A surgical instrument includes a first power source and a second power source. The first power source is configured to deliver power to a surgical instrument at a first rate of discharge. The second power source is configured to deliver power to the first power source at a second rate of discharge. The first power source and the second power source are positioned within the surgical instrument. The first power source and the second power source are further configured to communicate with a control module. The control module may rely on power from the first power source to drive an end effector of the surgical instrument. The end effector may comprise a harmonic/ultrasonic blade, RF electrosurgical electrodes, powered cutting/stapling features, and/or various other types of components.

Patent
   10973563
Priority
Nov 05 2010
Filed
Mar 16 2017
Issued
Apr 13 2021
Expiry
Jun 26 2034
Extension
982 days
Assg.orig
Entity
unknown
0
453
window open
10. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) activating the end effector with the first power source, independently of the second power source, via the control circuit at a first power load;
(b) detecting, via the control circuit, that the second power source is charged to a power level below a charge threshold; and
(c) charging the second power source, via the control circuit, to at least the charge threshold with the first power source while the first power source continues to activate the end effector at the first power load, wherein the second power source is capable of activating the end effector independently of the first power source when the second power source is charged at the charge threshold.
1. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) powering the end effector with the first power source, independently of the second power source, via the control circuit to meet a first required load, wherein the first power source charges the second power source while powering the end effector at the first required load;
(b) detecting an increase in the first required load to a second required load to power the end effector via the control circuit, wherein the first power source is incapable of powering the end effector to meet the second required load; and
(c) in response to detecting the increase in the first required load to the second required load, supplementing the first power source with the second power source via the control circuit to meet the second required load by powering the end effector via the control circuit using the first and second power sources simultaneously.
15. A method of powering an end effector of a surgical instrument, the surgical instrument comprising the end effector, a control circuit in communication with the end effector, a first power source in communication with the control circuit, and a second power source in communication with the control circuit, wherein the first and second power sources are different types of power sources, the method comprising:
(a) determining, via the control circuit, whether the end effector requires power in a high demand scenario, a medium demand scenario, or a low demand scenario, wherein the high demand scenario requires a greater power load than the medium demand scenario, wherein the medium demand scenario requires a greater power load than the low demand scenario;
(b) if the control circuit determines that the end effector requires power in the high demand scenario, then the control circuit provides that the first power source and the second power source together simultaneously activate the end effector;
(c) if the control circuit determines that the end effector requires power in the medium demand scenario, then the control circuit provides that the first power source activates the end effector independently of the second power source without charging the second power source; and
(d) if the control circuit determines that the end effector requires power in the low demand scenario, then the control circuit provides that the first power source activates the end effector independently of the second power source and simultaneously charges the second power source.
2. The method of claim 1, wherein the first power source comprises a storage battery.
3. The method of claim 1, wherein the second power source comprises a supercapacitor.
4. The method of claim 1, wherein the control circuit automatically supplements the first power source with the second power source to meet the second required load to power the end effector.
5. The method of claim 1, wherein the first power source stops charging the second power source while powering the end effector at the second required load.
6. The method of claim 1, wherein the first power source stops charging the second power source when the second power source reaches a maximum capacity.
7. The method of claim 1, wherein the second power source supplements the first power source at a first rate of discharge, wherein the first power source powers the end effector at a second rate of discharge, wherein the first rate of discharge is greater than the second rate of discharge.
8. The method of claim 1, wherein the surgical instrument further comprises a switch in communication with the control circuit, wherein the control circuit stops charging the second power source with the first power source based on a position of the switch.
9. The method of claim 1, wherein the control circuit ceases the second power source from providing power to the end effector while still providing power to the end effector with the first power source.
11. The method of claim 10, further comprising activating the end effector at a second power load that is greater than the first power load.
12. The method of claim 11, further comprising activating the end effector at the second power load with the second power source, independently of the first power source.
13. The method of claim 12, wherein second power source activates the end effector at the second power load with the charge provided to the second power source by the first power source.
14. The method of claim 13, wherein the first power source is incapable of activating the end effector at the second power load independently of the second power source.
16. The method of claim 15, wherein the control circuit provides that the end effector is powered in the low demand scenario prior to the end effector being powered in either the high demand scenario or the medium demand scenario.
17. The method of claim 16, wherein the first power source charges the second power source to a maximum charge in the low demand scenario.
18. The method of claim 15, wherein the second power source is fully charged while the first power source activates the end effector in the medium demand scenario.
19. The method of claim 15, wherein the second power source is not fully charged while the first power source activates the end effector in the medium demand scenario.
20. The method of claim 15, wherein the control circuit provides that the end effector is powered in the medium demand scenario prior to the end effector being powered in the high demand scenario.

This application is a divisional of application Ser. No. 13/275,495, filed on Oct. 18, 2011, entitled “Surgical Instrument with Charging Devices,” published as U.S. Pub. No. 2012/0116265 on May 10, 2012, now abandoned, the disclosure of which is incorporated herein and which claims priority to U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. Application Ser. No. 13/275,495 also claims priority to U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.

In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient.

Examples of endoscopic surgical instruments include those disclosed in U.S. Pat. Pub. No. 2006/0079874, entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0191713, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0282333, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2008/0200940, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,500,176, entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; and U.S. Pat. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015, the disclosure of which is incorporated by reference herein. Additionally, such surgical tools may include a cordless transducer such as that disclosed in U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein. In addition, the surgical instruments may be used, or adapted for use, in robotic-assisted surgery settings such as that disclosed in U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” issued Aug. 31, 2004, the disclosure of which is incorporated by reference herein.

While several systems and methods have been made and used for surgical instruments, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:

FIG. 1 depicts perspective view of an exemplary surgical instrument;

FIG. 2 depicts a partial side cross sectional view of an exemplary alternative version of a surgical instrument;

FIG. 3 depicts a partial side cross sectional view of another exemplary alternative version of a surgical instrument having a battery door; and

FIG. 4 depicts a diagrammatic view of a graph showing coordinated power delivery used by the surgical instrument of FIG. 3.

The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.

The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.

It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handpiece assembly. Thus, an end effector is distal with respect to the more proximal handpiece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the handpiece assembly. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.

Various examples described herein are directed to improved ultrasonic surgical instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures. For example, the teachings herein may be readily combined with various teachings from any of the following, in numerous ways, as will be apparent to those of ordinary skill in the art: U.S. Pat. No. 7,738,971 entitled “Post-Sterilization Programming of Surgical Instruments,” issued Jun. 15, 2010, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209990 entitled “Motorized Surgical Cutting and Fastening Instrument Having Handle Based Power Source,” published Aug. 20, 2009, issued as U.S. Pat. No. 8,657,174 on Feb. 25, 2014, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, issued as U.S. Pat. No. 9,023,071 on May 5, 2015, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein. Similarly, various ways in which medical devices may be adapted to include a portable power source are disclosed in U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.

As will become apparent from the following description, it is contemplated that versions of the surgical instrument described herein may be used in association with an oscillator module of a surgical system, whereby ultrasonic energy from the oscillator module provides the desired ultrasonic actuation for the present surgical instrument. It is also contemplated that versions of the surgical instrument described herein may be used in association with a signal generator module of a surgical system, whereby electrical energy in the form of radio frequencies (RF), for example, is used to provide feedback to the user regarding the surgical instrument. The ultrasonic oscillator and/or the signal generator modules may be non-detachably integrated with the surgical instrument or may be provided as separate components, which can be electrically attachable to the surgical instrument.

It should also be understood that the teachings herein may be readily applied to various types of electrosurgical instruments, including but not limited to those taught in U.S. Pat. No. 6,500,176 entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,112,201 entitled “Electrosurgical Instrument and Method of Use,” issued Sep. 26, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,125,409, entitled “Electrosurgical Working End for Controlled Energy Delivery,” issued Oct. 24, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,169,146 entitled “Electrosurgical Probe and Method of Use,” issued Jan. 30, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,186,253, entitled “Electrosurgical Jaw Structure for Controlled Energy Delivery,” issued Mar. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,189,233, entitled “Electrosurgical Instrument,” issued Mar. 13, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,220,951, entitled “Surgical Sealing Surfaces and Methods of Use,” issued May 22, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,309,849, entitled “Polymer Compositions Exhibiting a PTC Property and Methods of Fabrication,” issued Dec. 18, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,311,709, entitled “Electrosurgical Instrument and Method of Use,” issued Dec. 25, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,354,440, entitled “Electrosurgical Instrument and Method of Use,” issued Apr. 8, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,381,209, entitled “Electrosurgical Instrument,” issued Jun. 3, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, issued as U.S. Pat. No. 8,939,974 on Jan. 27, 2015, the disclosure of which is incorporated by reference herein; and U.S. patent application Ser. No. 13/151,481, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” filed Jun. 2, 2011, and issued on Oct. 20, 2015 as U.S. Pat. No. 9,161,803, the disclosure of which is incorporated by reference herein.

Furthermore, the teachings herein may be readily applied to various types of electrically powered cutting and stapling instruments, including but not limited to those taught in U.S. Pat. No. 7,416,101 entitled “Motor-Driven Surgical Cutting and Fastening Instrument with Loading Force Feedback,” issued Aug. 26, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209979, entitled “Motorized Cutting and Fastening Instrument Having Control Circuit for Optimizing Battery Usage,” published Aug. 20, 2009, issued as U.S. Pat. No. 8,622,274 on Jan. 7, 2014; and U.S. patent application Ser. No. 13/151,481, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” filed Jun. 2, 2011, and issued on Oct. 20, 2015 as U.S. Pat. No. 9,161,803, the disclosure of which is incorporated by reference herein. Still other suitable types of devices to which the teachings herein may be applied will be apparent to those of ordinary skill in the art.

In view of the foregoing, it should be understood that the surgical instrument is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative versions of the surgical instrument may be implemented or incorporated in other versions, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative versions of the present surgical instrument for the convenience of the reader and are not for the purpose of limiting the surgical instrument.

It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.

I. Exemplary Ultrasonic Instrument

The examples described herein relate to a battery powered ultrasonic surgical clamp coagulator apparatus which is configured for effecting tissue cutting, coagulation, and/or clamping during surgical procedures. When ultrasonic components of the apparatus are inactive, tissue can be readily gripped and manipulated, as desired, without tissue cutting. When the ultrasonic components are activated, the apparatus permits tissue to be gripped for coupling with the ultrasonic energy to effect tissue coagulation, with application of increased pressure efficiently effecting tissue cutting and coagulation. If desired, ultrasonic energy can be applied to tissue without use of the clamping mechanism of the apparatus by appropriate manipulation of the ultrasonic blade.

FIG. 1 shows a version of a surgical instrument (10). The surgical instrument (10) includes a battery connected to a control module as will be discussed in further detail below. Surgical instrument (10) further comprises an ultrasonic transducer (50). It will be noted that, in some applications, ultrasonic transducer (50) is referred to as a “hand piece assembly” because surgical instrument (10) is configured such that a surgeon may grasp and manipulate ultrasonic transducer (50) during various procedures and operations. Of course, instrument (10) may be configured for robotic manipulation in addition to or in lieu of human operator manipulation. Ultrasonic transducer (50) may be a disposable component, completely enclosed by instrument (10) and/or it may be a reusable component that is detachable from instrument (10). It will be appreciated that surgical instrument (10) may comprise any suitable combination of disposable components and reusable components.

Ultrasonic surgical instrument (10) further includes a multi-piece handle assembly (68) adapted to isolate the operator from the vibrations of the acoustic assembly contained within transducer (50). Handle assembly (68) may be shaped to be held by a user in a pistol-grip manner, but it is contemplated that instrument (10) may be grasped and manipulated in any other suitable manner as would be apparent to one of ordinary skill in the art in view of the teachings herein. While multi-piece handle assembly (68) is illustrated, handle assembly (68) may instead comprise a single unitary piece. Ultrasonic transducer (50) may also be attached to and removed from ultrasonic surgical instrument (10) as a unit. Handle assembly (68) may be constructed from a durable plastic, such as polycarbonate or a liquid crystal polymer. It is also contemplated that handle assembly (68) may alternatively be made from a variety of materials including other plastics, ceramics or metals.

Surgical instrument (10) further comprises an outer sheath (72) extending distally from handle assembly (68) leading to an end effector (81), which comprises clamp member (60) and blade (79). Clamp member (60) and blade (79) are operable to manipulate tissue in various ways as described herein. Ultrasonic transducer (50) is operable to deliver ultrasonic energy to end effector (81), which, in the exemplary version, is communicated from transducer (50) to end effector (81) through an acoustic waveguide (not shown) extending through outer sheath (72).

The distal end of blade (79) is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency fo when the acoustic assembly is not loaded by tissue. When ultrasonic transducer (50) is energized, the distal end of blade (79) is configured to move longitudinally in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 20 to about 200 microns at a predetermined vibrational frequency fo of, for example, 55,500 Hz. Thus, when tissue is secured between blade (79) and clamp arm (84), the ultrasonic oscillation of blade (79) may simultaneously sever tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. An electrical current may also be provided through blade (79) and clamp arm (84) to cauterize the tissue. While some configurations for transducer (50) have been described, still other suitable configurations for transducer (50) will be apparent to one or ordinary skill in the art in view of the teachings herein.

A power supply is located inside the handle assembly (68) for providing power to the device including transducer (50). The power supply may include a primary battery, a rechargeable battery, a supercapacitor, a fuel cell or a combination of these or other means of supplying power. It should be understood that surgical instrument (10) may be constructed in accordance with some or all of the teachings of any of the references cited herein, including those relating to ultrasonic surgical instruments, those relating to RF electrosurgical instruments, or those relating to electrically powered cutting and stapling instruments. As another merely illustrative example, surgical instrument (10) may comprise a variation of the instruments described in any of the following: U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” issued Nov. 9, 1999, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,938,633, entitled “Ultrasonic Surgical Devices,” issued Aug. 17, 1999; U.S. Pat. No. 5,935,144, entitled “Double Sealed Acoustic Isolation Members for Ultrasonic,” issued Aug. 10, 1999; U.S. Pat. No. 5,944,737, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Waveguide Support Member,” issued Aug. 31, 1999; U.S. Pat. No. 5,322,055, entitled “Clamp Coagulator/Cutting System for Ultrasonic Surgical Instruments,” issued Jun. 21, 1994; U.S. Pat. No. 5,630,420, entitled “Ultrasonic Instrument for Surgical Applications,” issued May 20, 1997; U.S. Pat. No. 5,449,370, entitled “Blunt Tipped Ultrasonic Trocar,” issued Sep. 12, 1995; U.S. Pat. No. D594,983, entitled “Handle Assembly for Surgical Instrument,” issued Jun. 23, 2009; and/or any other reference cited herein. Still other suitable forms that instrument (10) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.

II. Exemplary Device for Charging Power Source

It will be understood that in some energy based instruments, it may be desirable to use a battery that is operable to provide a relative high discharge rate such as, for example, a lithium polymer battery or a super capacitor. However, it will be appreciated that a higher capacity battery, rather than a higher discharge rate battery, may be desirable as it can simply hold more charge to power the energy based instrument. Examples described herein relate to synergistic combinations of such batteries in a surgical instrument.

FIG. 2 shows an exemplary surgical instrument (100) having a grip portion (102) integrated with a body assembly (120). Surgical instrument (100) may be constructed and operable in accordance with at least some of the teachings above and/or teachings of the various references cited herein. A trigger (104) is pivotally coupled with a grip portion (102). A hub (108) is coupled to a distal portion of body assembly (120). A shaft (106) extends distally from hub (108). An end effector, such as end effector (81) of FIG. 1, is positioned at the distal end of shaft (106).

Grip portion (102) is shaped to be held and/or grasped by a single hand of the user. While grasping grip portion (102), the user may also be able to position his/her hand to actuate trigger (104) to use surgical instrument (100). The present example shows grip portion (102) having an elongated, rounded shape, but any suitable shape for grip portion (102) may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein. Grip portion (102) defines an internal battery cavity (122). Battery cavity (122) has a shape and size to hold a power source, such as a storage battery (110), therein. Handle walls (124) surrounding battery cavity (122) are thick enough such that heat given off by storage battery (110) may be absorbed or otherwise insulated from the user's hands by handle walls (124) as storage battery (110) transfers charge to a discharge battery (112), as will be described in further detail below.

Surgical instrument (100) further comprises a switch (114) in communication with grip portion (102). Switch (114) is positioned proximate to grip portion (102) such that the user is able actuate switch (114) with the same hand grasping grip portion (102). Additionally, switch (114) may be positioned such that the user can actuate switch (114) and trigger (104) without repositioning his/her hands. In the present example, switch (114) comprises a sliding switch. However, switch (114) may comprise any suitable component operable to be actuated by the user as would be apparent to one of ordinary skill in the art in view of the teachings herein. For example, switch (114) may comprise a button or toggle lever operable to be actuated by a user.

Switch (114) is in communication with control module (126). Control module (126) is also in communication with discharge battery (112) and storage battery (110). Control module (126) is operable to selectively control the flow of current from storage battery (110) to discharge battery (112) such that storage battery (110) may be used to provide power to discharge battery (112) to increase the available charge of discharge battery (112).

Storage battery (110) of the present example is operable to provide a significant amount of charge for use with surgical instrument (100). However, in order to properly drive the end effector, surgical instrument (100) may have peak power requirements exceeding the capabilities of storage battery (110). Surgical instrument (100) may thus utilize power drawn from discharge battery (112) rather than from storage battery (110) in order to drive the end effector. Discharge battery (112) is operable to deliver a high rate of energy for use by surgical instrument (100). Discharge battery (112) is operable to deliver power directly to end effector (81), or in other exemplary versions, discharge battery may be operable to deliver power to end effector (81) through control module (126).

In the present example, discharge battery (112) may be operable to deliver power to a transducer in communication with end effector (81). Furthermore, while the current example contemplates delivering ultrasonic energy with end effector (81), it will be appreciated that end effector (81) may also be operable to deliver RF energy and/or perform other functions. Discharge battery (112) may comprise, for example, a lithium polymer battery, or any other suitable battery type as would be apparent to one of ordinary skill in the art in view of the teachings herein. In some other exemplary versions, discharge battery (112) comprises a nickel-cadmium battery, a super capacitor, a fuel cell, or any combination thereof. In the event that discharge battery (112) comprises a super capacitor, it will be understood that the super capacitor may initially have a discharged state where thereafter the super capacitor is charged prior to use. Furthermore, discharge battery (112) may comprise a rechargeable battery such that discharge battery (112) may be recharged by storage battery (110) or any other suitable power source such that thereafter discharge battery (112) may again be used to power surgical instrument (100).

Through use of control module (126), switch (114) is operable by the user to cause charge to flow from storage battery (110) to discharge battery (112), thereby sufficiently charging discharge battery (112) for operation of the end effector. Body assembly (120) further comprises at least one visual indicator (128) operable to inform the user of the charge status of discharge battery (112). The present example shows a single visual indicator (128), but any suitable number visual indicators (128) may be used. In some versions, a single visual indicator (128) has different states, such as different colors or brightness levels, to communicate to the user the charge status of discharge battery (112). Visual indicator (128) may comprise an LED, an LCD screen, or any other suitable visual aid as would be apparent to one of ordinary skill in the art in view of the teachings herein.

For example, if discharge battery (112) has a charge level that drops below 50%, visual indicator (128) may signal to the user that discharge battery (112) level is below 50%. The user may then actuate switch (114), which causes control module (126) to direct flow of charge from storage battery (110) to discharge battery (112). As discharge battery (112) charges, control module (126) is operable to determine the charge level of discharge battery (112). Visual indicator (128) may provide real time feedback to the user to indicate the charge status of discharge battery (112). Once charging is complete, visual indicator (128) informs the user that discharge battery (112) is completely charged. In some exemplary versions, control module (126) may be operable to automatically stop delivery of charge from storage battery (110) to discharge battery (112) once discharge battery (112) is fully charged. In other exemplary versions, the user may actuate switch (114) to stop the recharging of discharge battery (112) and monitor the charge level in real time. In some other exemplary versions, storage battery (110) is operable to provide continuous recharge for discharge battery (112) (e.g., such that switch (114) is omitted). Other suitable charging patterns may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein.

Body assembly (120) and grip assembly (102) fully enclose storage battery (110) and discharge battery (112) in the present example. Thus, once surgical instrument (100) is shipped in a package, it will be further understood that surgical instrument (100) is ready for use since storage battery (110) and discharge battery (112) are already contained within surgical instrument (100). Storage battery (110) may already be fully charged, and in some instances discharge battery (112) may also be fully charged before instrument (100) is removed from the package. Once removed from a package or other suitable container, surgical instrument (100) may be used within approximately five minutes or any other suitable time period. In addition or in the alternative, surgical instrument (100) may be removed from a package and stored for a period of time prior to use. Prior to use of surgical instrument (100), it will be appreciated that since discharge battery (112) and storage battery (110) are contained within surgical instrument (100), surgical instrument (100) may be sterilized using an ethylene oxide sterilization method and/or any other suitable sterilization method as would be apparent to one of ordinary skill in the art in view of the teachings herein.

FIG. 3 shows an exemplary surgical instrument (200) having grip portion (202) integrated with body assembly (220). Grip portion (202) includes a pivoting trigger (204). A hub (208) is connected to a distal portion of body assembly (220). A shaft (206) extends distally from hub (208). An end effector (not shown) is positioned at the distal end of shaft (206). Surgical instrument (200) of this example is substantially similar to surgical instrument (100) of FIG. 1, with the exception that grip portion (202) comprises a battery door (230) pivotally coupled with surgical instrument (200) by a hinge (232). While the present example shows hinge (232) connecting battery door (230) to grip portion (202), it will be appreciated that any suitable connection feature may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein. For example, a screw-on or snap-fit cap may be used instead of battery door (230). When battery door (230) is closed, battery door (230) is operable to form a hermetic seal or any other suitable level of sealing with grip portion (202). Thus, it will be understood that storage battery (210) used with surgical instrument (200) for charging discharge battery (212) may be replaced when storage battery (210) has been depleted. In some other versions, it will be appreciated that storage battery (210) may be shipped disconnected from surgical instrument (200) where the user may then insert storage battery (210) into grip portion (202) when surgical instrument (200) is ready for use.

Surgical instrument (200) also comprises control module (226). In the present example, control module (226) is operable to coordinate delivery of power and charging as depicted by chart (350) of FIG. 4. In some exemplary versions, control module (226) may be integrally formed with surgical instrument (200) or in the alternative, control module (226) may be detachable. Storage battery (210) may be operable to deliver power to power surgical instrument (200) directly rather than through discharge battery (212). In such a configuration, discharge battery (212) may comprise a super capacitor operable to supplement the power delivery of storage battery (210). It will be understood that the power drawn from surgical instrument (200) may not necessarily be constant. As a result, storage battery (210) is operable to satisfy most of the power needs of surgical instrument (200). In the event that the power requirements of surgical instrument (200) fall below a level of what storage battery (210) is able to provide, control module (226) directs the excess charge to charge the super capacitor. In the event that the power needs of surgical instrument (200) exceed a level of power that storage battery (210) can deliver, then the super capacitor may be directed by control module (226) to supplement the additional needed power. In the event that storage battery (210) provides the appropriate amount of power for surgical instrument (200), then it will be appreciated that the super capacitor will neither be charging nor discharging. An example of the relative power amounts of storage battery (210), power required by surgical instrument (200), and power in a super capacitor are shown in FIG. 4 using a storage battery line (300), a power requirement line (302), and a capacitor line (304), respectively, where the horizontal axis represents time, which may be indicated using any suitable unit of time and the vertical axis represents charge state, which may be indicated using any suitable unit of charge.

In FIG. 4, which demonstrates a merely exemplary charge state sequence, stage 1 (310) shows a state where surgical instrument (200) does not require any power. As a result, storage battery (210) may continuously charge discharge battery (212). At stage 2 (312), surgical instrument (200) requires some amount of power (e.g., when surgical instrument (200) is powered on, etc.). Storage battery (210) switches to supply power to surgical instrument (200) and discharge battery (212) remains charged. Since at stage 2 (312), storage battery (210) is being used to provide power to surgical instrument (200), charging of discharge battery (212) has halted. It should be understood, however, that storage battery (210) may simultaneously provide power to surgical instrument (200) and charge discharge battery (212) in some instances. At stage 3 (314), the power requirement of surgical instrument (200) spikes (e.g., in response to actuation of trigger (204), etc.) and both discharge battery (212) and storage battery (210) must be used to supply sufficient power to surgical instrument (200). Thereafter at stage 4 (316), the power required by surgical instrument (200) drops significantly and therefore, discharge battery (212) may be recharged again using storage battery (210). Finally, at stage 5 (318), the power needs of surgical instrument (200) rise again and storage battery (210) is used to provide power to surgical instrument (200) and discharge battery (212) is no longer charged by storage battery (210). While FIG. 4 shows merely one exemplary charging sequence relationship between discharge battery (212), storage battery (210) and surgical instrument (200), it will be appreciated that other sequences may be used as would be apparent to one of ordinary skill in the art in view of the teachings herein. It will be appreciated that the above-described sequence for charging discharge battery (212) and/or storage battery (210) may be controlled wholly or in part by control module (126, 226) described above. In some alternative versions, it will be appreciated that a separate module (not shown) may be used to control the charging of discharge battery (212) and storage battery (210).

It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery. For instance, those of ordinary skill in the art will recognize that various teaching herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.

Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.

Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.

Yates, David C., Houser, Kevin L., Madan, Ashvani K., Korvick, Donna L., Zingman, Aron O., Willis, John W.

Patent Priority Assignee Title
Patent Priority Assignee Title
1754806,
3297192,
3419198,
3619671,
4034762, Aug 04 1975 Electro Medical Systems, Inc. Vas cautery apparatus
4057220, Jun 10 1976 Ratchet type operator for cable winches and the like
4535773, Mar 26 1982 Safety puncturing instrument and method
4641076, Jan 23 1985 Linvatec Corporation Method and apparatus for sterilizing and charging batteries
4641077, Jan 23 1985 Hall Surgical-Divison of Zimmer, Inc. Method and apparatus for providing sterile charged batteries
4662068, Nov 14 1985 Suture fusing and cutting apparatus
4666037, Feb 24 1986 COLTENE WHALEDENT INC Dental model carrier
4685459, Mar 27 1985 Leibinger GmbH Device for bipolar high-frequency coagulation of biological tissue
4717018, Jun 28 1984 Boehringer Mannheim GmbH Container for longitudinally extending diagnostic test strips
4717050, May 19 1986 Sunbeam Plastics Corporation Multiple orifice dispensing closure
4721097, Oct 31 1986 CIRCON CORPORATION A CORP OF DE Endoscope sheaths and method and apparatus for installation and removal
4768969, Mar 10 1986 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrical connector
4800878, Aug 26 1987 Becton, Dickinson and Company Electrosurgical knife with visual alarm
4844259, Dec 22 1987 OSTEOTECH INVESTMENT CORPORATION Medical and surgical procedure pack
4878493, Oct 28 1983 Ninetronix Venture I Hand-held diathermy apparatus
5071417, Jun 15 1990 CARDIOFOCUS, INC Laser fusion of biological materials
5107155, Nov 16 1990 Tokyo Parts Industrial Co., Ltd. Vibrator motor for wireless silent alerting device
5144771, Feb 06 1990 Brother Kogyo Kabushiki Kaisha Liquid supply system of an ultrasonic machine
5169733, Jul 08 1991 Motorola, Inc. Shock absorbing battery cell interconnect
5176677, Nov 17 1989 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
5246109, May 22 1992 MEDTRONIC MINIMED, INC Package for an active medical device
5273177, Jul 20 1992 Press-to-open dispensing closure
5277694, Feb 13 1991 Implex Aktiengesellschaft Hearing Technology Electromechanical transducer for implantable hearing aids
5308358, Aug 25 1992 Rigid-shaft surgical instruments that can be disassembled for improved cleaning
5322055, Jan 27 1993 Ethicon Endo-Surgery, Inc Clamp coagulator/cutting system for ultrasonic surgical instruments
5339799, Apr 23 1991 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
5358508, Sep 15 1993 Microline Surgical, Inc Laparoscopic device
5361902, Jun 05 1992 Leonard, Bloom Surgical blade dispenser and disposal system for use during an operating procedure and method thereof
5429229, Aug 02 1991 Minnesota Mining and Manufacturing Company Packaged dental article
5449370, May 12 1993 ETHICON ENDOSURGERY, INC Blunt tipped ultrasonic trocar
5454378, Feb 11 1993 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
5501607, May 13 1993 Yazaki Corporation Waterproof structure for charging connector
5507297, Apr 04 1991 Symbiosis Corporation Endoscopic instruments having detachable proximal handle and distal portions
5561881, Mar 22 1994 U.S. Philips Corporation Electric toothbrush
5578052, Oct 27 1992 Insulated laparoscopic grasper with removable shaft
5580258, Jun 14 1993 Sumitomo Wiring Systems, Ltd. Vehicle charging connector and a receptacle enclosing the connector
5582617, Aug 24 1994 Charles H., Klieman Surgical instrument for endoscopic and general surgery
5590778, Jun 06 1995 Edwards Lifesciences Corporation Double-sterile package for medical apparatus and method of making
5592065, Nov 06 1995 Motorola, Inc. Battery charger having battery temperature measurement probe
5597371, Jul 22 1994 Nissan Motor Co., Ltd. Engine torque controller
5599350, Apr 03 1995 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
5630420, Sep 29 1995 Ethicon Endo-Surgery, Inc. Ultrasonic instrument for surgical applications
5630456, May 08 1996 CONNOLLY INTERNATIONAL, LTD Window blind cord winding apparatus
5690222, Apr 07 1995 Linvatec Corporation Package retainer for surgical screw
5707369, Apr 24 1995 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
5741305, May 06 1996 PHYSIO-CONTROL, INC Keyed self-latching battery pack for a portable defibrillator
5776155, Dec 23 1996 Ethicon Endo-Surgery, Inc Methods and devices for attaching and detaching transmission components
5800336, Jul 01 1993 Vibrant Med-El Hearing Technology GmbH Advanced designs of floating mass transducers
5817128, Mar 10 1993 KARL STORZ GMBH & CO KG Medical tongs
5868244, Dec 01 1997 Ethicon, Inc Microbial barrier vented package for sterile medical devices and method of packaging
5873873, Oct 10 1997 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp mechanism
5882310, Dec 01 1997 Siemens Medical Solutions USA, Inc Ultrasound transducer connector and multiport imaging system receptacle arrangement
5935144, Apr 09 1998 Ethicon Endo-Surgery, Inc. Double sealed acoustic isolation members for ultrasonic
5938633, Jul 09 1997 Ethicon Endo-Surgery, Inc. Ultrasonic surgical devices
5944737, Oct 10 1997 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved waveguide support member
5951575, Mar 01 1996 Heartport, Inc. Apparatus and methods for rotationally deploying needles
5980510, Oct 10 1997 Ethicon Endo-Surgery, Inc Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
5997531, Jan 29 1998 CARDIODYNE, INC User actuated laser energy device and procedure for forming a channel within tissue
6018227, Jun 22 1998 Stryker Corporation Battery charger especially useful with sterilizable, rechargeable battery packs
6051010, Dec 23 1996 Ethicon Endo-Surgery, Inc Methods and devices for joining transmission components
6056735, Apr 04 1996 Olympus Optical Co., Ltd. Ultrasound treatment system
6063098, Dec 23 1996 Ethicon Endo-Surgery, Inc Articulable ultrasonic surgical apparatus
6066151, Dec 24 1997 Olympus Corporation Ultrasonic surgical apparatus
6083191, Feb 07 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical apparatus
6083223, Aug 28 1997 BAKER, JAMES A Methods and apparatus for welding blood vessels
6099537, Feb 26 1996 Olympus Optical Co., Ltd. Medical treatment instrument
6113593, Feb 01 1999 IRVINE BIOMEDICAL, INC Ablation apparatus having temperature and force sensing capabilities
6123702, Sep 10 1998 Boston Scientific Scimed, Inc Systems and methods for controlling power in an electrosurgical probe
6165191, May 28 1998 Olympus Corporation Ultrasonic treating tool
6190386, Mar 09 1999 GYRUS MEDICAL, INC Electrosurgical forceps with needle electrodes
6204592, Oct 12 1999 Ultrasonic nailing and drilling apparatus
6214023, Jun 21 1999 ETHICON, ENDO-SURGERY, INC Ultrasonic surgical instrument with removable clamp arm
6246896, Nov 24 1998 General Electric Company MRI guided ablation system
6248238, Apr 19 1996 GAMBRO INDUSTRIES Medical apparatus for the extracorporeal treatment of blood or plasma, and processes for using this apparatus
6287304, Oct 15 1999 Intact Medical Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
6325811, Oct 05 1999 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
6339368, Mar 31 2000 IXYS Intl Limited Circuit for automatically driving mechanical device at its resonance frequency
6398755, Oct 06 1998 Boston Scientific Scimed, Inc Driveable catheter system
6409742, Aug 19 1998 Artemis Medical, Inc. Target tissue localization device and method
6500176, Oct 23 2000 Ethicon Endo-Surgery, Inc Electrosurgical systems and techniques for sealing tissue
6500188, Jan 29 2001 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with finger actuator
6512667, Feb 15 2001 Luxon Energy Devices Corporation Supercapacitors and method for fabricating the same
6514267, Mar 26 2001 KOS LIFE SCIENCES, INC Ultrasonic scalpel
6520185, Mar 17 1999 NTERO SURGICAL, INC Systems and methods for reducing post-surgical complications
6561983, Jan 31 2001 Ethicon Endo-Surgery, Inc. Attachments of components of ultrasonic blades or waveguides
6562032, Mar 26 2001 Cynosure, LLC Electrosurgical instrument with vibration
6609414, Jul 19 2001 Mocon, Inc. Apparatus for conducting leakage tests on sealed packages
6622731, Jan 11 2001 AngioDynamics, Inc Bone-treatment instrument and method
6623500, Oct 20 2000 Ethicon Endo-Surgery, Inc Ring contact for rotatable connection of switch assembly for use in a surgical system
6626901, Mar 05 1997 COLUMBIA, TRUSTEES OF THE UNIVERSITY IN THE CITY OF NEW YORK, THE; TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Electrothermal instrument for sealing and joining or cutting tissue
6647281, Apr 06 2001 Boston Scientific Scimed, Inc Expandable diagnostic or therapeutic apparatus and system for introducing the same into the body
6650091, May 14 2002 Luxon Energy Devices Corporation High current pulse generator
6650975, Mar 19 1999 MC ROBOTICS Multifunctional mobile appliance
6656177, Oct 23 2000 Ethicon Endo-Surgery, Inc Electrosurgical systems and techniques for sealing tissue
6658301, Sep 13 2000 THE ALFRED E MANN INSTITUTE FOR BIOMEDICAL ENGINEERING AT THE UNIVERSITY OF SOUTHERN CALIFORNIA Method and apparatus for conditioning muscles during sleep
6666875, Mar 05 1999 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
6706038, Apr 27 2000 Medtronic, Inc. System and method for assessing transmurality of ablation lesions
6717193, Oct 09 2001 NXP B V Metal-insulator-metal (MIM) capacitor structure and methods of fabricating same
6730042, Jun 22 1998 DEVICOR MEDICAL PRODUCTS, INC Biopsy localization method and device
6753673, May 14 2002 Luxon Energy Devices Corporation Power module for providing impulses of various levels by charging or discharging capacitors therewith
6758855, Aug 19 1998 Artemis Medical, Inc. Target tissue localization device
6761698, Jul 28 2000 Olympus Corporation Ultrasonic operation system
6761701, Dec 14 1990 Power-assisted liposuction instrument with cauterizing cannula assembly
6783524, Apr 19 2001 KRANOS IP II CORPORATION Robotic surgical tool with ultrasound cauterizing and cutting instrument
6815206, Sep 19 1997 Ethicon, Inc Container monitoring system
6821671, Mar 01 2002 LG ENERGY SOLUTION, LTD Method and apparatus for cooling and positioning prismatic battery cells
6836097, May 15 2001 CAP-XX Limited Power supply for a pulsed load
6838862, Apr 04 2003 BROADCAST LENDCO, LLC, AS SUCCESSOR AGENT Pulse width modulator having reduced signal distortion at low duty cycles
6847192, May 15 2000 CAP-XX Limited Power supply for an electrical load
6860880, Mar 05 1997 The Trustees of Columbia University in the City of New York Electrothermal instrument for sealing and joining or cutting tissue
6869435, Jan 17 2002 Repeating multi-clip applier
6923807, Jun 27 2002 Ethicon, Inc Helical device and method for aiding the ablation and assessment of tissue
6982696, Jul 01 1999 Immersion Corporation Moving magnet actuator for providing haptic feedback
6998822, May 15 2001 CAP-XX Limited Power supply for a pulsed load
7031155, Jan 06 2003 Intel Corporation Electronic thermal management
7061749, Jul 01 2002 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
7077853, Oct 20 2000 Ethicon Endo-Surgery, Inc. Method for calculating transducer capacitance to determine transducer temperature
7083589, Dec 11 2001 SURGICAL DESIGN CORPORATION Ultrasonic instrument with coupler for work tip
7085123, Dec 21 2004 Gainia Intellectual Asset Services, Inc Power supply apparatus and power supply method
7101371, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
7112201, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7125409, Aug 19 2003 Ethicon Endo-Surgery, Inc Electrosurgical working end for controlled energy delivery
7150712, Nov 07 2000 Artemis Medical, Inc Target tissue localization assembly and method
7160132, Mar 31 2004 Black & Decker Inc Battery pack—cordless power device interface system
7169146, Feb 14 2003 Ethicon Endo-Surgery, Inc Electrosurgical probe and method of use
7186253, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical jaw structure for controlled energy delivery
7186473, Aug 21 2002 SHIUE, LIH-REN; Gainia Intellectual Asset Services, Inc Battery with built-in load leveling
7189233, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument
7220951, Apr 19 2004 Ethicon Endo-Surgery, Inc Surgical sealing surfaces and methods of use
7221216, May 18 2004 Optoma Corporation Self-oscillating switching amplifier
7232440, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7244024, Feb 18 2004 Eye target apparatus
7292227, Aug 08 2000 NTT DoCoMo, Inc Electronic device, vibration generator, vibration-type reporting method, and report control method
7296804, Jun 24 2000 VIANT AS&O HOLDINGS, LLC Hand-held instrument holder for surgical use
7303556, Oct 04 2000 Synthes USA, LLC Device for supplying an electro-pen with electrical energy
7309849, Nov 19 2003 Ethicon Endo-Surgery, Inc Polymer compositions exhibiting a PTC property and methods of fabrication
7311709, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7349741, Oct 11 2002 Advanced Bionics AG Cochlear implant sound processor with permanently integrated replenishable power source
7353068, Aug 19 2003 Olympus Corporation Control device for a medical system and control method for medical system
7354440, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7364061, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
7364554, May 23 2001 SANUWAVE, INC Apparatus for administering acoustic shock waves having a removable and replaceable component with a data storage medium
7375644, Sep 01 2004 Olympus Corporation Foot switch and output system having foot switch
7381209, Oct 22 2001 Ethicon Endo-Surgery, Inc Electrosurgical instrument
7416101, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with loading force feedback
7422139, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting fastening instrument with tactile position feedback
7464846, Jan 31 2006 Ethicon Endo-Surgery, Inc Surgical instrument having a removable battery
7470237, Jan 10 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy instrument with improved needle penetration
7473145, Jun 01 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Return pad cable connector
7479152, Aug 19 1998 Artemis Medical, Inc. Target tissue localization device
7494492, Dec 10 2004 Koninklijke Philips Electronics N V Skin treatment device
7560903, Apr 28 2005 TESLA, INC Apparatus and method for discharging electrical energy storage cells
7563142, Apr 30 2008 Medtronic, Inc. Medical device packaging systems including electrical interfaces
7570994, Apr 25 2003 PHYSIO-CONTROL, INC Apparatus and method for maintaining a defibrillator battery charge and optionally communicating
7573151, Oct 11 2007 Lear Corporation Dual energy-storage for a vehicle system
7583564, Jun 24 2005 Seiko Epson Corporation Piezoelectric actuator and electronic equipment with piezoelectric actuator
7638958, Jun 28 2005 Stryker Corporation Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
7643378, Jul 25 2006 Package showing elapsed time since opening
7658247, Sep 20 2006 GATEKEEPER SYSTEMS, INC Systems and methods for power storage and management from intermittent power sources
7692411, Jan 05 2006 TPL, INC System for energy harvesting and/or generation, storage, and delivery
7699850, May 31 2002 TELEFLEX LIFE SCIENCES II LLC Apparatus and method to access bone marrow
7699856, Jun 27 2002 Apyx Medical Corporation Method, apparatus, and kit for thermal suture cutting
7717312, Jun 03 2005 Covidien LP Surgical instruments employing sensors
7721936, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
7738971, Jan 10 2007 Cilag GmbH International Post-sterilization programming of surgical instruments
7761198, Jun 25 2007 GE GLOBAL SOURCING LLC Methods and systems for power system management
7766910, Jan 24 2006 Covidien LP Vessel sealer and divider for large tissue structures
7766929, Sep 28 2007 Olympus Corporation Surgical operating apparatus
7770722, Feb 06 2006 Zimmer Dental, Inc. Dental implant package including a plug
7770775, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with adaptive user feedback
7776037, Jul 07 2006 TYCO HEALTHCARE GROUP AG; Covidien AG System and method for controlling electrode gap during tissue sealing
7780660, Jan 15 2003 Boston Scientific Scimed, Inc. Articulating radio frequency probe handle
7802121, Mar 27 2006 NetApp, Inc Auxiliary power system
7815658, Mar 30 2004 Olympus Corporation Ultrasonic treatment apparatus, method of assembling and disassembling ultrasonic treatment apparatus, and ultrasonic treatment system
7845537, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
7846155, Oct 08 2004 Cilag GmbH International Handle assembly having hand activation for use with an ultrasonic surgical instrument
7846159, Nov 07 2000 Artemis Medical, Inc. Tissue separating and localizing catheter assembly
7889489, Nov 19 2001 Otter Products, LLC Detachable pod assembly for protective case
7918848, Mar 25 2005 MAQUET CARDIOVASCULAR LLC Tissue welding and cutting apparatus and method
7922063, Oct 31 2007 Covidien LP Powered surgical instrument
7923151, Sep 18 2003 Commonwealth Scientific and Industrial Research Organisation High performance energy storage devices
7948208, Jun 01 2006 MOJO MOBILITY, INC ; MOJO MOBILITY INC Power source, charging system, and inductive receiver for mobile devices
7952322, Jan 31 2006 MOJO MOBILITY, INC ; MOJO MOBILITY INC Inductive power source and charging system
7952873, Jun 26 2006 Raytheon Company Passive conductive cooling module
7959050, Jul 25 2005 Cilag GmbH International Electrically self-powered surgical instrument with manual release
7977921, Aug 15 2008 National Semiconductor Corporation AC-to-DC voltage conversion and charging circuitry
7982439, Jan 05 2006 TPL, INC System for energy harvesting and/or generation, storage, and delivery
8038025, Aug 07 2008 Becton, Dickinson and Company Medical waste container hinged lid
8040107, Jul 31 2007 Yamaha Corporation Battery charger, secondary battery unit and electric apparatus equipped therewith
8052605, May 07 2008 INFRAREDX, INC Multimodal catheter system and method for intravascular analysis
8058771, Aug 06 2008 Cilag GmbH International Ultrasonic device for cutting and coagulating with stepped output
8075530, Mar 20 2008 Applied Medical Resources Corporation Instrument seal with inverting shroud
8097011, Feb 26 2008 Olympus Corporation Surgical treatment apparatus
8142461, Mar 22 2007 Cilag GmbH International Surgical instruments
8147488, Dec 28 2007 Olympus Corporation Surgical operating apparatus
8177776, Apr 20 2007 DOHENY EYE INSTITUTE Independent surgical center
8179103, Apr 04 2007 EATON INTELLIGENT POWER LIMITED System and method for boosting battery output
8195271, Nov 06 2007 SIEMENS HEALTHINEERS AG Method and system for performing ablation to treat ventricular tachycardia
8210411, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
8216212, Jan 15 2009 Immersion Corporation Providing haptic feedback to the handle of a tool
8221418, Feb 07 2008 Covidien LP Endoscopic instrument for tissue identification
8240498, Oct 31 2006 CROWN PACKAGING TECHNOLOGY, INC Resealable closure
8246642, Dec 01 2005 Cilag GmbH International Ultrasonic medical instrument and medical instrument connection assembly
8251994, Apr 07 2009 Covidien LP Vessel sealer and divider with blade deployment alarm
8267094, Apr 07 1997 Boston Scientific Scimed, Inc Modification of airways by application of ultrasound energy
8277446, Apr 24 2009 Covidien LP Electrosurgical tissue sealer and cutter
8292882, Apr 21 2005 Boston Scientific Scimed, Inc Control methods and devices for energy delivery
8292888, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8298253, May 27 2010 Alcon Inc Variable drive vitrectomy cutter
8301262, Feb 06 2008 Cardiac Pacemakers, Inc. Direct inductive/acoustic converter for implantable medical device
8323271, Apr 20 2007 DOHENY EYE INSTITUTE Sterile surgical tray
8328732, Dec 18 2008 DEVICOR MEDICAL PRODUCTS, INC Control module interface for MRI biopsy device
8328802, Mar 19 2008 Covidien AG Cordless medical cauterization and cutting device
8333764, May 12 2004 Medtronic, Inc.; Medtronic, Inc Device and method for determining tissue thickness and creating cardiac ablation lesions
8336725, Sep 23 2005 CROWN PACKAGING TECHNOLOGY INC Sealing device for a container
8337097, Mar 23 2006 CAO Group, Inc Modular surgical laser systems
8344690, Sep 10 2009 Syntheon, LLC Method for battery surgical sterilization while charging
8372099, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8377059, Mar 19 2008 Covidien AG Cordless medical cauterization and cutting device
8400108, Jan 27 2006 Stryker Corporation Method of charging and using an aseptic battery assembly with a removable battery pack
8403948, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8403949, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8403950, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8419757, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8425545, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device and method
8444653, Aug 30 2010 Biomet Manufacturing, LLC Intramedullary rod implantation system
8444662, Dec 03 2007 Covidien AG Cordless hand-held ultrasonic cautery cutting device
8449529, Jan 30 2000 Mederi RF, LLC; HORIZON CREDIT II LLC Systems and methods for monitoring and controlling use of medical devices
8459520, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8461744, Jul 15 2009 Cilag GmbH International Rotating transducer mount for ultrasonic surgical instruments
8487487, Jul 15 2008 Cilag GmbH International Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
8522795, May 04 2011 ELC Management LLC Universal docking station compact
8550106, Dec 12 2008 Robert Bosch GmbH Pressure-relief valve of a housing for an electrical/electronic unit
8550981, Dec 17 2009 Ethicon Endo-Surgery, Inc Implantable port with vibratory feedback
8551088, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8564242, Oct 21 2005 Stryker Corporation Battery charger capable of performing a full or partial state of health evaluation of the battery based on the history of the battery
8573461, Feb 14 2008 Cilag GmbH International Surgical stapling instruments with cam-driven staple deployment arrangements
8598852, Nov 12 2008 American Axle & Manufacturing, Inc. Cost effective configuration for supercapacitors for HEV
8602287, Sep 23 2008 Cilag GmbH International Motor driven surgical cutting instrument
8608045, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
8617077, Mar 19 2010 Enraf-Nonius B.V.; ENRAF-NONIUS B V Ultrasound application device
8622274, Feb 14 2008 Cilag GmbH International Motorized cutting and fastening instrument having control circuit for optimizing battery usage
8623027, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
8632535, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
8636736, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
8641629, Oct 19 2007 KONICA MINOLTA, INC Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system
8657174, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having handle based power source
8663112, Oct 06 2004 GUIDED THERAPY SYSTEMS, L L C Methods and systems for fat reduction and/or cellulite treatment
8733614, Oct 06 2006 Covidien LP End effector identification by mechanical features
8758342, Nov 28 2007 Covidien AG Cordless power-assisted medical cauterization and cutting device
8784415, May 05 2008 Stryker Corporation Powered surgical tool with an isolation circuit connected between the tool power terminals and the memory internal to the tool
8808319, Jul 27 2007 Cilag GmbH International Surgical instruments
8834465, Jul 15 2008 Immersion Corporation Modular tool with signal feedback
8864761, Mar 10 2010 Covidien LP System and method for determining proximity relative to a critical structure
8906017, Nov 13 2007 Boston Scientific Scimed, Inc Apparatus system and method for coagulating and cutting tissue
8939974, Oct 09 2009 Cilag GmbH International Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
8961441, May 07 2008 SANUWAVE, INC Medical treatment system including an ancillary medical treatment apparatus with an associated data storage medium
8968648, May 16 2008 Terumo Kabushiki Kaisha Method for radiation sterilization of hydrophilic polymer-coated medical device
8986302, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
8998939, Nov 05 2010 Cilag GmbH International Surgical instrument with modular end effector
9000720, Nov 05 2010 Cilag GmbH International Medical device packaging with charging interface
9011336, Sep 16 2004 Guided Therapy Systems, LLC; GUIDED THERAPY SYSTEMS, INC Method and system for combined energy therapy profile
9011427, Nov 05 2010 Cilag GmbH International Surgical instrument safety glasses
9011471, Nov 05 2010 Cilag GmbH International Surgical instrument with pivoting coupling to modular shaft and end effector
9017849, Nov 05 2010 Cilag GmbH International Power source management for medical device
9017851, Nov 05 2010 Cilag GmbH International Sterile housing for non-sterile medical device component
9023071, Sep 12 2008 Cilag GmbH International Ultrasonic device for fingertip control
9039720, Nov 05 2010 Cilag GmbH International Surgical instrument with ratcheting rotatable shaft
9044261, Jul 31 2007 Cilag GmbH International Temperature controlled ultrasonic surgical instruments
9050098, Nov 28 2007 Covidien AG Cordless medical cauterization and cutting device
9050125, Oct 10 2011 Cilag GmbH International Ultrasonic surgical instrument with modular end effector
9060750, Nov 09 2009 IONMED LTD Plasma head for tissue welding
9072523, Nov 05 2010 Cilag GmbH International Medical device with feature for sterile acceptance of non-sterile reusable component
9072543, May 31 2002 TELEFLEX LIFE SCIENCES II LLC Vascular access kits and methods
9078671, Apr 17 2008 Warsaw Orthopedic, Inc. Surgical tool
9089338, Nov 05 2010 Cilag GmbH International Medical device packaging with window for insertion of reusable component
9095346, Nov 05 2010 Cilag GmbH International Medical device usage data processing
9113903, Jan 24 2006 Covidien LP Endoscopic vessel sealer and divider for large tissue structures
9161803, Nov 05 2010 Cilag GmbH International Motor driven electrosurgical device with mechanical and electrical feedback
9179912, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
9186046, Aug 14 2007 AURIS HEALTH, INC Robotic instrument systems and methods utilizing optical fiber sensor
9186047, Aug 14 2007 Koninklijke Philips Electronics N.V. Instrument systems and methods utilizing optical fiber sensor
9192428, Nov 05 2010 Cilag GmbH International Surgical instrument with modular clamp pad
9247986, Nov 05 2010 Cilag GmbH International Surgical instrument with ultrasonic transducer having integral switches
9308009, Nov 05 2010 Cilag GmbH International Surgical instrument with modular shaft and transducer
9318271, Jun 21 2012 Schlumberger Technology Corporation High temperature supercapacitor
9364279, Nov 05 2010 Cilag GmbH International User feedback through handpiece of surgical instrument
9364288, Jul 06 2011 Cilag GmbH International Sterile battery containment
9375255, Nov 05 2010 Cilag GmbH International Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
9381058, Nov 05 2010 Cilag GmbH International Recharge system for medical devices
9408575, Apr 29 2009 BSG CORP EEG kit
9421062, Nov 05 2010 Cilag GmbH International Surgical instrument shaft with resiliently biased coupling to handpiece
9441954, Aug 14 2007 Koninklijke Philips Electronics N.V. System and method for calibration of optical fiber instrument
9500472, Aug 14 2007 Koninklijke Philips Electronics N.V. System and method for sensing shape of elongated instrument
9500473, Aug 14 2007 Koninklijke Philips Electronics N.V. Optical fiber instrument system and method with motion-based adjustment
9510895, Nov 05 2010 Cilag GmbH International Surgical instrument with modular shaft and end effector
9529921, Sep 09 2010 Ebay Inc. Content recommendation system
9597143, Nov 05 2010 Cilag GmbH International Sterile medical instrument charging device
9622832, Sep 19 2008 Brainlab AG Surgical instrument, in particular pointer instrument, comprising tip sensor
9629652, Oct 10 2011 Cilag GmbH International Surgical instrument with clutching slip ring assembly to power ultrasonic transducer
9649150, Nov 05 2010 Cilag GmbH International Selective activation of electronic components in medical device
9782214, Nov 05 2010 Cilag GmbH International Surgical instrument with sensor and powered control
20010032666,
20020165577,
20030093103,
20030109802,
20030114851,
20030144680,
20030214270,
20040097911,
20040116952,
20040133189,
20040173487,
20050021065,
20050033195,
20050171522,
20050203546,
20060030797,
20060079829,
20060079874,
20060079877,
20060079879,
20060253176,
20070027447,
20070103437,
20070191713,
20070207354,
20070261978,
20070265613,
20070265620,
20070282333,
20080003491,
20080004656,
20080057470,
20080147058,
20080150754,
20080164842,
20080173651,
20080188810,
20080200940,
20080228104,
20080255413,
20080281301,
20080315829,
20090030437,
20090043797,
20090076506,
20090096430,
20090143799,
20090143800,
20090209990,
20090253030,
20090281430,
20100021022,
20100030218,
20100060231,
20100106144,
20100106146,
20100125172,
20100152610,
20100201311,
20100249665,
20100268221,
20100274160,
20110009694,
20110074336,
20110077514,
20110080134,
20110221398,
20120111591,
20120116260,
20120116261,
20120116262,
20120116263,
20120116265,
20120116266,
20120116381,
20120179036,
20120292367,
20120305427,
20130085330,
20130090528,
20130118733,
20140088379,
20150305763,
20160121143,
20160206900,
20160329614,
20160338760,
20170042569,
D594983, Oct 05 2007 Cilag GmbH International Handle assembly for surgical instrument
DE102008051866,
DE102009013034,
EP897696,
EP947167,
EP1330991,
EP1525853,
EP1535585,
EP1684396,
EP1721576,
EP1743592,
EP1818021,
EP1839599,
EP1868275,
EP1886637,
EP1943976,
EP1970014,
EP1997439,
EP2027819,
EP2090256,
EP2105104,
EP2165660,
EP2218409,
EP2243439,
EP2345454,
GB2425874,
GB2440566,
JP10308907,
JP1268370,
JP2002336265,
JP2005033868,
JP2010518978,
JP5410110,
WO1997024072,
WO2000065682,
WO2003013374,
WO2003020139,
WO2004113991,
WO2005079915,
WO2006023266,
WO2007004515,
WO2007024983,
WO2007050439,
WO2007090025,
WO2007137115,
WO2007137304,
WO2008071898,
WO2008102154,
WO2008107902,
WO2008131357,
WO2009018409,
WO2009046394,
WO2009070780,
WO2009073608,
WO2010030850,
WO2010096174,
WO2011059785,
WO2011089270,
WO2017137304,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 30 2016Ethicon Endo-Surgery, LLCEthicon LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0456030586 pdf
Mar 16 2017Ethicon LLC(assignment on the face of the patent)
Mar 22 2017KORVICK, DONNA L Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
Apr 03 2017ZINGMAN, ARON O Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
Apr 27 2017HOUSER, KEVIN L Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
May 01 2017WILLIS, JOHN W Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
May 02 2017MADAN, ASHVANI K Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
May 04 2017YATES, DAVID C Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0426340573 pdf
Apr 05 2021Ethicon LLCCilag GmbH InternationalASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0566010339 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Apr 13 20244 years fee payment window open
Oct 13 20246 months grace period start (w surcharge)
Apr 13 2025patent expiry (for year 4)
Apr 13 20272 years to revive unintentionally abandoned end. (for year 4)
Apr 13 20288 years fee payment window open
Oct 13 20286 months grace period start (w surcharge)
Apr 13 2029patent expiry (for year 8)
Apr 13 20312 years to revive unintentionally abandoned end. (for year 8)
Apr 13 203212 years fee payment window open
Oct 13 20326 months grace period start (w surcharge)
Apr 13 2033patent expiry (for year 12)
Apr 13 20352 years to revive unintentionally abandoned end. (for year 12)