A holding device for an aircraft actuator, comprising a body that extends between a lug configured to hingedly connect the holding device to a actuator support body and an attachment flange configured to fixedly attach the holding device to a landing provided by a main body of an actuator. The holding device is configured to prevent movement of the actuator from a normal working position relative to the actuator support body in the event of structural failure of a connection body of the actuator.
|
6. An aircraft actuator comprising:
a main body, and
a connection body,
wherein the main body is provided with a landing configured to receive an attachment flange of a holding device and the connection body is provided with a lug configured to hingedly connect the actuator to an actuator support body;
wherein the holding device is configured to prevent movement of the actuator from a normal working position relative to the actuator support body in an event of structural failure of the connection body; and
wherein the attachment flange and corresponding landing form a lap joint when fixedly attached to one another by a shear type fastener.
9. A holding device for an aircraft actuator, comprising:
a body that extends between a lug, configured to hingedly connect the holding device to an actuator support body, and an attachment flange configured to fixedly attach the holding device to a landing provided by a main body of an actuator;
wherein the holding device is configured to prevent movement of the actuator from a normal working position relative to the actuator support body in an event of structural failure of a connection body of the actuator; and
wherein the attachment flange and corresponding landing form a lap joint when fixedly attached to one another by a shear type fastener.
1. An aircraft actuator assembly, comprising:
an actuator comprising a main body and a connection body;
a holding device comprising a body that extends between an attachment flange and a lug, wherein the attachment flange is configured to be fixedly attached to a corresponding landing provided by the main body of the actuator and the lug is configured to be hingedly connected to an actuator support body;
the connection body being provided with a further lug configured to hingedly connect the actuator to the actuator support body;
wherein the holding device is configured to prevent movement of the actuator from a normal working position relative to the actuator support body in an event of structural failure of the connection body; and
wherein the attachment flange and corresponding landing form a lap joint when fixedly attached to one another by a shear type fastener.
2. The aircraft actuator assembly according to
4. The aircraft actuator assembly according to
7. The aircraft actuator according to
8. The aircraft actuator according to
10. The holding device according to
11. The holding device according to
12. The holding device according to
13. The holding device according to
14. The holding device according to
|
This application claims the benefit of the Great Britain patent application No. 1710722.8 filed on Jul. 4, 2017, the entire disclosures of which are incorporated herein by way of reference.
The present invention relates to a holding device for an aircraft actuator, an aircraft actuator and an aircraft actuator assembly.
In an aircraft, numerous moveable structures are used to achieve respective functions. In reference to
Here, it is to be noted that, the technical content provided in this section is intended to assist the understanding of the present invention by those skilled in the art, and do not necessarily constitute the prior art.
An embodiment of the present invention provides an aircraft actuator assembly, comprising a holding device comprising a body that extends between an attachment flange and a lug, wherein the attachment flange is configured to be fixedly attached to a corresponding landing provided by a main body of an actuator and the lug is configured to be hingedly connected to an actuator support body; an actuator comprising the main body and a connection body, wherein the main body is provided with the corresponding landing configured to receive the attachment flange of the holding device and the connection body is provided with a further lug configured to hingedly connect the actuator to the actuator support body; wherein the holding device prevents movement of the actuator from a normal working position relative to the actuator support body in the event of structural failure of the connection body.
A further embodiment of the present invention provides an aircraft actuator assembly wherein the actuator support body forms a clevis configured to receive the lug of the holding device and the further lug of the connection body.
Another embodiment of the present invention provides an aircraft actuator assembly comprising more than one holding device.
A further embodiment of the present invention provides an aircraft actuator assembly, comprising a pair of holding devices, each holding device positioned at opposing sides of the connection body.
Another embodiment of the present invention provides an aircraft actuator assembly, wherein the attachment flange and corresponding landing form a lap joint when fixedly attached to one another by a shear type fastener.
A further embodiment of the present invention provides an aircraft actuator comprising
a main body and a connection body, wherein the main body is provided with a landing configured to receive an attachment flange of a holding device and the connection body is provided with a lug configured to hingedly connect the actuator to an actuator support body.
Another embodiment of the present invention provides an aircraft actuator comprising more than one landing, each landing configured to receive a corresponding attachment flange of a holding device.
A further embodiment of the present invention provides an aircraft actuator, wherein the connection body further comprises a spigot configured to engage a corresponding receiving hole formed by a body of a holding device.
Another embodiment of the present invention provides a holding device for an aircraft actuator, comprising a body that extends between a lug configured to hingedly connect the holding device to a actuator support body and an attachment flange configured to fixedly attach the holding device to a landing provided by a main body of an actuator; wherein the holding device is configured to prevent movement of the actuator from a normal working position relative to the actuator support body in the event of structural failure of a connection body of the actuator.
A further embodiment of the present invention provides a holding device wherein the lug is configured to be received within a clevis formed by an actuator support body.
Another embodiment of the present invention provides a holding device comprising a unitary body formed from aviation grade titanium alloy.
A further embodiment of the present invention provides a holding device a wherein the attachment flange extends substantially perpendicular from the body of the holding device.
Another embodiment of the present invention provides a holding device, wherein the body further comprises a receiving portion configured to receive a corresponding spigot formed by a connection body of an actuator.
A further embodiment of the present invention provides a holding device wherein the lug is configured to have an inner diameter offset between 0.5 mm and 3 mm from an adjacent attachment element.
Another embodiment of the present invention provides a kit of parts comprising an actuator and a holding device.
Advantages of the present invention will now become apparent from the detailed description with appropriate reference to the accompanying drawings.
Embodiments of the invention will now be described, by way of example only, with reference to the following figures in which:
With reference to
The aircraft 201 has a set of orthogonal aircraft axes. The longitudinal axis (x) has its origin at the center of gravity of the aircraft 201 and extends lengthwise in a positive sense through the fuselage 205 from the nose to the tail in the normal direction of flight. The lateral axis or spanwise axis (y) also has its origin at the center of gravity and extends substantially crosswise in a positive sense from the right-hand tip to the left-hand tip of the wing 203. The vertical or normal axis (z) also has its origin at the center of gravity and passes vertically through the center of gravity of the aircraft 201 in a positive sense as indicated also. A set of aircraft reference planes are also formed by the orthogonal aircraft axes; x-y, x-z and y-z.
With reference to
With reference to
The main body 405 of the actuator 403 contains the hydraulic power and control elements of the actuator 403, which provide sufficient hydraulic force to extend and retract the push rod 409 into, and out of, the actuator main body 405. The connection body 407 (also known as a tailstock) is integrally formed with the main body 405, although alternatively, the connection body 407 may be a sub-component of the actuator 403 that is fixedly attachable to the main body 405.
The connection body 407 is substantially rectangular in cross-section and has opposing upper, lower, inner and outer sides (see
The innermost and outermost sides each lie substantially on a pair of planes offset parallel from the aircraft x-z plane. The upper and lower sides lie substantially orthogonal to the innermost and outermost sides. The connection body 407 forms a straight sided lug 419 at the actuators foremost end (in the x direction). The lug 419 is configured to hingedly attach within a corresponding clevis 421 provided by the actuator support body 423 using a pin 424. A spherical bearing 426 is used between the pin 424 and the lug 419 of the connection body 407, to account for rotation of up to +/−6 degrees of the actuator 403 about a longitudinal axis of the push rod 409 when in use.
Extension and retraction of the push rod 409 of the actuator 403 in the linear direction shown is reacted by the actuator support body 423, which causes the spoiler 411 to deploy and retract by hinging anti-clockwise and clockwise, respectively as shown. Similarly, the spoiler 411 retracts when the push rod 409 is retracted into the main body 405. The connection body 407 and the main body 405 transfers actuation, inertial and aerodynamic induced loads between the spoiler 411 and the actuator support body 423 during extension and retraction, however, in an alternative embodiment, it may be that the connection body 407 is configured to transfer the majority of such loads.
The actuator assembly 401 further comprises a pair of holding devices 425, 425′ fixedly attached to the main body 405 of the actuator 403 and hingedly connected to the actuator support bracket 423. Such an arrangement may, in addition, be used at the push rod 409 end with the spoiler 411. In the event of failure of the connection body 407 at either location 121, 123 as previously described (with reference to
In the present embodiment, it is preferable to use a pair holding devices 425 and 425′; one on either side of the connection body 407. This is advantageous in that it is a symmetric design that ensures an evenly balanced load distribution at the clevis 421 and main body 405 in the event of failure of the connection body 407. Furthermore, fail-safe redundancy for such a design is doubled, which may be required for certification of the design. It should be also appreciated that one or more of the holding devices may be used, depending on the required load transfer between the actuator 403 and the actuator support bracket 423 and the particular requirements for the desired application.
This is advantageous as previously mentioned as it reduces potential damage to the surrounding structure such as the hinge rib 415, rear spar 420, lower cover 418, or actuator support bracket 423, as well as avoiding detachment of, or other damage to, the systems elements 422 connected to the actuator 403. Furthermore, it prevents the spoiler 411 from further deploying to an over-extended position 113″, shown in
With reference to
Each holding device 425, 425′ substantially conforms to, and is placed adjacent to, the outermost 502 and innermost sides 504 of the connection body 407. The body of each holding device 425, 425′ is substantially rectangular in cross-section with a thickness between 2 mm and 4 mm and extends between a pair of attachment flanges 501, 501′ and a lug 503, 503′. The relatively low thickness and conformity to the outer shape of the adjacent connection member 407 permits the holding devices 425, 425′ to fit within the clevis 421 of the actuator support body 423 adjacent to where the connection body 407 hingedly connects.
This is particularly advantageous in that it is allows for a more evenly balanced load distribution on the holding devices 425 and 425′ at the clevis 421 in the event of failure of the connection body 407. Furthermore, such a design, where the holding devices are retained between the clevis 421 and the adjacent lug 419 of the connection body 407, avoid as much as possible the negative possibility of the holding devices 425, 425′ moving away from one another or the clevis 421, which would result in out of plane loads being transferred through the holding devices. It should be appreciated, however, that the holding devices may be located outside the clevis 421 and may be designed to withstand high amounts of out of plane loading. Furthermore, in any case, the body of each holding device 425, 425′ may conform to any suitable cross-section of the connection body 407, e.g., circular.
In the present embodiment, each pair of attachment flanges 501, 501′ extend substantially perpendicular spanwise from the body of the respective holding device 425, 425′ adjacent to an aft edge of the respective lug 503, 503′. The attachment flanges 501, 501′ are configured to substantially conform to, and to be placed adjacent to corresponding landings 505, 505′ integrally formed at a forward face 507 of the main body 405 of the actuator 403. A pair of concentric through holes are formed by each pair of attachment flanges 501, 501′, wherein each pair of holes provided by each respective holding device is further configured to receive a shear fastener 509 that fixedly attaches each holding device 425, 425′ to the corresponding landings 505, 505′ in a lap joint arrangement. It should be appreciated that more than one fastener may be used for each holding device.
The use of a lap type joint between each holding device 425, 425′ and the actuator main body 405 is advantageous in that the fasteners are configured to be installed from a lower side of the actuator assembly 401. This is advantageous because access to the actuator assembly is normally from a lower side when the aircraft is on the ground. Hence the holding devices 425, 425′ can each be easily removed without needed to remove the spoiler 411 to gain access to the fasteners.
Furthermore, a pair of loose tolerance receiving 506 holes are defined by the body of each holding device 425, 425′. Each pair of holes 506 is configured to receive the corresponding pair of spigots 510 provided by the connection body 407. The spigots 510 and holes 506 assist with installation and removal of holding devices 425, 425′ by keeping them in position when the shear fasteners are removed or are being installed. The placement of the spigot 510 adjacent to the aft edge of the lug 419 is furthermore advantageous in that it permits the body of each holding device 425, 425′ to be elastically bent by a technician such that the spigot 510 can fully disengage from its corresponding hole 506, thus facilitating its removal, when needed. The spigot 510 and corresponding hole 506 is further advantageous in that it may provide an alternate or additional load transfer path between the main body 405 and actuator support bracket 423 in the event of a structural failure of the connection body 407. It should be appreciated by those skilled in the art that one or more spigots may be used for each holding device.
Each holding device 425, 425′ further comprises a pair of diametrically opposing anti-rotation knuckles 508.
With reference to
Where in the foregoing description, integers or elements are mentioned which have known, obvious or foreseeable equivalents; then such equivalents are herein incorporated as if individually set forth. For example, the actuator assembly described with reference to the drawings may equally be used for moveable elements of an aircraft vertical tail pane such as a rudder actuator assembly or for moveable elements of a horizontal tail plane such as an elevator actuator assembly. As a further example, one or more holding devices may be, in addition or alternatively, installed in an actuator assembly at a push rod end of an actuator, where it hingedly connects to a moveable device. Reference should be made to the claims for determining the true scope of the present invention, which should be construed so as to encompass any such equivalents. It will also be appreciated by the reader that integers or features of the invention that are described as preferable, advantageous, convenient or the like are optional and do not limit the scope of the independent claims. Moreover, it is to be understood that such optional integers or features, whilst of possible benefit in some embodiments of the invention, may not be desirable, and may therefore be absent, in other embodiments.
While at least one exemplary embodiment of the present invention(s) is disclosed herein, it should be understood that modifications, substitutions and alternatives may be apparent to one of ordinary skill in the art and can be made without departing from the scope of this disclosure. This disclosure is intended to cover any adaptations or variations of the exemplary embodiment(s). In addition, in this disclosure, the terms “comprise” or “comprising” do not exclude other elements or steps, the terms “a” or “one” do not exclude a plural number, and the term “or” means either or both. Furthermore, characteristics or steps which have been described may also be used in combination with other characteristics or steps and in any order unless the disclosure or context suggests otherwise. This disclosure hereby incorporates by reference the complete disclosure of any patent or application from which it claims benefit or priority.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4596177, | Sep 02 1980 | Rockwell International Corporation | Actuator system |
4786202, | Feb 12 1985 | AIR FORCE, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE | Dual load path pin clevis joint |
4808023, | Feb 12 1985 | The United States of America as represented by the Secretary of the Air | Dual load path pin clevis joint |
20100327111, | |||
20160311523, | |||
EP3085618, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 13 2018 | MARTENS, MARKO | Airbus Operations GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046468 | /0678 | |
Jul 02 2018 | Airbus Operations GmbH | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 02 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 08 2024 | 4 years fee payment window open |
Dec 08 2024 | 6 months grace period start (w surcharge) |
Jun 08 2025 | patent expiry (for year 4) |
Jun 08 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 08 2028 | 8 years fee payment window open |
Dec 08 2028 | 6 months grace period start (w surcharge) |
Jun 08 2029 | patent expiry (for year 8) |
Jun 08 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 08 2032 | 12 years fee payment window open |
Dec 08 2032 | 6 months grace period start (w surcharge) |
Jun 08 2033 | patent expiry (for year 12) |
Jun 08 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |