A power distribution monitoring system is provided that can include a number of features. The system can include a plurality of monitoring devices configured to attach to individual conductors on a power grid distribution network. In some embodiments, a monitoring device includes a current sensing element comprising a rogowski coil. The output of the rogowski coil can be used by a fault detection circuit to determine if a fault or disturbance occurs on the conductor. Methods of using the monitoring devices are also provided.
|
1. A method of sensing a fault or disturbance on a conductor of a power distribution network, comprising:
inducing a voltage in a rogowski coil of a line monitoring device to produce a raw output;
inputting the raw output from the rogowski coil into an integrator circuit of the line monitoring device to produce an integrated output;
inputting the raw output from the rogowski coil into an all-pass filter of the line monitoring device to produce a filtered output;
subtracting the integrated output from the filtered output to produce a fault detection output; and
indicating that a fault or disturbance has occurred on the conductor if the fault detection output is a non-zero value.
16. A fault detection system, comprising:
a conductor of a power distribution network;
a housing configured to be mounted to the conductor;
a rogowski coil disposed on or within the housing, wherein the conductor is configured to induce a voltage in the rogowski coil to produce a raw output when current flows through the conductor; and
a fault detection circuit disposed within the housing and being electrically coupled to the rogowski coil, wherein the fault detection circuit comprises:
an integrator circuit configured to receive the raw output from the rogowski coil and produce an integrated output;
an all-pass filter configured to receive the raw output from the rogowski coil and produce a filtered output;
a summation circuit configured to subtract the integrated output from the filtered output to produce a fault detection output;
wherein the fault detection output indicates a fault or disturbance on the conductor if the fault detection output has a non-zero value.
9. A line monitoring device configured to detect a fault or disturbance on a conductor of a power distribution network, comprising:
a housing configured to be mounted to the conductor;
a rogowski coil disposed on or within the housing, wherein a voltage is induced in the rogowski coil to produce a raw output when current flows through the conductor; and
a fault detection circuit disposed within the housing and being electrically coupled to the rogowski coil, wherein the fault detection circuit comprises:
an integrator circuit configured to receive the raw output from the rogowski coil and produce an integrated output;
an all-pass filter configured to receive the raw output from the rogowski coil and produce a filtered output;
a summation circuit configured to subtract the integrated output from the filtered output to produce a fault detection output;
wherein the fault detection output indicates a fault or disturbance on the conductor if the fault detection output has a non-zero value.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
10. The device of
11. The device of
12. The device of
13. The device of
|
This application claims the benefit of U.S. Provisional Patent Application No. 62/732,789, filed Sep. 18, 2018, titled “Disturbance Detecting Current Sensor”, the contents of which are incorporated by reference herein.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present application relates generally to distribution line monitoring, sensor monitoring, and power harvesting.
The current flow in power distribution network conductors includes the desirable fundamental power frequency of 50/60 Hz (depending on the country), and numerous types of undesirable frequencies. Broadly speaking, some of these frequencies are multiples of the fundamental frequency and are known as harmonics, while other frequencies may be more random and could be indications of various problems such as arcing, voltage breakdowns, or animal/vegetation contact. These later group of frequencies could collectively be called disturbances.
Electric utility companies attempt to sense and monitor disturbances in order to identify problems on their network. As stated above, one primary attribute of disturbance frequencies is that they are not the predominant fundamental power frequency. It is common in the industry to monitor electric conductors with current sensors. In the large majority of the cases, the foremost interest is to measure the amplitude of the fundamental frequency as a measure of the bulk current being delivered. In other cases however, the output of a current sensor may be post-processed in order to separate the any disturbance signals from the fundamental signals. Because the current sensor has just one output, and the post-processor has one input, the types of post-processing is limited.
While some fully featured monitoring devices can be configured to monitor, among other things, current flow in the power line and current waveforms, conductor temperatures, ambient temperatures, vibration, wind speed, monitoring device system diagnostics, etc., these fully featured monitoring devices can be expensive and can be overkill for situations when only a bare-bones, low-power fault detection device is required.
This disclosure generally provides distribution line monitoring sensors that include a number of features. Particularly, described herein are distribution line monitoring sensors with Rogowski coil current sensing elements connected to an integrator circuit, which allows disturbances on the conductor to be clearly indicated on the output waveform.
A method of sensing a fault or disturbance on a conductor of a power distribution network is provided, comprising inducing a voltage in a Rogowski coil of a line monitoring device to produce a raw output, inputting the raw output from the Rogowski coil into an integrator circuit of the line monitoring device to produce an integrated output, inputting the raw output from the Rogowski coil into an all-pass filter of the line monitoring device to produce a filtered output, subtracting the integrated output from the filtered output to produce a fault detection output, and indicating that a fault or disturbance has occurred on the conductor if the fault detection output is a non-zero value.
In some examples, the method further comprises, prior to the inducing step, mounting the line monitoring device on the conductor.
In some embodiments, the raw output of the Rogowski coil is proportional to a rate of change of current in the conductor.
In one embodiment, a frequency response of the integrator circuit has a sloping gain and a constant phase shift of 90° over a frequency band of interest. In another embodiment, a frequency response of the all-pass filter has a sloping phase shift, with a phase shift of 90° at a fundamental frequency of the conductor, and a constant gain over the frequency band of interest.
In some embodiments, the subtracting step is performed at a fundamental frequency of the conductor. The fundamental frequency can be, for example, 60 Hz, 50 Hz.
A line monitoring device configured to detect a fault or disturbance on a conductor of a power distribution network is also provided, comprising a housing configured to be mounted to the conductor, a Rogowski coil disposed on or within the housing, wherein a voltage is induced in the Rogowski coil to produce a raw output when current flows through the conductor, a fault detection circuit disposed within the housing and being electrically coupled to the Rogowski coil, wherein the fault detection circuit comprises an integrator circuit configured to receive the raw output from the Rogowski coil and produce an integrated output, an all-pass filter configured to receive the raw output from the Rogowski coil and produce a filtered output, a summation circuit configured to subtract the integrated output from the filtered output to produce a fault detection output, wherein the fault detection output indicates a fault or disturbance on the conductor if the fault detection output has a non-zero value.
In some embodiments, the raw output of the Rogowski coil is proportional to a rate of change of current in the conductor.
In one embodiment, a frequency response of the integrator circuit has a sloping gain and a constant phase shift of 90° over a frequency band of interest. In another embodiment, a frequency response of the all-pass filter has a sloping phase shift, with a phase shift of 90° at a fundamental frequency of the conductor, and a constant gain over the frequency band of interest.
In some embodiments, the subtracting step is performed at a fundamental frequency of the conductor. The fundamental frequency can be, for example, 60 Hz, 50 Hz.
A fault detection system is further provided, comprising a conductor of a power distribution network, a housing configured to be mounted to the conductor, a Rogowski coil disposed on or within the housing, wherein the conductor is configured to induce a voltage in the Rogowski coil to produce a raw output when current flows through the conductor, a fault detection circuit disposed within the housing and being electrically coupled to the Rogowski coil, wherein the fault detection circuit comprises an integrator circuit configured to receive the raw output from the Rogowski coil and produce an integrated output, an all-pass filter configured to receive the raw output from the Rogowski coil and produce a filtered output, a summation circuit configured to subtract the integrated output from the filtered output to produce a fault detection output, wherein the fault detection output indicates a fault or disturbance on the conductor if the fault detection output has a non-zero value.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Power line monitoring devices and systems described herein are configured to measure the currents of power grid distribution networks. Referring to
Monitoring devices 102, 104, and 106 can be mounted on each power line of a three-phase network, as shown. The monitoring devices can be mounted quickly and easily via a hot-stick 116, and can harvest energy from the power lines for operation without additional supplemental power (e.g., batteries or solar panels). Installation of a three monitoring device array can be placed and configured by a single linesman with a hot-stick and a bucket truck in less than 20 minutes.
The monitoring devices of the present disclosure, at a fundamental level, include only the components required to detect faults or disturbances on the power distribution network via current measurement, and include power harvesting components that enable the monitoring devices to harvest enough energy from the conductors for operation. Thus, the monitoring devices of the present disclosure are well suited for applications in which only line fault detection and self-powered operation are required, therefore providing low-power, efficient, and inexpensive line monitoring devices for power distribution networks.
The integrator path in the fault detection circuit 207 can have an ideal 90° phase shift over the frequency band of interest, and a sloping frequency response of approximately −20 dB per decade where the point of intercept of the fundamental frequency defines the gain (or attenuation) at the fundamental power frequency. The all-pass filter is configured to pass all frequencies equally in gain but change the phase relationship of the signal among various frequencies. The all-pass filter signal path of
In a traditionally used Rogowski coil, the “raw” output of the sensor coil is not accessible in many cases, it is only an internal connection and of no value. The novelty of the present disclosure is that the fault detection circuit is able to “reach inside” the Rogowski coil and connect a different type of filter to the raw Rogowski coil. Then by subtracting these two outputs, the resulting signal shows only the signals that are non-fundamental. These two filters respond to gain and phase in differing manners. But the circuit can be configured such that their outputs look identical at the fundamental frequency (e.g., 60 Hz). So with a pure 60 Hz current wave, the outputs from the integrator and all-pass filter subtract to zero. All other frequencies (e.g., disturbances) will have mis-matched outputs between the two filters, and therefore are exposed in the combined output. Thus, the output of the fault detection circuit in the present disclosure can be used to detect disturbances or faults in the primary conductor. When the output of the fault detection circuit is zero at the fundamental frequency, then there is not a fault or disturbance present on the primary conductor. However, if the output of the fault detection circuit is non-zero, then it can be an indication that a fault or disturbance is present on the primary conductor.
In some embodiments, this circuit can be implemented in ultra low-power analog circuitry. Because this circuit's output, in the absence of a disturbance, normally rests at a near zero level, the output can be monitored, for example, with a voltage comparator, and a trip threshold can be created in the monitoring device to indicate a disturbance is occurring.
At an operation 404 of the flowchart, the raw output from the Rogowski coil can be input into an integrator circuit of the line monitoring device to produce an integrated output. This integrated output represents the true current signal on the conductor as measured by the Rogowski coil. Next, at an operation 406 of the flowchart, the raw output from the Rogowski coil can also be input into an all-pass filter of the line monitoring device to produce a filtered output. The all-pass filter of operation 406 is designed and configured to have complementary attributes to the integrated output, namely a sloping phase shift response and a constant gain over the frequency band of interest.
At an operation 408 of the flowchart, the integrated output of the integrator circuit can be summed/subtracted from the filtered output of the all-pass filter. As described above, the all-pass filter is designed to be complimentary to the integrator, such that at the fundamental frequency (or operating frequency of the conductor) the sum of the integrated output and the filtered output will be zero during normal operating conditions. Again, referring to
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
Patent | Priority | Assignee | Title |
11549997, | Dec 13 2018 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Multi-phase simulation environment |
11835593, | Dec 13 2018 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Multi-phase simulation environment |
11977108, | Nov 06 2019 | Robert Bosch GmbH | Monitoring set-up to detect supply-line faults for a control unit |
Patent | Priority | Assignee | Title |
3075166, | |||
3558984, | |||
3676740, | |||
3686531, | |||
3702966, | |||
3708724, | |||
3715742, | |||
3720872, | |||
3725832, | |||
3755714, | |||
3768011, | |||
3777217, | |||
3814831, | |||
3816816, | |||
3866197, | |||
3876911, | |||
3957329, | Nov 01 1974 | BROWN BOVERI ELECTRIC INC A CORP OF DE | Fault-current limiter for high power electrical transmission systems |
3970898, | Nov 23 1973 | Zellweger Uster AG | Method of automatically isolating a faulty section of a power line belonging to an electrical energy supply network, and arrangement for carrying out this method |
4063161, | Apr 14 1975 | Joslyn Corporation | Buried cable fault locator with earth potential indicator and pulse generator |
4152643, | Apr 10 1978 | E. O. Schweitzer Manufacturing Co., Inc. | Voltage indicating test point cap |
4339792, | Apr 12 1979 | Voltage regulator using saturable transformer | |
4378525, | Sep 18 1980 | Method and apparatus for measuring a DC current in a wire without making a direct connection to the wire | |
4396794, | Mar 30 1981 | ASEA BROWN BOVERI, INC | Arc protection clamp and arrangement for covered overhead power distribution lines |
4396968, | Sep 22 1982 | ASEA BROWN BOVERI, INC | Fused distribution power system with clamp device for preventing arc damage to insulated distribution conductors |
4398057, | Mar 30 1981 | ASEA BROWN BOVERI, INC | Arc protection arrangement for covered overhead power distribution lines |
4408155, | Mar 02 1981 | Bridges Electric, Inc. | Fault detector with improved response time for electrical transmission system |
4466071, | Sep 28 1981 | Texas A&M University System | High impedance fault detection apparatus and method |
4559491, | Sep 14 1982 | ASEA Aktiebolag | Method and device for locating a fault point on a three-phase power transmission line |
4570231, | Jan 27 1984 | Richard H., Bunch | Fault finder |
4584523, | Oct 03 1983 | RCA Corporation | Measurement of the current flow in an electric power transmission line by detection of infrared radiation therefrom |
4649457, | Feb 17 1984 | B. H. Tytewadd Marketing, Incorporated | Surge protection device |
4654573, | May 17 1985 | KLEINER, PERKINS, CAUFIELD & BYERS III; AENEAS VENTURE CORPORATION; Security Pacific Capital Corporation | Power transfer device |
4709339, | Apr 13 1983 | Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules | |
4714893, | Apr 13 1983 | UNDERSGROUND SYSTEMS, INC | Apparatus for measuring the potential of a transmission line conductor |
4723220, | Apr 13 1983 | UNDERSGROUND SYSTEMS, INC | Apparatus for power measuring and calculating Fourier components of power line parameters |
4728887, | Jun 22 1984 | System for rating electric power transmission lines and equipment | |
4746241, | Apr 13 1983 | UNDERSGROUND SYSTEMS, INC | Hinge clamp for securing a sensor module on a power transmission line |
4766549, | Nov 30 1984 | Electric Power Research Institute, Inc; Washington State University Research Foundation | Single-ended transmission line fault locator |
4775839, | May 21 1985 | Korona Messtechnik Gossau | Control apparatus for the electronic detection in a.c. power transmission lines of fault locations causing power losses |
4808916, | Nov 14 1986 | UNDERSGROUND SYSTEMS, INC | Power supply magnetic shunt for transmission line sensor module |
4829298, | Apr 13 1983 | Electrical power line monitoring systems, including harmonic value measurements and relaying communications | |
4881028, | Jun 13 1988 | Fault detector | |
4886980, | Nov 05 1985 | UNDERSGROUND SYSTEMS, INC | Transmission line sensor apparatus operable with near zero current line conditions |
4904932, | Jun 16 1987 | Schweitzer Engineering Laboratories, Inc | Circuit condition monitor with integrally molded test point socket and capacitive coupling |
4937769, | Jun 15 1988 | ABB POWER T&D COMPANY, INC , A DE CORP | Apparatus and method for reducing transient exponential noise in a sinusoidal signal |
5006846, | Nov 12 1987 | Power transmission line monitoring system | |
5125738, | Dec 13 1988 | Sumitomo Electric Industries, Ltd. | Apparatus and system for locating a point or a faulty point in a transmission line |
5138265, | Nov 30 1988 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Apparatus and system for locating thunderstruck point and faulty point of transmission line |
5159561, | Apr 05 1989 | Mitsubishi Denki Kabushiki Kaisha; Chubu Electric Power Company, Incorporated | Zero-phase sequence current detector |
5181026, | Jan 12 1990 | GRANVILLE GROUP, INC , THE A CORP OF CALIFORNIA | Power transmission line monitoring system |
5182547, | Jan 16 1991 | HIGH VOLTAGE MAINTENANCE, 5100 ENERGY DRIVE, P O BOX 14059, DAYTON, OHIO 45414-0059 A CORP OF OHIO | Neutral wire current monitoring for three-phase four-wire power distribution system |
5202812, | Sep 21 1988 | NGK Insulators, Ltd. | Apparatus for detecting faults on power transmission lines |
5206595, | Sep 10 1991 | Electric Power Research Institute | Advanced cable fault location |
5220311, | Feb 19 1991 | Schweitzer Engineering Laboratories, Inc | Direction indicating fault indicators |
5428549, | May 28 1993 | ABB POWER T&D COMPANY, INC | Transmission line fault location system |
5438256, | Jul 06 1992 | GEC Alsthom T&D SA | Apparatus and method for measurement from the ground for high voltage overhead lines |
5473244, | Sep 17 1992 | Apparatus for measuring voltages and currents using non-contacting sensors | |
5495169, | Oct 12 1984 | Clamp-on current sensor | |
5550476, | Sep 29 1994 | Pacific Gas and Electric Company | Fault sensor device with radio transceiver |
5565783, | Sep 29 1994 | Pacific Gas and Electric Company | Fault sensor device with radio transceiver |
5600248, | Jun 21 1995 | DIPL -ING H HORSTMANN GMBH | Fault distance locator for underground cable circuits |
5608328, | Nov 18 1994 | Radar Engineers | Method and apparatus for pin-pointing faults in electric power lines |
5650728, | Apr 03 1995 | Curators of the University of Missouri | Fault detection system including a capacitor for generating a pulse and a processor for determining admittance versus frequency of a reflected pulse |
5656931, | Jan 20 1995 | Pacific Gas and Electric Company | Fault current sensor device with radio transceiver |
5682100, | Sep 06 1995 | Electric Power Research Institute Inc. | System and method for locating faults in electric power cables |
5696788, | Dec 26 1995 | Electronics and Telecommunications Research Institute; Korea Telecommunications Authority | Circuit for searching fault location in a device having a plurality of application specific integrated circuits |
5712796, | Jul 14 1994 | Hitachi Cable, LTD | Method for evaluating the faulted sections and states in a power transmission line |
5729144, | Dec 02 1996 | SANKOSHA U S A , INC | Systems and methods for determining location of a fault on an electric utility power distribution system |
5737203, | Oct 03 1994 | Delphi Technologies Inc | Controlled-K resonating transformer |
5764065, | Sep 20 1996 | JDR ENGINEERING, INC | Remote contamination sensing device for determining contamination on insulation of power lines and substations |
5839093, | Dec 31 1996 | ABB Transmit Oy | System for locating faults and estimating fault resistance in distribution networks with tapped loads |
5892430, | Apr 25 1994 | Foster-Miller, Inc. | Self-powered powerline sensor |
5905646, | Dec 20 1996 | Scandinova Systems AB | Power modulator |
5990674, | Jul 08 1996 | Schweitzer Engineering Laboratories, Inc | Clamping mechanism for mounting circuit condition monitoring devices on cables of various diameters |
6002260, | Sep 23 1997 | Pacific Gas & Electric Company | Fault sensor suitable for use in heterogenous power distribution systems |
6016105, | Apr 30 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator providing contact closure and light indication on fault detection |
6043433, | Feb 20 1998 | Schweitzer Engineering Laboratories, Inc | Cable clamp with universal positioning |
6133723, | Jun 29 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator having remote light indication of fault detection |
6133724, | Jun 29 1998 | Schweitzer Engineering Laboratories, Inc | Remote light indication fault indicator with a timed reset circuit and a manual reset circuit |
6288632, | Dec 20 1999 | General Electric Company | Apparatus and method for power line communication (PLC) |
6292340, | Apr 09 1999 | Electrical Materials Company | Apparatus for isolation of high impedance faults |
6347027, | Nov 26 1997 | S&C ELECTRIC CO | Method and apparatus for automated reconfiguration of an electric power distribution system with enhanced protection |
6433698, | Apr 30 1998 | Schweitzer Engineering Laboratories, Inc | Fault indicator providing light indication on fault detection |
6459998, | Jul 24 1999 | Sensing downed power lines | |
6466030, | Dec 29 2000 | ABB POWER GRIDS SWITZERLAND AG | Systems and methods for locating faults on a transmission line with a single tapped load |
6466031, | Dec 29 2000 | ABB POWER GRIDS SWITZERLAND AG | Systems and methods for locating faults on a transmission line with multiple tapped loads |
6477475, | Nov 12 1998 | NIPPON KOUATSU ELECTRIC CO , LTD ; TAKAOKA, MOTOKUNI | Fault point location system |
6483435, | Jul 11 2000 | ABB POWER GRIDS SWITZERLAND AG | Method and device of fault location for distribution networks |
6549880, | Sep 15 1999 | McGraw Edison Company | Reliability of electrical distribution networks |
6559651, | Oct 25 2000 | FOCUS STRATEGIES CAPITAL ADVISORS, LLC | Method for locating an open in a conductive line of an insulated conductor |
6566854, | Mar 13 1998 | FLORIDA INTERNATONAL UNIVERSITY FOR AND ON THE BEHALF OF THE BOARD OF REGENTS A BODY CORPORATE OF THE STATE OF FLORIDA | Apparatus for measuring high frequency currents |
6577108, | Nov 24 1999 | American Superconductor Corporation | Voltage regulation of a utility power network |
6601001, | Jan 13 1999 | AREVA T&D UK LTD | Fault-detection for power lines |
6622285, | Nov 02 2000 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Methods and systems for fault location |
6677743, | Mar 05 1999 | Foster-Miller, Inc | High voltage powerline sensor with a plurality of voltage sensing devices |
6718271, | Aug 31 1998 | Electricity Supply Board | Fault detection apparatus and method of detecting faults in an electrical distribution network |
6734662, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault indicator having led fault indication circuit with battery conservation mode |
6798211, | Oct 30 1997 | Remote Monitoring Systems, Inc. | Power line fault detector and analyzer |
6822457, | Mar 27 2003 | SPRINGBOK INC | Method of precisely determining the location of a fault on an electrical transmission system |
6822576, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault detector with circuit overload condition detection |
6879917, | Jun 14 2002 | PROGRESS ENERGY CAROLINAS INC | Double-ended distance-to-fault location system using time-synchronized positive-or negative-sequence quantities |
6894478, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault indicator with automatically configured trip settings |
6914763, | Jan 15 2002 | Wellspring Heritage, LLC | Utility control and autonomous disconnection of distributed generation from a power distribution system |
6917888, | May 06 2002 | Arkados, Inc | Method and system for power line network fault detection and quality monitoring |
6927672, | Jun 12 2001 | Main.net Communications Ltd. | Information transmission over power lines |
6949921, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Auto-calibration of multiple trip settings in a fault indicator |
6963197, | May 31 2002 | Schweitzer Engineering Laboratories, Inc | Targeted timed reset fault indicator |
6980090, | Dec 10 2002 | Current Technologies, LLC | Device and method for coupling with electrical distribution network infrastructure to provide communications |
7023691, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault Indicator with permanent and temporary fault indication |
7046124, | Jan 21 2003 | Current Technologies, LLC; REVEAL TECHNOLOGIES, LLC | Power line coupling device and method of using the same |
7053601, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Microprocessor controlled fault indicator having high visibility LED fault indication |
7072163, | Oct 19 2004 | Marmon Utility LLC | Method and apparatus for a remote electric power line conductor faulted circuit current monitoring system |
7076378, | Nov 13 2002 | Current Technologies, LLC | Device and method for providing power line characteristics and diagnostics |
7085659, | Oct 15 2004 | ABB Schweiz AG | Dynamic energy threshold calculation for high impedance fault detection |
7106048, | Oct 26 2001 | Schweitzer Engineering Laboratories, Inc | Fault indicator with auto-configuration for overhead or underground application |
7158012, | Nov 01 1996 | Foster-Miller, Inc. | Non-invasive powerline communications system |
7187275, | Oct 21 2004 | Marmon Utility LLC | Method and apparatus for a remote electric power line conductor faulted circuit current, conductor temperature, conductor potential and conductor strain monitoring and alarm system |
7203622, | Dec 23 2002 | ABB Schweiz AG | Value-based transmission asset maintenance management of electric power networks |
7272516, | Dec 23 2002 | HITACHI ENERGY LTD | Failure rate adjustment for electric power network reliability analysis |
7295133, | Dec 30 2004 | Hendrix Wire & Cable, Inc. | Electrical circuit monitoring device |
7400150, | Aug 05 2004 | CANNON TECHNOLOGIES, INC | Remote fault monitoring in power lines |
7424400, | Jun 04 2004 | FMC Tech Limited | Method of monitoring line faults in a medium voltage network |
7449991, | Dec 10 2002 | Current Technologies, LLC | Power line communications device and method |
7450000, | Oct 26 2004 | Current Technologies, LLC | Power line communications device and method |
7508638, | Feb 28 2006 | SIEMENS INDUSTRY, INC | Devices, systems, and methods for providing electrical power |
7518529, | Jan 31 2003 | FMC Tech Limited | Monitoring device for a medium voltage overhead line |
7532012, | Jul 07 2006 | Ericsson Inc | Detection and monitoring of partial discharge of a power line |
7557563, | Jan 19 2005 | POWER MEASUREMENT LTD | Current sensor assembly |
7626794, | Oct 18 2005 | Schweitzer Engineering Laboratories, Inc | Systems, methods, and apparatus for indicating faults within a power circuit utilizing dynamically modified inrush restraint |
7633262, | Mar 11 2005 | Lindsey Manufacturing Company | Power supply for underground and pad mounted power distribution systems |
7672812, | Nov 01 2006 | HITACHI ENERGY LTD | Cable fault detection |
7683798, | Jul 07 2006 | SSI Power, LLC | Current monitoring device for high voltage electric power lines |
7701356, | Mar 16 2006 | POWER MONITORS, INC | Underground monitoring system and method |
7714592, | Nov 07 2007 | Current Technologies, LLC | System and method for determining the impedance of a medium voltage power line |
7720619, | Aug 04 2006 | Schweitzer Engineering Laboratories, Inc. | Systems and methods for detecting high-impedance faults in a multi-grounded power distribution system |
7725295, | Nov 01 2006 | HITACHI ENERGY LTD | Cable fault detection |
7742393, | Jul 24 2003 | HUNT TECHNOLOGIES, INC | Locating endpoints in a power line communication system |
7764943, | Mar 27 2006 | Current Technologies, LLC | Overhead and underground power line communication system and method using a bypass |
7795877, | Nov 02 2006 | Current Technologies, LLC | Power line communication and power distribution parameter measurement system and method |
7795994, | Jun 26 2007 | CHEMTRON RESEARCH LLC | Power line coupling device and method |
7804280, | Nov 02 2006 | S&C Electric Company | Method and system for providing power factor correction in a power distribution system |
7930141, | Nov 02 2007 | EATON INTELLIGENT POWER LIMITED | Communicating faulted circuit indicator apparatus and method of use thereof |
8421444, | Dec 31 2009 | SCHNEIDER ELECTRIC USA, INC. | Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics |
8497781, | Oct 22 2004 | ATECNUM CORPORATION | Power supply and communications controller |
8594956, | Nov 02 2007 | EATON INTELLIGENT POWER LIMITED | Power line energy harvesting power supply |
8786292, | Dec 06 2010 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Power conductor monitoring device and method of calibration |
9182429, | Jan 04 2012 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Distribution line clamp force using DC bias on coil |
9229036, | Jan 03 2012 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Energy harvest split core design elements for ease of installation, high performance, and long term reliability |
9448257, | Jan 04 2012 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Distribution line clamp force using DC bias on coil |
9581624, | Aug 19 2014 | Southern States, LLC | Corona avoidance electric power line monitoring, communication and response system |
9933463, | Nov 23 2011 | Analog Devices International Unlimited Company | Current measurement |
9954354, | Jan 06 2015 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Methods and apparatus for mitigation of damage of power line assets from traveling electrical arcs |
9984818, | Dec 04 2015 | SENTIENT TECHNOLOGY HOLDINGS, LLC | Current harvesting transformer with protection from high currents |
20040156154, | |||
20050073200, | |||
20080077336, | |||
20090058582, | |||
20090171602, | |||
20090309754, | |||
20100085036, | |||
20110032739, | |||
20120039062, | |||
20120236611, | |||
20130162136, | |||
20140062221, | |||
20140145858, | |||
20140174170, | |||
20140192458, | |||
20140226366, | |||
20140253140, | |||
20140260598, | |||
20150198667, | |||
20160116505, | |||
20170199533, | |||
20180143234, | |||
20190339319, | |||
EP1508146, | |||
EP1938159, | |||
EP2340592, | |||
EP2350764, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 18 2019 | SENTIENT TECHNOLOGY HOLDINGS, LLC | (assignment on the face of the patent) | / | |||
Sep 18 2019 | RUMRILL, RONALD S | SENTIENT ENERGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050717 | /0889 | |
Mar 30 2020 | SENTIENT ENERGY HOLDINGS, LLC | SENTIENT ENERGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052871 | /0328 | |
Mar 30 2020 | SENTIENT ENERGY, INC | SENTIENT ENERGY HOLDINGS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052805 | /0571 | |
Jun 06 2020 | SENTIENT ENERGY, INC | SENTIENT TECHNOLOGY HOLDINGS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052887 | /0333 |
Date | Maintenance Fee Events |
Sep 18 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 01 2019 | SMAL: Entity status set to Small. |
May 18 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 10 2025 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Jun 22 2024 | 4 years fee payment window open |
Dec 22 2024 | 6 months grace period start (w surcharge) |
Jun 22 2025 | patent expiry (for year 4) |
Jun 22 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 22 2028 | 8 years fee payment window open |
Dec 22 2028 | 6 months grace period start (w surcharge) |
Jun 22 2029 | patent expiry (for year 8) |
Jun 22 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 22 2032 | 12 years fee payment window open |
Dec 22 2032 | 6 months grace period start (w surcharge) |
Jun 22 2033 | patent expiry (for year 12) |
Jun 22 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |