliver power to a surgical instrument at a first rate of discharge. The second power source is configured to deliver power to the first power source at a second rate of discharge. The first power source and the second power source are positioned within the surgical instrument. The first power source and the second power source are further configured to communicate with a control module. The control module may rely on power from the first power source to drive an end effector of the surgical instrument. The end effector may comprise a harmonic/ultrasonic blade, RF electrosurgical electrodes, powered cutting/stapling features, and/or various other types of components.
|
10. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) activating the end effector with the first power source, independently of the second power source, via the control circuit at a first power load;
(b) detecting, via the control circuit, that the second power source is charged to a power level below a charge threshold; and
(c) charging the second power source, via the control circuit, to at least the charge threshold with the first power source while the first power source continues to activate the end effector at the first power load, wherein the second power source is capable of activating the end effector independently of the first power source when the second power source is charged at the charge threshold.
1. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) powering the end effector with the first power source, independently of the second power source, via the control circuit to meet a first required load, wherein the first power source charges the second power source while powering the end effector at the first required load;
(b) detecting an increase in the first required load to a second required load to power the end effector via the control circuit, wherein the first power source is incapable of powering the end effector to meet the second required load; and
(c) in response to detecting the increase in the first required load to the second required load, supplementing the first power source with the second power source via the control circuit to meet the second required load by powering the end effector via the control circuit using the first and second power sources simultaneously.
15. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) determining, via the control circuit, whether the end effector requires power in a high demand scenario, a medium demand scenario, or a low demand scenario, wherein the high demand scenario requires a greater power load than the medium demand scenario, wherein the medium demand scenario requires a greater power load than the low demand scenario;
(b) if the control circuit determines that the end effector requires power in the high demand scenario, then the control circuit provides that the first power source and the second power source together simultaneously activate the end effector;
(c) if the control circuit determines that the end effector requires power in the medium demand scenario, then the control circuit provides that the first power source activates the end effector independently of the second power source without charging the second power source; and
(d) if the control circuit determines that the end effector requires power in the low demand scenario, then the control circuit provides that the first power source activates the end effector independently of the second power source and simultaneously charges the second power source.
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
11. The method of
12. The method of
13. The method of
14. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
|
This application is a divisional of application Ser. No. 13/275,495, filed on Oct. 18, 2011, entitled “Surgical Instrument with Charging Devices,” published as U.S. Pub. No. 2012/0116265 on May 10, 2012, now abandoned, the disclosure of which is incorporated herein and which claims priority to U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. Application Ser. No. 13/275,495 also claims priority to U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient.
Examples of endoscopic surgical instruments include those disclosed in U.S. Pat. Pub. No. 2006/0079874, entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0191713, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0282333, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2008/0200940, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,500,176, entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; and U.S. Pat. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015, the disclosure of which is incorporated by reference herein. Additionally, such surgical tools may include a cordless transducer such as that disclosed in U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein. In addition, the surgical instruments may be used, or adapted for use, in robotic-assisted surgery settings such as that disclosed in U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” issued Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
While several systems and methods have been made and used for surgical instruments, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handpiece assembly. Thus, an end effector is distal with respect to the more proximal handpiece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the handpiece assembly. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Various examples described herein are directed to improved ultrasonic surgical instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures. For example, the teachings herein may be readily combined with various teachings from any of the following, in numerous ways, as will be apparent to those of ordinary skill in the art: U.S. Pat. No. 7,738,971 entitled “Post-Sterilization Programming of Surgical Instruments,” issued Jun. 15, 2010, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209990 entitled “Motorized Surgical Cutting and Fastening Instrument Having Handle Based Power Source,” published Aug. 20, 2009, issued as U.S. Pat. No. 8,657,174 on Feb. 25, 2014, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, issued as U.S. Pat. No. 9,023,071 on May 5, 2015, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein. Similarly, various ways in which medical devices may be adapted to include a portable power source are disclosed in U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
As will become apparent from the following description, it is contemplated that versions of the surgical instrument described herein may be used in association with an oscillator module of a surgical system, whereby ultrasonic energy from the oscillator module provides the desired ultrasonic actuation for the present surgical instrument. It is also contemplated that versions of the surgical instrument described herein may be used in association with a signal generator module of a surgical system, whereby electrical energy in the form of radio frequencies (RF), for example, is used to provide feedback to the user regarding the surgical instrument. The ultrasonic oscillator and/or the signal generator modules may be non-detachably integrated with the surgical instrument or may be provided as separate components, which can be electrically attachable to the surgical instrument.
It should also be understood that the teachings herein may be readily applied to various types of electrosurgical instruments, including but not limited to those taught in U.S. Pat. No. 6,500,176 entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,112,201 entitled “Electrosurgical Instrument and Method of Use,” issued Sep. 26, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,125,409, entitled “Electrosurgical Working End for Controlled Energy Delivery,” issued Oct. 24, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,169,146 entitled “Electrosurgical Probe and Method of Use,” issued Jan. 30, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,186,253, entitled “Electrosurgical Jaw Structure for Controlled Energy Delivery,” issued Mar. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,189,233, entitled “Electrosurgical Instrument,” issued Mar. 13, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,220,951, entitled “Surgical Sealing Surfaces and Methods of Use,” issued May 22, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,309,849, entitled “Polymer Compositions Exhibiting a PTC Property and Methods of Fabrication,” issued Dec. 18, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,311,709, entitled “Electrosurgical Instrument and Method of Use,” issued Dec. 25, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,354,440, entitled “Electrosurgical Instrument and Method of Use,” issued Apr. 8, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,381,209, entitled “Electrosurgical Instrument,” issued Jun. 3, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015, the disclosure of which is incorporated by reference herein; and U.S. patent application Ser. No. 13/151,481, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” filed Jun. 2, 2011, and issued on Oct. 20, 2015 as U.S. Pat. No. 9,161,803, the disclosure of which is incorporated by reference herein.
Furthermore, the teachings herein may be readily applied to various types of electrically powered cutting and stapling instruments, including but not limited to those taught in U.S. Pat. No. 7,416,101 entitled “Motor-Driven Surgical Cutting and Fastening Instrument with Loading Force Feedback,” issued Aug. 26, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209979, entitled “Motorized Cutting and Fastening Instrument Having Control Circuit for Optimizing Battery Usage,” published Aug. 20, 2009, issued as U.S. Pat. No. 8,622,274 on Jan. 7, 2014; and U.S. patent application Ser. No. 13/151,481, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” filed Jun. 2, 2011, and issued on Oct. 20, 2015 as U.S. Pat. No. 9,161,803, the disclosure of which is incorporated by reference herein. Still other suitable types of devices to which the teachings herein may be applied will be apparent to those of ordinary skill in the art.
In view of the foregoing, it should be understood that the surgical instrument is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative versions of the surgical instrument may be implemented or incorporated in other versions, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative versions of the present surgical instrument for the convenience of the reader and are not for the purpose of limiting the surgical instrument.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
I. Exemplary Ultrasonic Instrument
The examples described herein relate to a battery powered ultrasonic surgical clamp coagulator apparatus which is configured for effecting tissue cutting, coagulation, and/or clamping during surgical procedures. When ultrasonic components of the apparatus are inactive, tissue can be readily gripped and manipulated, as desired, without tissue cutting. When the ultrasonic components are activated, the apparatus permits tissue to be gripped for coupling with the ultrasonic energy to effect tissue coagulation, with application of increased pressure efficiently effecting tissue cutting and coagulation. If desired, ultrasonic energy can be applied to tissue without use of the clamping mechanism of the apparatus by appropriate manipulation of the ultrasonic blade.
Ultrasonic surgical instrument (10) further includes a multi-piece handle assembly (68) adapted to isolate the operator from the vibrations of the acoustic assembly contained within transducer (50). Handle assembly (68) may be shaped to be held by a user in a pistol-grip manner, but it is contemplated that instrument (10) may be grasped and manipulated in any other suitable manner as would be apparent to one of ordinary skill in the art in view of the teachings herein. While multi-piece handle assembly (68) is illustrated, handle assembly (68) may instead comprise a single unitary piece. Ultrasonic transducer (50) may also be attached to and removed from ultrasonic surgical instrument (10) as a unit. Handle assembly (68) may be constructed from a durable plastic, such as polycarbonate or a liquid crystal polymer. It is also contemplated that handle assembly (68) may alternatively be made from a variety of materials including other plastics, ceramics or metals.
Surgical instrument (10) further comprises an outer sheath (72) extending distally from handle assembly (68) leading to an end effector (81), which comprises clamp member (60) and blade (79). Clamp member (60) and blade (79) are operable to manipulate tissue in various ways as described herein. Ultrasonic transducer (50) is operable to deliver ultrasonic energy to end effector (81), which, in the exemplary version, is communicated from transducer (50) to end effector (81) through an acoustic waveguide (not shown) extending through outer sheath (72).
The distal end of blade (79) is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency fo when the acoustic assembly is not loaded by tissue. When ultrasonic transducer (50) is energized, the distal end of blade (79) is configured to move longitudinally in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 20 to about 200 microns at a predetermined vibrational frequency fo of, for example, 55,500 Hz. Thus, when tissue is secured between blade (79) and clamp arm (84), the ultrasonic oscillation of blade (79) may simultaneously sever tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. An electrical current may also be provided through blade (79) and clamp arm (84) to cauterize the tissue. While some configurations for transducer (50) have been described, still other suitable configurations for transducer (50) will be apparent to one or ordinary skill in the art in view of the teachings herein.
A power supply is located inside the handle assembly (68) for providing power to the device including transducer (50). The power supply may include a primary battery, a rechargeable battery, a supercapacitor, a fuel cell or a combination of these or other means of supplying power. It should be understood that surgical instrument (10) may be constructed in accordance with some or all of the teachings of any of the references cited herein, including those relating to ultrasonic surgical instruments, those relating to RF electrosurgical instruments, or those relating to electrically powered cutting and stapling instruments. As another merely illustrative example, surgical instrument (10) may comprise a variation of the instruments described in any of the following: U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” issued Nov. 9, 1999, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,938,633, entitled “Ultrasonic Surgical Devices,” issued Aug. 17, 1999; U.S. Pat. No. 5,935,144, entitled “Double Sealed Acoustic Isolation Members for Ultrasonic,” issued Aug. 10, 1999; U.S. Pat. No. 5,944,737, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Waveguide Support Member,” issued Aug. 31, 1999; U.S. Pat. No. 5,322,055, entitled “Clamp Coagulator/Cutting System for Ultrasonic Surgical Instruments,” issued Jun. 21, 1994; U.S. Pat. No. 5,630,420, entitled “Ultrasonic Instrument for Surgical Applications,” issued May 20, 1997; U.S. Pat. No. 5,449,370, entitled “Blunt Tipped Ultrasonic Trocar,” issued Sep. 12, 1995; U.S. Pat. No. D594,983, entitled “Handle Assembly for Surgical Instrument,” issued Jun. 23, 2009; and/or any other reference cited herein. Still other suitable forms that instrument (10) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
II. Exemplary Device for Charging Power Source
It will be understood that in some energy based instruments, it may be desirable to use a battery that is operable to provide a relative high discharge rate such as, for example, a lithium polymer battery or a super capacitor. However, it will be appreciated that a higher capacity battery, rather than a higher discharge rate battery, may be desirable as it can simply hold more charge to power the energy based instrument. Examples described herein relate to synergistic combinations of such batteries in a surgical instrument.
Grip portion (102) is shaped to be held and/or grasped by a single hand of the user. While grasping grip portion (102), the user may also be able to position his/her hand to actuate trigger (104) to use surgical instrument (100). The present example shows grip portion (102) having an elongated, rounded shape, but any suitable shape for grip portion (102) may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein. Grip portion (102) defines an internal battery cavity (122). Battery cavity (122) has a shape and size to hold a power source, such as a storage battery (110), therein. Handle walls (124) surrounding battery cavity (122) are thick enough such that heat given off by storage battery (110) may be absorbed or otherwise insulated from the user's hands by handle walls (124) as storage battery (110) transfers charge to a discharge battery (112), as will be described in further detail below.
Surgical instrument (100) further comprises a switch (114) in communication with grip portion (102). Switch (114) is positioned proximate to grip portion (102) such that the user is able actuate switch (114) with the same hand grasping grip portion (102). Additionally, switch (114) may be positioned such that the user can actuate switch (114) and trigger (104) without repositioning his/her hands. In the present example, switch (114) comprises a sliding switch. However, switch (114) may comprise any suitable component operable to be actuated by the user as would be apparent to one of ordinary skill in the art in view of the teachings herein. For example, switch (114) may comprise a button or toggle lever operable to be actuated by a user.
Switch (114) is in communication with control module (126). Control module (126) is also in communication with discharge battery (112) and storage battery (110). Control module (126) is operable to selectively control the flow of current from storage battery (110) to discharge battery (112) such that storage battery (110) may be used to provide power to discharge battery (112) to increase the available charge of discharge battery (112).
Storage battery (110) of the present example is operable to provide a significant amount of charge for use with surgical instrument (100). However, in order to properly drive the end effector, surgical instrument (100) may have peak power requirements exceeding the capabilities of storage battery (110). Surgical instrument (100) may thus utilize power drawn from discharge battery (112) rather than from storage battery (110) in order to drive the end effector. Discharge battery (112) is operable to deliver a high rate of energy for use by surgical instrument (100). Discharge battery (112) is operable to deliver power directly to end effector (81), or in other exemplary versions, discharge battery may be operable to deliver power to end effector (81) through control module (126).
In the present example, discharge battery (112) may be operable to deliver power to a transducer in communication with end effector (81). Furthermore, while the current example contemplates delivering ultrasonic energy with end effector (81), it will be appreciated that end effector (81) may also be operable to deliver RF energy and/or perform other functions. Discharge battery (112) may comprise, for example, a lithium polymer battery, or any other suitable battery type as would be apparent to one of ordinary skill in the art in view of the teachings herein. In some other exemplary versions, discharge battery (112) comprises a nickel-cadmium battery, a super capacitor, a fuel cell, or any combination thereof. In the event that discharge battery (112) comprises a super capacitor, it will be understood that the super capacitor may initially have a discharged state where thereafter the super capacitor is charged prior to use. Furthermore, discharge battery (112) may comprise a rechargeable battery such that discharge battery (112) may be recharged by storage battery (110) or any other suitable power source such that thereafter discharge battery (112) may again be used to power surgical instrument (100).
Through use of control module (126), switch (114) is operable by the user to cause charge to flow from storage battery (110) to discharge battery (112), thereby sufficiently charging discharge battery (112) for operation of the end effector. Body assembly (120) further comprises at least one visual indicator (128) operable to inform the user of the charge status of discharge battery (112). The present example shows a single visual indicator (128), but any suitable number visual indicators (128) may be used. In some versions, a single visual indicator (128) has different states, such as different colors or brightness levels, to communicate to the user the charge status of discharge battery (112). Visual indicator (128) may comprise an LED, an LCD screen, or any other suitable visual aid as would be apparent to one of ordinary skill in the art in view of the teachings herein.
For example, if discharge battery (112) has a charge level that drops below 50%, visual indicator (128) may signal to the user that discharge battery (112) level is below 50%. The user may then actuate switch (114), which causes control module (126) to direct flow of charge from storage battery (110) to discharge battery (112). As discharge battery (112) charges, control module (126) is operable to determine the charge level of discharge battery (112). Visual indicator (128) may provide real time feedback to the user to indicate the charge status of discharge battery (112). Once charging is complete, visual indicator (128) informs the user that discharge battery (112) is completely charged. In some exemplary versions, control module (126) may be operable to automatically stop delivery of charge from storage battery (110) to discharge battery (112) once discharge battery (112) is fully charged. In other exemplary versions, the user may actuate switch (114) to stop the recharging of discharge battery (112) and monitor the charge level in real time. In some other exemplary versions, storage battery (110) is operable to provide continuous recharge for discharge battery (112) (e.g., such that switch (114) is omitted). Other suitable charging patterns may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein.
Body assembly (120) and grip assembly (102) fully enclose storage battery (110) and discharge battery (112) in the present example. Thus, once surgical instrument (100) is shipped in a package, it will be further understood that surgical instrument (100) is ready for use since storage battery (110) and discharge battery (112) are already contained within surgical instrument (100). Storage battery (110) may already be fully charged, and in some instances discharge battery (112) may also be fully charged before instrument (100) is removed from the package. Once removed from a package or other suitable container, surgical instrument (100) may be used within approximately five minutes or any other suitable time period. In addition or in the alternative, surgical instrument (100) may be removed from a package and stored for a period of time prior to use. Prior to use of surgical instrument (100), it will be appreciated that since discharge battery (112) and storage battery (110) are contained within surgical instrument (100), surgical instrument (100) may be sterilized using an ethylene oxide sterilization method and/or any other suitable sterilization method as would be apparent to one of ordinary skill in the art in view of the teachings herein.
Surgical instrument (200) also comprises control module (226). In the present example, control module (226) is operable to coordinate delivery of power and charging as depicted by chart (350) of
In
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery. For instance, those of ordinary skill in the art will recognize that various teaching herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Yates, David C., Houser, Kevin L., Madan, Ashvani K., Korvick, Donna L., Zingman, Aron O., Willis, John W.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1754806, | |||
3297192, | |||
3419198, | |||
3619671, | |||
4034762, | Aug 04 1975 | Electro Medical Systems, Inc. | Vas cautery apparatus |
4057220, | Jun 10 1976 | Ratchet type operator for cable winches and the like | |
4535773, | Mar 26 1982 | Safety puncturing instrument and method | |
4641076, | Jan 23 1985 | Linvatec Corporation | Method and apparatus for sterilizing and charging batteries |
4641077, | Jan 23 1985 | Hall Surgical-Divison of Zimmer, Inc. | Method and apparatus for providing sterile charged batteries |
4662068, | Nov 14 1985 | Suture fusing and cutting apparatus | |
4666037, | Feb 24 1986 | COLTENE WHALEDENT INC | Dental model carrier |
4685459, | Mar 27 1985 | Leibinger GmbH | Device for bipolar high-frequency coagulation of biological tissue |
4717018, | Jun 28 1984 | Boehringer Mannheim GmbH | Container for longitudinally extending diagnostic test strips |
4717050, | May 19 1986 | Sunbeam Plastics Corporation | Multiple orifice dispensing closure |
4721097, | Oct 31 1986 | CIRCON CORPORATION A CORP OF DE | Endoscope sheaths and method and apparatus for installation and removal |
4768969, | Mar 10 1986 | WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO | Electrical connector |
4800878, | Aug 26 1987 | Becton, Dickinson and Company | Electrosurgical knife with visual alarm |
4844259, | Dec 22 1987 | OSTEOTECH INVESTMENT CORPORATION | Medical and surgical procedure pack |
4878493, | Oct 28 1983 | Ninetronix Venture I | Hand-held diathermy apparatus |
5071417, | Jun 15 1990 | CARDIOFOCUS, INC | Laser fusion of biological materials |
5107155, | Nov 16 1990 | Tokyo Parts Industrial Co., Ltd. | Vibrator motor for wireless silent alerting device |
5144771, | Feb 06 1990 | Brother Kogyo Kabushiki Kaisha | Liquid supply system of an ultrasonic machine |
5169733, | Jul 08 1991 | Motorola, Inc. | Shock absorbing battery cell interconnect |
5176677, | Nov 17 1989 | Sonokinetics Group | Endoscopic ultrasonic rotary electro-cauterizing aspirator |
5246109, | May 22 1992 | MEDTRONIC MINIMED, INC | Package for an active medical device |
5273177, | Jul 20 1992 | Press-to-open dispensing closure | |
5277694, | Feb 13 1991 | Implex Aktiengesellschaft Hearing Technology | Electromechanical transducer for implantable hearing aids |
5308358, | Aug 25 1992 | Rigid-shaft surgical instruments that can be disassembled for improved cleaning | |
5322055, | Jan 27 1993 | Ethicon Endo-Surgery, Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
5339799, | Apr 23 1991 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
5358508, | Sep 15 1993 | Microline Surgical, Inc | Laparoscopic device |
5361902, | Jun 05 1992 | Leonard, Bloom | Surgical blade dispenser and disposal system for use during an operating procedure and method thereof |
5429229, | Aug 02 1991 | Minnesota Mining and Manufacturing Company | Packaged dental article |
5449370, | May 12 1993 | ETHICON ENDOSURGERY, INC | Blunt tipped ultrasonic trocar |
5454378, | Feb 11 1993 | Symbiosis Corporation | Biopsy forceps having a detachable proximal handle and distal jaws |
5501607, | May 13 1993 | Yazaki Corporation | Waterproof structure for charging connector |
5507297, | Apr 04 1991 | Symbiosis Corporation | Endoscopic instruments having detachable proximal handle and distal portions |
5561881, | Mar 22 1994 | U.S. Philips Corporation | Electric toothbrush |
5578052, | Oct 27 1992 | Insulated laparoscopic grasper with removable shaft | |
5580258, | Jun 14 1993 | Sumitomo Wiring Systems, Ltd. | Vehicle charging connector and a receptacle enclosing the connector |
5582617, | Aug 24 1994 | Charles H., Klieman | Surgical instrument for endoscopic and general surgery |
5590778, | Jun 06 1995 | Edwards Lifesciences Corporation | Double-sterile package for medical apparatus and method of making |
5592065, | Nov 06 1995 | Motorola, Inc. | Battery charger having battery temperature measurement probe |
5597371, | Jul 22 1994 | Nissan Motor Co., Ltd. | Engine torque controller |
5599350, | Apr 03 1995 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
5630420, | Sep 29 1995 | Ethicon Endo-Surgery, Inc. | Ultrasonic instrument for surgical applications |
5630456, | May 08 1996 | CONNOLLY INTERNATIONAL, LTD | Window blind cord winding apparatus |
5690222, | Apr 07 1995 | Linvatec Corporation | Package retainer for surgical screw |
5707369, | Apr 24 1995 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
5741305, | May 06 1996 | PHYSIO-CONTROL, INC | Keyed self-latching battery pack for a portable defibrillator |
5776155, | Dec 23 1996 | Ethicon Endo-Surgery, Inc | Methods and devices for attaching and detaching transmission components |
5800336, | Jul 01 1993 | Vibrant Med-El Hearing Technology GmbH | Advanced designs of floating mass transducers |
5817128, | Mar 10 1993 | KARL STORZ GMBH & CO KG | Medical tongs |
5868244, | Dec 01 1997 | Ethicon, Inc | Microbial barrier vented package for sterile medical devices and method of packaging |
5873873, | Oct 10 1997 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp mechanism |
5882310, | Dec 01 1997 | Siemens Medical Solutions USA, Inc | Ultrasound transducer connector and multiport imaging system receptacle arrangement |
5935144, | Apr 09 1998 | Ethicon Endo-Surgery, Inc. | Double sealed acoustic isolation members for ultrasonic |
5938633, | Jul 09 1997 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical devices |
5944737, | Oct 10 1997 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved waveguide support member |
5951575, | Mar 01 1996 | Heartport, Inc. | Apparatus and methods for rotationally deploying needles |
5980510, | Oct 10 1997 | Ethicon Endo-Surgery, Inc | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
5997531, | Jan 29 1998 | CARDIODYNE, INC | User actuated laser energy device and procedure for forming a channel within tissue |
6018227, | Jun 22 1998 | Stryker Corporation | Battery charger especially useful with sterilizable, rechargeable battery packs |
6051010, | Dec 23 1996 | Ethicon Endo-Surgery, Inc | Methods and devices for joining transmission components |
6056735, | Apr 04 1996 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
6063098, | Dec 23 1996 | Ethicon Endo-Surgery, Inc | Articulable ultrasonic surgical apparatus |
6066151, | Dec 24 1997 | Olympus Corporation | Ultrasonic surgical apparatus |
6083191, | Feb 07 1992 | INTEGRA LIFESCIENCES IRELAND LTD | Ultrasonic surgical apparatus |
6083223, | Aug 28 1997 | BAKER, JAMES A | Methods and apparatus for welding blood vessels |
6099537, | Feb 26 1996 | Olympus Optical Co., Ltd. | Medical treatment instrument |
6113593, | Feb 01 1999 | IRVINE BIOMEDICAL, INC | Ablation apparatus having temperature and force sensing capabilities |
6123702, | Sep 10 1998 | Boston Scientific Scimed, Inc | Systems and methods for controlling power in an electrosurgical probe |
6165191, | May 28 1998 | Olympus Corporation | Ultrasonic treating tool |
6190386, | Mar 09 1999 | GYRUS MEDICAL, INC | Electrosurgical forceps with needle electrodes |
6204592, | Oct 12 1999 | Ultrasonic nailing and drilling apparatus | |
6214023, | Jun 21 1999 | ETHICON, ENDO-SURGERY, INC | Ultrasonic surgical instrument with removable clamp arm |
6246896, | Nov 24 1998 | General Electric Company | MRI guided ablation system |
6248238, | Apr 19 1996 | GAMBRO INDUSTRIES | Medical apparatus for the extracorporeal treatment of blood or plasma, and processes for using this apparatus |
6287304, | Oct 15 1999 | Intact Medical Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
6325811, | Oct 05 1999 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
6339368, | Mar 31 2000 | IXYS Intl Limited | Circuit for automatically driving mechanical device at its resonance frequency |
6398755, | Oct 06 1998 | Boston Scientific Scimed, Inc | Driveable catheter system |
6409742, | Aug 19 1998 | Artemis Medical, Inc. | Target tissue localization device and method |
6500176, | Oct 23 2000 | Ethicon Endo-Surgery, Inc | Electrosurgical systems and techniques for sealing tissue |
6500188, | Jan 29 2001 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with finger actuator |
6512667, | Feb 15 2001 | Luxon Energy Devices Corporation | Supercapacitors and method for fabricating the same |
6514267, | Mar 26 2001 | KOS LIFE SCIENCES, INC | Ultrasonic scalpel |
6520185, | Mar 17 1999 | NTERO SURGICAL, INC | Systems and methods for reducing post-surgical complications |
6561983, | Jan 31 2001 | Ethicon Endo-Surgery, Inc. | Attachments of components of ultrasonic blades or waveguides |
6562032, | Mar 26 2001 | Cynosure, LLC | Electrosurgical instrument with vibration |
6609414, | Jul 19 2001 | Mocon, Inc. | Apparatus for conducting leakage tests on sealed packages |
6622731, | Jan 11 2001 | AngioDynamics, Inc | Bone-treatment instrument and method |
6623500, | Oct 20 2000 | Ethicon Endo-Surgery, Inc | Ring contact for rotatable connection of switch assembly for use in a surgical system |
6626901, | Mar 05 1997 | COLUMBIA, TRUSTEES OF THE UNIVERSITY IN THE CITY OF NEW YORK, THE; TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE | Electrothermal instrument for sealing and joining or cutting tissue |
6647281, | Apr 06 2001 | Boston Scientific Scimed, Inc | Expandable diagnostic or therapeutic apparatus and system for introducing the same into the body |
6650091, | May 14 2002 | Luxon Energy Devices Corporation | High current pulse generator |
6650975, | Mar 19 1999 | MC ROBOTICS | Multifunctional mobile appliance |
6656177, | Oct 23 2000 | Ethicon Endo-Surgery, Inc | Electrosurgical systems and techniques for sealing tissue |
6658301, | Sep 13 2000 | THE ALFRED E MANN INSTITUTE FOR BIOMEDICAL ENGINEERING AT THE UNIVERSITY OF SOUTHERN CALIFORNIA | Method and apparatus for conditioning muscles during sleep |
6666875, | Mar 05 1999 | Olympus Optical Co., Ltd. | Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state |
6706038, | Apr 27 2000 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
6717193, | Oct 09 2001 | NXP B V | Metal-insulator-metal (MIM) capacitor structure and methods of fabricating same |
6730042, | Jun 22 1998 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy localization method and device |
6753673, | May 14 2002 | Luxon Energy Devices Corporation | Power module for providing impulses of various levels by charging or discharging capacitors therewith |
6758855, | Aug 19 1998 | Artemis Medical, Inc. | Target tissue localization device |
6761698, | Jul 28 2000 | Olympus Corporation | Ultrasonic operation system |
6761701, | Dec 14 1990 | Power-assisted liposuction instrument with cauterizing cannula assembly | |
6783524, | Apr 19 2001 | KRANOS IP II CORPORATION | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
6815206, | Sep 19 1997 | Ethicon, Inc | Container monitoring system |
6821671, | Mar 01 2002 | LG ENERGY SOLUTION, LTD | Method and apparatus for cooling and positioning prismatic battery cells |
6836097, | May 15 2001 | CAP-XX Limited | Power supply for a pulsed load |
6838862, | Apr 04 2003 | BROADCAST LENDCO, LLC, AS SUCCESSOR AGENT | Pulse width modulator having reduced signal distortion at low duty cycles |
6847192, | May 15 2000 | CAP-XX Limited | Power supply for an electrical load |
6860880, | Mar 05 1997 | The Trustees of Columbia University in the City of New York | Electrothermal instrument for sealing and joining or cutting tissue |
6869435, | Jan 17 2002 | Repeating multi-clip applier | |
6923807, | Jun 27 2002 | Ethicon, Inc | Helical device and method for aiding the ablation and assessment of tissue |
6982696, | Jul 01 1999 | Immersion Corporation | Moving magnet actuator for providing haptic feedback |
6998822, | May 15 2001 | CAP-XX Limited | Power supply for a pulsed load |
7031155, | Jan 06 2003 | Intel Corporation | Electronic thermal management |
7061749, | Jul 01 2002 | Georgia Tech Research Corporation | Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same |
7077853, | Oct 20 2000 | Ethicon Endo-Surgery, Inc. | Method for calculating transducer capacitance to determine transducer temperature |
7083589, | Dec 11 2001 | SURGICAL DESIGN CORPORATION | Ultrasonic instrument with coupler for work tip |
7085123, | Dec 21 2004 | Gainia Intellectual Asset Services, Inc | Power supply apparatus and power supply method |
7101371, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
7112201, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7125409, | Aug 19 2003 | Ethicon Endo-Surgery, Inc | Electrosurgical working end for controlled energy delivery |
7150712, | Nov 07 2000 | Artemis Medical, Inc | Target tissue localization assembly and method |
7160132, | Mar 31 2004 | Black & Decker Inc | Battery pack—cordless power device interface system |
7169146, | Feb 14 2003 | Ethicon Endo-Surgery, Inc | Electrosurgical probe and method of use |
7186253, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical jaw structure for controlled energy delivery |
7186473, | Aug 21 2002 | SHIUE, LIH-REN; Gainia Intellectual Asset Services, Inc | Battery with built-in load leveling |
7189233, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
7220951, | Apr 19 2004 | Ethicon Endo-Surgery, Inc | Surgical sealing surfaces and methods of use |
7221216, | May 18 2004 | Optoma Corporation | Self-oscillating switching amplifier |
7232440, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7244024, | Feb 18 2004 | Eye target apparatus | |
7292227, | Aug 08 2000 | NTT DoCoMo, Inc | Electronic device, vibration generator, vibration-type reporting method, and report control method |
7296804, | Jun 24 2000 | VIANT AS&O HOLDINGS, LLC | Hand-held instrument holder for surgical use |
7303556, | Oct 04 2000 | Synthes USA, LLC | Device for supplying an electro-pen with electrical energy |
7309849, | Nov 19 2003 | Ethicon Endo-Surgery, Inc | Polymer compositions exhibiting a PTC property and methods of fabrication |
7311709, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7349741, | Oct 11 2002 | Advanced Bionics AG | Cochlear implant sound processor with permanently integrated replenishable power source |
7353068, | Aug 19 2003 | Olympus Corporation | Control device for a medical system and control method for medical system |
7354440, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7364061, | Sep 29 2003 | Cilag GmbH International | Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism |
7364554, | May 23 2001 | SANUWAVE, INC | Apparatus for administering acoustic shock waves having a removable and replaceable component with a data storage medium |
7375644, | Sep 01 2004 | Olympus Corporation | Foot switch and output system having foot switch |
7381209, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
7416101, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with loading force feedback |
7422139, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting fastening instrument with tactile position feedback |
7464846, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Surgical instrument having a removable battery |
7470237, | Jan 10 2005 | DEVICOR MEDICAL PRODUCTS, INC | Biopsy instrument with improved needle penetration |
7473145, | Jun 01 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Return pad cable connector |
7479152, | Aug 19 1998 | Artemis Medical, Inc. | Target tissue localization device |
7494492, | Dec 10 2004 | Koninklijke Philips Electronics N V | Skin treatment device |
7560903, | Apr 28 2005 | TESLA, INC | Apparatus and method for discharging electrical energy storage cells |
7563142, | Apr 30 2008 | Medtronic, Inc. | Medical device packaging systems including electrical interfaces |
7570994, | Apr 25 2003 | PHYSIO-CONTROL, INC | Apparatus and method for maintaining a defibrillator battery charge and optionally communicating |
7573151, | Oct 11 2007 | Lear Corporation | Dual energy-storage for a vehicle system |
7583564, | Jun 24 2005 | Seiko Epson Corporation | Piezoelectric actuator and electronic equipment with piezoelectric actuator |
7638958, | Jun 28 2005 | Stryker Corporation | Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit |
7643378, | Jul 25 2006 | Package showing elapsed time since opening | |
7658247, | Sep 20 2006 | GATEKEEPER SYSTEMS, INC | Systems and methods for power storage and management from intermittent power sources |
7692411, | Jan 05 2006 | TPL, INC | System for energy harvesting and/or generation, storage, and delivery |
7699850, | May 31 2002 | TELEFLEX LIFE SCIENCES II LLC | Apparatus and method to access bone marrow |
7699856, | Jun 27 2002 | Apyx Medical Corporation | Method, apparatus, and kit for thermal suture cutting |
7717312, | Jun 03 2005 | Covidien LP | Surgical instruments employing sensors |
7721936, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
7738971, | Jan 10 2007 | Cilag GmbH International | Post-sterilization programming of surgical instruments |
7761198, | Jun 25 2007 | GE GLOBAL SOURCING LLC | Methods and systems for power system management |
7766910, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
7766929, | Sep 28 2007 | Olympus Corporation | Surgical operating apparatus |
7770722, | Feb 06 2006 | Zimmer Dental, Inc. | Dental implant package including a plug |
7770775, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
7776037, | Jul 07 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | System and method for controlling electrode gap during tissue sealing |
7780660, | Jan 15 2003 | Boston Scientific Scimed, Inc. | Articulating radio frequency probe handle |
7802121, | Mar 27 2006 | NetApp, Inc | Auxiliary power system |
7815658, | Mar 30 2004 | Olympus Corporation | Ultrasonic treatment apparatus, method of assembling and disassembling ultrasonic treatment apparatus, and ultrasonic treatment system |
7845537, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having recording capabilities |
7846155, | Oct 08 2004 | Cilag GmbH International | Handle assembly having hand activation for use with an ultrasonic surgical instrument |
7846159, | Nov 07 2000 | Artemis Medical, Inc. | Tissue separating and localizing catheter assembly |
7889489, | Nov 19 2001 | Otter Products, LLC | Detachable pod assembly for protective case |
7918848, | Mar 25 2005 | MAQUET CARDIOVASCULAR LLC | Tissue welding and cutting apparatus and method |
7922063, | Oct 31 2007 | Covidien LP | Powered surgical instrument |
7923151, | Sep 18 2003 | Commonwealth Scientific and Industrial Research Organisation | High performance energy storage devices |
7948208, | Jun 01 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Power source, charging system, and inductive receiver for mobile devices |
7952322, | Jan 31 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive power source and charging system |
7952873, | Jun 26 2006 | Raytheon Company | Passive conductive cooling module |
7959050, | Jul 25 2005 | Cilag GmbH International | Electrically self-powered surgical instrument with manual release |
7977921, | Aug 15 2008 | National Semiconductor Corporation | AC-to-DC voltage conversion and charging circuitry |
7982439, | Jan 05 2006 | TPL, INC | System for energy harvesting and/or generation, storage, and delivery |
8038025, | Aug 07 2008 | Becton, Dickinson and Company | Medical waste container hinged lid |
8040107, | Jul 31 2007 | Yamaha Corporation | Battery charger, secondary battery unit and electric apparatus equipped therewith |
8052605, | May 07 2008 | INFRAREDX, INC | Multimodal catheter system and method for intravascular analysis |
8058771, | Aug 06 2008 | Cilag GmbH International | Ultrasonic device for cutting and coagulating with stepped output |
8075530, | Mar 20 2008 | Applied Medical Resources Corporation | Instrument seal with inverting shroud |
8097011, | Feb 26 2008 | Olympus Corporation | Surgical treatment apparatus |
8142461, | Mar 22 2007 | Cilag GmbH International | Surgical instruments |
8147488, | Dec 28 2007 | Olympus Corporation | Surgical operating apparatus |
8177776, | Apr 20 2007 | DOHENY EYE INSTITUTE | Independent surgical center |
8179103, | Apr 04 2007 | EATON INTELLIGENT POWER LIMITED | System and method for boosting battery output |
8195271, | Nov 06 2007 | SIEMENS HEALTHINEERS AG | Method and system for performing ablation to treat ventricular tachycardia |
8210411, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
8216212, | Jan 15 2009 | Immersion Corporation | Providing haptic feedback to the handle of a tool |
8221418, | Feb 07 2008 | Covidien LP | Endoscopic instrument for tissue identification |
8240498, | Oct 31 2006 | CROWN PACKAGING TECHNOLOGY, INC | Resealable closure |
8246642, | Dec 01 2005 | Cilag GmbH International | Ultrasonic medical instrument and medical instrument connection assembly |
8251994, | Apr 07 2009 | Covidien LP | Vessel sealer and divider with blade deployment alarm |
8267094, | Apr 07 1997 | Boston Scientific Scimed, Inc | Modification of airways by application of ultrasound energy |
8277446, | Apr 24 2009 | Covidien LP | Electrosurgical tissue sealer and cutter |
8292882, | Apr 21 2005 | Boston Scientific Scimed, Inc | Control methods and devices for energy delivery |
8292888, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
8298253, | May 27 2010 | Alcon Inc | Variable drive vitrectomy cutter |
8301262, | Feb 06 2008 | Cardiac Pacemakers, Inc. | Direct inductive/acoustic converter for implantable medical device |
8323271, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
8328732, | Dec 18 2008 | DEVICOR MEDICAL PRODUCTS, INC | Control module interface for MRI biopsy device |
8328802, | Mar 19 2008 | Covidien AG | Cordless medical cauterization and cutting device |
8333764, | May 12 2004 | Medtronic, Inc.; Medtronic, Inc | Device and method for determining tissue thickness and creating cardiac ablation lesions |
8336725, | Sep 23 2005 | CROWN PACKAGING TECHNOLOGY INC | Sealing device for a container |
8337097, | Mar 23 2006 | CAO Group, Inc | Modular surgical laser systems |
8344690, | Sep 10 2009 | Syntheon, LLC | Method for battery surgical sterilization while charging |
8372099, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8377059, | Mar 19 2008 | Covidien AG | Cordless medical cauterization and cutting device |
8400108, | Jan 27 2006 | Stryker Corporation | Method of charging and using an aseptic battery assembly with a removable battery pack |
8403948, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8403949, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8403950, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8419757, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8425545, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device and method |
8444653, | Aug 30 2010 | Biomet Manufacturing, LLC | Intramedullary rod implantation system |
8444662, | Dec 03 2007 | Covidien AG | Cordless hand-held ultrasonic cautery cutting device |
8449529, | Jan 30 2000 | Mederi RF, LLC; HORIZON CREDIT II LLC | Systems and methods for monitoring and controlling use of medical devices |
8459520, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
8461744, | Jul 15 2009 | Cilag GmbH International | Rotating transducer mount for ultrasonic surgical instruments |
8487487, | Jul 15 2008 | Cilag GmbH International | Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator |
8522795, | May 04 2011 | ELC Management LLC | Universal docking station compact |
8550106, | Dec 12 2008 | Robert Bosch GmbH | Pressure-relief valve of a housing for an electrical/electronic unit |
8550981, | Dec 17 2009 | Ethicon Endo-Surgery, Inc | Implantable port with vibratory feedback |
8551088, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8564242, | Oct 21 2005 | Stryker Corporation | Battery charger capable of performing a full or partial state of health evaluation of the battery based on the history of the battery |
8573461, | Feb 14 2008 | Cilag GmbH International | Surgical stapling instruments with cam-driven staple deployment arrangements |
8598852, | Nov 12 2008 | American Axle & Manufacturing, Inc. | Cost effective configuration for supercapacitors for HEV |
8602287, | Sep 23 2008 | Cilag GmbH International | Motor driven surgical cutting instrument |
8608045, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
8617077, | Mar 19 2010 | Enraf-Nonius B.V.; ENRAF-NONIUS B V | Ultrasound application device |
8622274, | Feb 14 2008 | Cilag GmbH International | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
8623027, | Oct 05 2007 | Cilag GmbH International | Ergonomic surgical instruments |
8632535, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
8636736, | Feb 14 2008 | Cilag GmbH International | Motorized surgical cutting and fastening instrument |
8641629, | Oct 19 2007 | KONICA MINOLTA, INC | Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system |
8657174, | Feb 14 2008 | Cilag GmbH International | Motorized surgical cutting and fastening instrument having handle based power source |
8663112, | Oct 06 2004 | GUIDED THERAPY SYSTEMS, L L C | Methods and systems for fat reduction and/or cellulite treatment |
8733614, | Oct 06 2006 | Covidien LP | End effector identification by mechanical features |
8758342, | Nov 28 2007 | Covidien AG | Cordless power-assisted medical cauterization and cutting device |
8784415, | May 05 2008 | Stryker Corporation | Powered surgical tool with an isolation circuit connected between the tool power terminals and the memory internal to the tool |
8808319, | Jul 27 2007 | Cilag GmbH International | Surgical instruments |
8834465, | Jul 15 2008 | Immersion Corporation | Modular tool with signal feedback |
8864761, | Mar 10 2010 | Covidien LP | System and method for determining proximity relative to a critical structure |
8906017, | Nov 13 2007 | Boston Scientific Scimed, Inc | Apparatus system and method for coagulating and cutting tissue |
8939974, | Oct 09 2009 | Cilag GmbH International | Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism |
8961441, | May 07 2008 | SANUWAVE, INC | Medical treatment system including an ancillary medical treatment apparatus with an associated data storage medium |
8968648, | May 16 2008 | Terumo Kabushiki Kaisha | Method for radiation sterilization of hydrophilic polymer-coated medical device |
8986302, | Oct 09 2009 | Cilag GmbH International | Surgical generator for ultrasonic and electrosurgical devices |
8998939, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with modular end effector |
9000720, | Nov 05 2010 | Cilag GmbH International | Medical device packaging with charging interface |
9011336, | Sep 16 2004 | Guided Therapy Systems, LLC; GUIDED THERAPY SYSTEMS, INC | Method and system for combined energy therapy profile |
9011427, | Nov 05 2010 | Cilag GmbH International | Surgical instrument safety glasses |
9011471, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with pivoting coupling to modular shaft and end effector |
9017849, | Nov 05 2010 | Cilag GmbH International | Power source management for medical device |
9017851, | Nov 05 2010 | Cilag GmbH International | Sterile housing for non-sterile medical device component |
9023071, | Sep 12 2008 | Cilag GmbH International | Ultrasonic device for fingertip control |
9039720, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with ratcheting rotatable shaft |
9044261, | Jul 31 2007 | Cilag GmbH International | Temperature controlled ultrasonic surgical instruments |
9050098, | Nov 28 2007 | Covidien AG | Cordless medical cauterization and cutting device |
9050125, | Oct 10 2011 | Cilag GmbH International | Ultrasonic surgical instrument with modular end effector |
9060750, | Nov 09 2009 | IONMED LTD | Plasma head for tissue welding |
9072523, | Nov 05 2010 | Cilag GmbH International | Medical device with feature for sterile acceptance of non-sterile reusable component |
9072543, | May 31 2002 | TELEFLEX LIFE SCIENCES II LLC | Vascular access kits and methods |
9078671, | Apr 17 2008 | Warsaw Orthopedic, Inc. | Surgical tool |
9089338, | Nov 05 2010 | Cilag GmbH International | Medical device packaging with window for insertion of reusable component |
9095346, | Nov 05 2010 | Cilag GmbH International | Medical device usage data processing |
9113903, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
9161803, | Nov 05 2010 | Cilag GmbH International | Motor driven electrosurgical device with mechanical and electrical feedback |
9179912, | Feb 14 2008 | Cilag GmbH International | Robotically-controlled motorized surgical cutting and fastening instrument |
9186046, | Aug 14 2007 | AURIS HEALTH, INC | Robotic instrument systems and methods utilizing optical fiber sensor |
9186047, | Aug 14 2007 | Koninklijke Philips Electronics N.V. | Instrument systems and methods utilizing optical fiber sensor |
9192428, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with modular clamp pad |
9247986, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with ultrasonic transducer having integral switches |
9308009, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with modular shaft and transducer |
9318271, | Jun 21 2012 | Schlumberger Technology Corporation | High temperature supercapacitor |
9364279, | Nov 05 2010 | Cilag GmbH International | User feedback through handpiece of surgical instrument |
9364288, | Jul 06 2011 | Cilag GmbH International | Sterile battery containment |
9375255, | Nov 05 2010 | Cilag GmbH International | Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector |
9381058, | Nov 05 2010 | Cilag GmbH International | Recharge system for medical devices |
9408575, | Apr 29 2009 | BSG CORP | EEG kit |
9421062, | Nov 05 2010 | Cilag GmbH International | Surgical instrument shaft with resiliently biased coupling to handpiece |
9441954, | Aug 14 2007 | Koninklijke Philips Electronics N.V. | System and method for calibration of optical fiber instrument |
9500472, | Aug 14 2007 | Koninklijke Philips Electronics N.V. | System and method for sensing shape of elongated instrument |
9500473, | Aug 14 2007 | Koninklijke Philips Electronics N.V. | Optical fiber instrument system and method with motion-based adjustment |
9510895, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with modular shaft and end effector |
9529921, | Sep 09 2010 | Ebay Inc. | Content recommendation system |
9597143, | Nov 05 2010 | Cilag GmbH International | Sterile medical instrument charging device |
9622832, | Sep 19 2008 | Brainlab AG | Surgical instrument, in particular pointer instrument, comprising tip sensor |
9629652, | Oct 10 2011 | Cilag GmbH International | Surgical instrument with clutching slip ring assembly to power ultrasonic transducer |
9649150, | Nov 05 2010 | Cilag GmbH International | Selective activation of electronic components in medical device |
9782214, | Nov 05 2010 | Cilag GmbH International | Surgical instrument with sensor and powered control |
20010032666, | |||
20020165577, | |||
20030093103, | |||
20030109802, | |||
20030114851, | |||
20030144680, | |||
20030214270, | |||
20040097911, | |||
20040116952, | |||
20040133189, | |||
20040173487, | |||
20050021065, | |||
20050033195, | |||
20050171522, | |||
20050203546, | |||
20060030797, | |||
20060079829, | |||
20060079874, | |||
20060079877, | |||
20060079879, | |||
20060253176, | |||
20070027447, | |||
20070103437, | |||
20070191713, | |||
20070207354, | |||
20070261978, | |||
20070265613, | |||
20070265620, | |||
20070282333, | |||
20080003491, | |||
20080004656, | |||
20080057470, | |||
20080147058, | |||
20080150754, | |||
20080164842, | |||
20080173651, | |||
20080188810, | |||
20080200940, | |||
20080228104, | |||
20080255413, | |||
20080281301, | |||
20080315829, | |||
20090030437, | |||
20090043797, | |||
20090076506, | |||
20090096430, | |||
20090143799, | |||
20090143800, | |||
20090209990, | |||
20090253030, | |||
20090281430, | |||
20100021022, | |||
20100030218, | |||
20100060231, | |||
20100106144, | |||
20100106146, | |||
20100125172, | |||
20100152610, | |||
20100201311, | |||
20100249665, | |||
20100268221, | |||
20100274160, | |||
20110009694, | |||
20110074336, | |||
20110077514, | |||
20110080134, | |||
20110221398, | |||
20120111591, | |||
20120116260, | |||
20120116261, | |||
20120116262, | |||
20120116263, | |||
20120116265, | |||
20120116266, | |||
20120116381, | |||
20120179036, | |||
20120292367, | |||
20120305427, | |||
20130085330, | |||
20130090528, | |||
20130118733, | |||
20140088379, | |||
20150305763, | |||
20160121143, | |||
20160206900, | |||
20160329614, | |||
20160338760, | |||
20170042569, | |||
D594983, | Oct 05 2007 | Cilag GmbH International | Handle assembly for surgical instrument |
DE102008051866, | |||
DE102009013034, | |||
EP897696, | |||
EP947167, | |||
EP1330991, | |||
EP1525853, | |||
EP1535585, | |||
EP1684396, | |||
EP1721576, | |||
EP1743592, | |||
EP1818021, | |||
EP1839599, | |||
EP1868275, | |||
EP1886637, | |||
EP1943976, | |||
EP1970014, | |||
EP1997439, | |||
EP2027819, | |||
EP2090256, | |||
EP2105104, | |||
EP2165660, | |||
EP2218409, | |||
EP2243439, | |||
EP2345454, | |||
GB2425874, | |||
GB2440566, | |||
JP10308907, | |||
JP1268370, | |||
JP2002336265, | |||
JP2005033868, | |||
JP2010518978, | |||
JP5410110, | |||
WO1997024072, | |||
WO2000065682, | |||
WO2003013374, | |||
WO2003020139, | |||
WO2004113991, | |||
WO2005079915, | |||
WO2006023266, | |||
WO2007004515, | |||
WO2007024983, | |||
WO2007050439, | |||
WO2007090025, | |||
WO2007137115, | |||
WO2007137304, | |||
WO2008071898, | |||
WO2008102154, | |||
WO2008107902, | |||
WO2008131357, | |||
WO2009018409, | |||
WO2009046394, | |||
WO2009070780, | |||
WO2009073608, | |||
WO2010030850, | |||
WO2010096174, | |||
WO2011059785, | |||
WO2011089270, | |||
WO2017137304, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 30 2016 | Ethicon Endo-Surgery, LLC | Ethicon LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 045603 | /0586 | |
Mar 16 2017 | Ethicon LLC | (assignment on the face of the patent) | / | |||
Mar 22 2017 | KORVICK, DONNA L | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
Apr 03 2017 | ZINGMAN, ARON O | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
Apr 27 2017 | HOUSER, KEVIN L | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
May 01 2017 | WILLIS, JOHN W | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
May 02 2017 | MADAN, ASHVANI K | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
May 04 2017 | YATES, DAVID C | Ethicon LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042634 | /0573 | |
Apr 05 2021 | Ethicon LLC | Cilag GmbH International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056601 | /0339 |
Date | Maintenance Fee Events |
Sep 25 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 13 2024 | 4 years fee payment window open |
Oct 13 2024 | 6 months grace period start (w surcharge) |
Apr 13 2025 | patent expiry (for year 4) |
Apr 13 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 13 2028 | 8 years fee payment window open |
Oct 13 2028 | 6 months grace period start (w surcharge) |
Apr 13 2029 | patent expiry (for year 8) |
Apr 13 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 13 2032 | 12 years fee payment window open |
Oct 13 2032 | 6 months grace period start (w surcharge) |
Apr 13 2033 | patent expiry (for year 12) |
Apr 13 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |