The present disclosure relates to a battery system for a hybrid or an electric vehicle. Another aspect of the present disclosure provides a battery assembly designed for easy and quick exchange of battery assemblies enabling a vehicle to resume driving much more quickly than traditional charging permits.
|
13. A battery assembly for an electric vehicle, comprising:
a housing having a first lateral portion, a second lateral portion, and a central portion, the housing forming a first recess between the first lateral portion and the central portion, the first lateral portion, the first recess and the central portion forming a first bight and a second recess between the central portion and the second lateral portions, the second lateral portion, the second recess and the central portion forming a second bight;
one or more battery units disposed within the central portion of the housing between the first bight and the second bight; and
a mounting system disposed at least partially in the first bight and in the second bight;
wherein a frame member of a vehicle can be disposed between first and second lateral portions and when so disposed can be coupled to the mounting system between first and second lateral portions in or above one or both of the first recess and the second recess.
1. A battery assembly for an electric vehicle, comprising:
a housing having a first lateral portion, a second lateral portion, and a central portion, the housing forming an upwardly oriented recess between the first and second lateral portions;
one or more battery units disposed within the central portion of the housing; and
a mounting system comprising a plurality of brackets attached to an upper surface of the housing and disposed at least partially within the upwardly oriented recess of the housing between the first and the second lateral portions;
wherein a frame member of a vehicle can be disposed between the first and the second lateral portions and when so disposed can be coupled to the mounting system between the first and the second lateral portions to suspend the housing from the frame member of the vehicle at a location above at least a portion of the upper surface of the housing;
whereby the one or more battery units is disposed beneath a lower edge of the frame member of the vehicle when the battery assembly is coupled with the frame member.
17. A method of equipping a vehicle with a battery assembly, comprising:
providing a battery assembly comprising a housing comprising a top side and a bottom side, the top side having a central portion that extends upwardly relative to a recess disposed between the central portion and a lateral portion of the housing, the battery assembly having a housing mounting member coupled therewith at least partially within the recess;
positioning the housing below a frame rail of a frame assembly of a vehicle, the frame rail having a frame rail mounting member coupled therewith, the frame rail mounting member extending transversely to a longitudinal axis of the frame rail;
raising the housing to position the central portion of the housing at least partially above a lower surface of a portion of the frame rail extending along the central portion of the housing;
positioning the housing mounting member forward or rearward of the frame rail mounting member such that a surface of the housing mounting member overlaps a surface of the frame rail mounting member;
advancing a fastener through the housing mounting member and the frame rail mounting member to secure the housing mounting member to the frame rail mounting member and thereby to secure the housing to the frame rail.
21. A battery assembly for an electric vehicle, comprising:
a housing having a first lateral side, a second lateral side, and a central portion disposed between the first lateral side and the second lateral side, the housing having a top side disposed between the first lateral side and the second lateral side and over the central portion;
one or more battery units disposed within the central portion of the housing; and
a mounting system comprising a first bracket assembly at least partially disposed between the first lateral side and the central portion and a second bracket assembly at least partially disposed between the second lateral side and the central portion;
wherein the first bracket assembly comprises a first fixed portion attached to a wall of the housing between the central portion and the first lateral side, a first overlapping portion coupled with the first fixed portion and extending in a fore-aft direction over the top side of the housing, and a first connection portion coupled with the first overlapping portion, the first connection portion comprising a first connecting surface;
wherein the second bracket assembly comprises a second fixed portion attached to a wall of the housing between the central portion and the second lateral side, a second overlapping portion coupled with the second fixed portion and extending in a fore-aft direction over the top side of the housing, and a second connection portion coupled with the second overlapping portion, the second connection portion comprising a second connecting surface;
wherein a vehicle frame can be disposed between the first and the second connection portions and when so disposed can be coupled to the first and the second connecting surfaces between first and second lateral sides.
3. The battery assembly of
4. The battery assembly of
5. The battery assembly of
6. The battery assembly of
7. The battery assembly of
8. The battery assembly of
9. The battery assembly of
10. The battery assembly of
11. The battery assembly of
12. The battery assembly of
14. The battery assembly of
15. The battery assembly of
16. The battery assembly of
a first forward bracket coupled to the housing adjacent to the first lateral portion and configured to mount to an outboard side of a first frame rail at a first location of the first frame rail;
a first rearward bracket coupled to the housing adjacent to the first lateral portion and configured to mount to the outboard side of the first frame rail at a second location of the first frame rail rearward of the first location of the first frame rail;
a second forward bracket coupled to the housing adjacent to the second lateral portion and configured to mount to an outboard side of a second frame rail at a first location of the second frame rail; and
a second rearward bracket coupled to the housing adjacent to the second lateral portion and configured to mount to the outboard side of the second frame rail at a second location of the second frame rail rearward of the first location of the second frame rail.
18. The method of
positioning each of the housing mounting members of the first plurality of housing mounting members on a first lateral side of the first frame rail forward or rearward of a corresponding one of the frame rail mounting members of the first plurality of frame rail mounting members;
positioning each of the housing mounting members of the second plurality of housing mounting members on a lateral side of the second frame rail forward or rearward of a corresponding one of the frame rail mounting members of the second plurality of frame rail mounting members;
advancing a fastener through corresponding pairs of housing mounting members and frame rail mounting members.
19. The method of
20. The method of
22. The battery assembly of
23. The battery assembly of
24. The battery assembly of
25. The battery assembly of
26. The battery assembly of
27. The battery assembly of
28. The battery assembly of
29. The battery assembly of
30. The battery assembly of
|
The present disclosure relates to battery systems for heavy-duty vehicles and a method for equipping heavy-duty vehicles with such systems.
The use of alternative fuels for vehicles is becoming more prevalent. Natural gas powered automobiles produce less harmful emissions than do automobiles powered by traditional fossil fuels. A growing trend is the use of electrical motors for propulsion.
Electric drive systems have become ubiquitous for small passenger vehicles. However, long wait time to charge batteries is an obstacle to wider adoption of electric drive systems.
An aspect of the present invention provides a battery system for a hybrid or an electric vehicle. Another aspect of the present invention provides a battery assembly designed for easy and quick exchange of battery assemblies enabling a vehicle to resume driving much more quickly than traditional charging permits.
In one embodiment a battery assembly is provided for an electric vehicle. The battery assembly has a housing, one or more battery units and a mounting system. The housing has a first lateral portion, a second lateral portion, and a central portion. The housing forms an upwardly oriented recess between the first and second lateral portions. The mounting system can be disposed at least partially between the first lateral portion and the second lateral portion. A frame member of a vehicle can be disposed between first and second lateral portions. When so disposed, the frame member can be coupled to the mounting system between first and second lateral portions above the central portion.
In one embodiment, the one or more battery units is or are disposed within the housing at least in the central portion.
In some variations, at least a portion of the one or more battery units is disposed in the first lateral portion. In some variations, at least a portion of the one or more battery units is disposed in the second lateral portion. In some variations, at least a portion of the one or more battery units is disposed in the first lateral portion and in the second lateral portion.
In another embodiment the housing comprises a W-shaped housing.
The housing can be configured to be exposed to the road beneath the vehicle when the battery assembly is coupled to a frame member of a vehicle.
The mounting system can comprise a first component coupled with the housing and a second component configured to be coupled with the frame member. The first component can be configured to be releasably coupled to the second component. In this context, the releasable coupling can be one that facilitates quick exchange of the battery assembly for another, fully charged, battery assembly.
Where provided the second component of the mounting system can be configured to be coupled with a lateral portion of, e.g., an outwardly facing side of, the frame member.
When provided, the second component of the mounting system can include one or more brackets disposed on one or both of a first inside surface of the first lateral portion and on a second inside surface of the second lateral portion.
Where provided, the brackets of the mounting system can include U-shaped members configured to be disposed around the second component of the mounting system.
The housing is configured such that a lengthwise frame member of the vehicle can be disposed between the first lateral portion and the second lateral portion.
In some embodiments, the housing is configured to be coupled to the mounting system from beneath the vehicle. The housing can be moved transversely to the long axis of the vehicle, e.g., between forward and rearward wheels of the vehicle. The housing can be moved longitudinally along the long axis of the vehicle, e.g., under an axle between driver side and passenger side wheels coupled with the axle.
The systems, methods and devices may be better understood from the following detailed description when read in conjunction with the accompanying schematic drawings, which are for illustrative purposes only. The drawings include the following figures:
This application is directed to novel electric vehicle components and assemblies. The components described and claimed herein can be used in vehicles that are powered solely by electric motor(s) and in vehicles that are powered by a combination of power sources including electric motors and fossil fuels, e.g., natural gas fuel systems.
In
In
Referring to
Referring to
The housing 200 of the battery assembly 174 is generally symmetrical about a central plane A-A. The mounting system 240 and the mounting system 248 are also symmetrical about the central plane A-A. In certain embodiments, the battery assembly 174 is asymmetrical about the plane A-A, and the mounting system 248 connected to the first lateral portion 204 and the mounting system 240 connected to the second lateral portion 208 have different configurations.
At least one mounting system 240 is provided in a recess 212 between the central portion 206 and the first lateral portion 204. The recess 212 can include a bight formed by the housing 200. The bight can be formed in a concave periphery on the top side of the housing 200. The bight can include a more complex shape such as two U-shaped or concave portions on opposite sides of a central vertical plane of the housing 200. The mounting system 240 includes a first member 242 fixed to a wall of the housing 200 (e.g., to a wall of the second lateral portion 208) that is facing the beam 160 and a second member or component 244 for connecting the first member 242 to the beam 160. In some embodiments, when the battery 174 is lifted to a position where the first member 242 of the mounting system 240 is at a level of the beam, the second member 244 is fixed to the beam by fastening a bolt (that is accessible from the space 210). In certain embodiments, the second member 244 is fixed to the beam using at least one bolt 245, the beam 160 has at least one through hole 246 for receiving the bolt 245, and the second member 244 has at least one screw hole for receiving the bolt 245. In certain embodiments, a procedure to secure the battery assembly 174 to the beam comprises: (1) when the vehicle 100 is parked, moving the battery assembly 174 on or over the ground to place it under the beam 160; (2) lifting the battery assembly 174 to a set position of
While the present description sets forth specific details of various embodiments, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting. Furthermore, various applications of such embodiments and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein. Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
The above presents a description of systems and methods contemplated for carrying out the concepts disclosed herein, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains to make and use this invention. The systems and methods disclosed herein, however, are susceptible to modifications and alternate constructions from that discussed above which are within the scope of the present disclosure. Consequently, it is not the intention to limit this disclosure to the particular embodiments disclosed. On the contrary, the intention is to cover modifications and alternate constructions coming within the spirit and scope of the disclosure as generally expressed by the following claims, which particularly point out and distinctly claim the subject matter of embodiments disclosed herein.
Although embodiments have been described and pictured in an exemplary form with a certain degree of particularity, it should be understood that the present disclosure has been made by way of example, and that numerous changes in the details of construction and combination and arrangement of parts and steps may be made without departing from the spirit and scope of the disclosure as set forth in the claims hereinafter.
Sloan, Todd F., Forsberg, Chris, Coupal-Sikes, Eric M., Tyerman, Landon, van Hanegem, Brad Jonathan
Patent | Priority | Assignee | Title |
11312221, | Apr 19 2019 | Hexagon Purus North America Holdings Inc. | Electric powertrain system for heavy duty vehicles |
11345331, | Nov 26 2019 | ENVIROMECH INDUSTRIES ULC; HEXAGON PURUS NORTH AMERICA HOLDINGS INC | Electric vehicle power distribution and drive control modules |
11420507, | May 30 2019 | Mazda Motor Corporation | Power train support structure for vehicle |
11548363, | Jun 27 2018 | Daimler Truck AG | Vehicle battery pack support device |
11548380, | Oct 19 2012 | Agility Fuel Systems LLC | Systems and methods for mounting a fuel system |
11652250, | Apr 19 2019 | Hexagon Purus North America Holdings Inc. | Electric front end accessory devices assembly |
11772474, | Apr 19 2019 | Hexagon Purus North America Holdings Inc. | Electric powertrain system for heavy duty vehicles |
11780337, | Aug 24 2018 | Hexagon Purus North America Holdings Inc. | Vehicle battery system |
11820241, | Nov 30 2020 | Nikola Corporation | Battery pack assembly |
11827112, | Nov 30 2020 | Nikola Corporation | High voltage electrical system for battery electric vehicle |
11919343, | Dec 11 2020 | Hexagon Purus North America Holdings Inc.; Agility Fuel Systems LLC | Trailer hookup breakaway mitigation systems and methods |
11926207, | Oct 09 2020 | HEXAGON PURUS NORTH AMERICA HOLDINGS INC ; HEXAGON PURUS SYSTEMS CANADA LTD | Battery and auxiliary components for vehicle trailer |
11932098, | Oct 12 2020 | Volvo Truck Corporation | Battery assembly |
11970066, | Nov 30 2020 | Nikola Corporation | Electric vehicle battery frame assembly |
ER1996, |
Patent | Priority | Assignee | Title |
10000908, | Jul 28 2014 | HITACHI CONSTRUCTION MACHINERY CO , LTD | Hybrid-type working machine |
10017037, | Feb 09 2016 | NIO TECHNOLOGY ANHUI CO , LTD | Vehicle having a battery pack directly attached to the cross rails of a frame structure |
10121609, | Oct 20 2015 | Kill switch | |
10160344, | Feb 09 2016 | NIO ANHUI HOLDING CO , LTD | Modular battery assembly |
10166883, | Jul 24 2015 | DR ING H C F PORSCHE AKTIENGESELLSCHAFT | Underbody of an electrically driven motor vehicle |
10177356, | Jun 16 2017 | Hyundai Motor Company; Kia Motors Corporation | Automotive battery mounting structure |
10183698, | Mar 26 2015 | SERVICES AUTOMOBILES GRANTUNED INC | Fuel to electric reusable conversion kit and a method of converting and reusing the conversion kit |
10199781, | Jan 03 2017 | Retractable trailer electrical connection system | |
10236496, | Nov 25 2014 | Autonetworks Technologies, Ltd; Sumitomo Wiring Systems, Ltd; SUMITOMO ELECTRIC INDUSTRIES, LTD | Wiring module |
10259329, | Apr 04 2013 | PANASONIC AUTOMOTIVE SYSTEMS CO , LTD | Power conversion apparatus and junction box |
10308132, | May 09 2016 | EMBR MOTORS, INC | Electric utility terrain vehicle |
10358023, | Nov 07 2015 | KONECRANES GLOBAL CORPORATION | Transport vehicle for containers, comprising a battery module for supplying the drive unit |
10358024, | Sep 19 2017 | Mazda Motor Corporation | Electric-drive vehicle structure |
10414351, | Apr 15 2016 | Toyota Jidosha Kabushiki Kaisha | Electric interconnect structure for fuel cell vehicles |
10421345, | Aug 29 2016 | KOENIG METALL GmbH & Co. KG; Jobst H., Kerspe | Electric truck |
10427627, | Feb 12 2016 | HONDA MOTOR CO , LTD | Cable structure and vehicle |
10457156, | Dec 04 2014 | HONDA MOTOR CO , LTD | Vehicle power source system and cooling circuit |
10464613, | Nov 02 2017 | Toyota Jidosha Kabushiki Kaisha | Supporting structure for vehicle high-voltage unit and vehicle front portion structure |
10486515, | Nov 07 2016 | Toyota Jidosha Kabushiki Kaisha | Vehicle lower section structure |
10493837, | Oct 11 2018 | PACCAR Inc | Chassis mounted assemblies for electric or hybrid vehicles |
10516146, | Oct 28 2016 | TIVENI MERGECO, INC | Fixation of a battery module in a battery module compartment of an energy storage system |
10543796, | Jul 03 2017 | Honda Motor Co., Ltd. | Protection device for vehicle electrical component |
10559858, | Feb 17 2017 | Toyota Jidosha Kabushiki Kaisha | Battery pack |
10569634, | Aug 18 2017 | GM Global Technology Operations LLC | Multi-functional cooling channel and busbar for battery cell pack |
10583746, | Oct 25 2016 | Honda Motor Co., Ltd. | Vehicle power source system |
10589788, | Jan 29 2019 | Nikola Corporation | Vehicle frame arrangement |
10589797, | May 09 2016 | Nikola Corporation | Vehicle front suspension system |
10604188, | Apr 11 2017 | Honda Motor Co., Ltd. | Protection structure of high voltage electrical equipment unit |
10611408, | Dec 06 2016 | Dr. Ing. h.c. F. Porsche Aktiengesellschaft | Vehicle body for an electrically driven vehicle |
10641431, | Dec 22 2016 | STEELHEAD COMPOSITES, INC | Lightweight composite overwrapped pressure vessels with sectioned liners |
10654530, | Dec 30 2015 | Nikola Corporation | Wrap around vehicle windshield |
10661680, | May 09 2016 | EMBR MOTORS, INC | Electric utility terrain vehicle |
10661844, | Dec 30 2015 | Nikola Corporation | Systems, methods, and devices for an automobile door or window |
10668807, | Nov 11 2013 | WORTHINGTON ENTERPRISES, INC | Compressed natural gas fueling system with integrated fill receptacle |
10670191, | Sep 28 2017 | Hexagon Technology AS | Low profile cylinder mount |
10688856, | Jan 30 2018 | Toyota Jidosha Kabushiki Kaisha | Vehicle floor structure |
10688857, | May 25 2018 | Honda Motor Co., Ltd. | Vehicle body structure |
10696251, | Sep 15 2017 | Honda Motor Co., Ltd. | Vehicle |
10703416, | Nov 02 2017 | Toyota Jidosha Kabushiki Kaisha | Vehicle front portion structure |
10752102, | Mar 22 2018 | Trailer mounted battery range extender for electric truck tractor | |
10823333, | Jan 25 2016 | PLASTIC OMNIUM NEW ENERGIES FRANCE | Pressure vessel system |
10899214, | Apr 19 2019 | Hexagon Purus North America Holdings Inc. | Electric powertrain system for heavy duty vehicles |
1678033, | |||
3760134, | |||
4248323, | Apr 22 1977 | Lucas Industries Limited | Electric vehicle with displaceable battery pack |
4317497, | Jul 28 1980 | General Motors Corporation | Battery tray for electric vehicle |
4365681, | Dec 22 1980 | General Motors Corporation | Battery support structure |
5421600, | Oct 02 1992 | Trailer coupler safety system | |
5460234, | Mar 04 1992 | Honda Giken Kogyo Kabushiki Kaisha | Motor vehicle |
5558949, | Dec 27 1993 | Honda Giken Kogyo Kabushiki Kaisha | Battery box |
5585205, | Jul 06 1993 | Institute for Home Economics of Japan, Inc. | System apparatus for battery swapping |
6188574, | Jul 21 1998 | Honda Giken Kogyo Kabushiki Kaisha | Cooling structure for electric vehicle |
6547020, | May 04 2001 | INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, L L C | Battery mounting assembly |
6575258, | Dec 21 1999 | Electric current and controlled heat co-generation system for a hybrid electric vehicle | |
6624610, | Mar 01 1999 | Tokyo R & D Co., Ltd. | Electric vehicle |
6668957, | Apr 04 2002 | INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, L L C | Vehicle battery support platform assembly and cross tie alignment tool |
6971657, | Mar 13 2003 | Cargotec Solutions LLC | Driver access system for motor truck tractor |
7051825, | May 21 2003 | Honda Motor Co., Ltd. | Structure for installing high-voltage equipment component to vehicle |
7144039, | Nov 11 2002 | Honda Motor Co., Ltd. | Vehicle front body structure |
7237644, | Nov 19 2002 | Honda Motor Co., Ltd. | Vehicle canister arranging structure |
7398849, | Oct 27 2004 | Mitsubishi Fuso Truck and Bus Corporation | Mounting structure of electronic apparatus in vehicle |
7507499, | May 24 2004 | GM Global Technology Operations LLC | Battery pack arrangements |
7931105, | Jan 26 2007 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Structure for mounting batteries onto electric vehicles |
8037960, | Feb 28 2006 | Toyota Jidosha Kabushiki Kaisha | Structure for mounting electricity storage pack on vehicle |
8051934, | Feb 27 2006 | Toyota Jidosha Kabushiki Kaisha | Structure mounting an electricity storage pack on a vehicle |
8127876, | Oct 26 2006 | Deere & Company | Cooling enclosure for electronic motor control components |
8276697, | Dec 28 2006 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Structure for mounting batteries to electric vehicles |
8342279, | Sep 21 2009 | The Boeing Company | Modular vehicle and associated method of construction |
8397853, | Dec 18 2008 | FERRARI S.p.A. | Method of arranging an electric accumulating system close to a platform of a vehicle and hybrid propulsion vehicle |
8464817, | Jun 02 2010 | Mazda Motor Corporation | Battery mounting structure of electromotive vehicle |
8474559, | Feb 26 2010 | Suzuki Motor Coporation | Vehicle body front part structure |
8517126, | Mar 04 2010 | HONDA MOTOR CO , LTD | Electric vehicle |
8596685, | Jul 23 2010 | RENAULT S A S | Motor vehicle chassis having a part for attaching bodywork elements and electrical cables to the central floor |
8616319, | Jun 25 2010 | Subaru Corporation | Mounting structure for vehicle battery box |
8672354, | Dec 28 2010 | POSCO CO , LTD | Underbody for electric vehicle |
8701842, | Jan 30 2009 | DEXTER AXLE COMPANY LLC | Trailer breakaway switch cable |
8764469, | Sep 28 2012 | SAFECONNECT SYSTEMS LLC | Power supply system including panel with safety release |
8776927, | Jun 08 2010 | Nissan Motor Co., Ltd.; NISSAN MOTOR CO , LTD | Vehicle battery pack housing structure |
8778527, | Sep 04 2007 | Hyundai Motor Company | Battery casing assembly for vehicle |
8783396, | Jan 21 2010 | ePower Engine Systems, LLC | Hydrocarbon fueled-electric series hybrid propulsion systems |
8789635, | Jun 10 2009 | KONECRANES GLOBAL CORPORATION | Heavy-duty ground transportation vehicle, in particular an unmanned heavy-duty transportation vehicle for ISO containers |
8794361, | Jun 16 2011 | Hyundai Motor Company; Kia Motors Corporation | Cooling structure for environmental-friendly vehicle |
8905170, | Mar 30 2012 | Honda Motor Co., Ltd. | Low-slung electric vehicle |
9033078, | Mar 01 2011 | RENAULT S A S | System for connecting a power-supply battery of a motor vehicle |
9033085, | Feb 20 2014 | ATIEVA, INC.; ATIEVA, INC | Segmented, undercarriage mounted EV battery pack |
9056557, | Mar 14 2013 | KEDZIERSKI, NORBERT | Conversion kit for converting a gasoline powered mid engine car to an electric powered car |
9061712, | Jul 08 2011 | THYSSENKRUPP STEEL EUROPE AG | Understructure for a vehicle |
9077019, | Aug 31 2010 | Toyota Jidosha Kabushiki Kaisha | Electricity storage device and vehicle |
9085226, | Mar 22 2012 | Subaru Corporation | Vehicle |
9103092, | Feb 18 2011 | KOBELCO CONSTRUCTION MACHINERY CO , LTD | Hybrid construction machine |
9108497, | Jun 13 2011 | EMATRIX ENERGY SYSTEMS, INC | Structural enclosure for packaging power electronics for vehicle battery modules and methods of servicing and manufacturing vehicles using same |
9108691, | Dec 16 2010 | GKN Land Systems Limited | Tractor/trailer combinations |
9205749, | May 08 2012 | Toyota Jidosha Kabushiki Kaisha | Electric vehicle |
9227582, | Nov 14 2011 | HONDA MOTOR CO , LTD | Vehicle mounting structure for batteries |
9283838, | May 28 2009 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system protection in a vehicle |
9321352, | Oct 24 2011 | Arpin Renewable Energy, LLC | Solar auxiliary power systems for vehicles |
9409495, | Oct 05 2012 | NISSAN MOTOR CO , LTD | Vehicle apparatus attaching structure |
9457652, | Oct 19 2012 | Agility Fuel Systems LLC | Systems and methods for mounting a fuel system |
9586490, | Sep 19 2012 | NISSAN MOTOR CO , LTD | Charging port structure |
9636984, | Nov 18 2015 | Ford Global Technologies, LLC | Integrated extruded battery enclosure attachment |
9776665, | Oct 26 2015 | Ford Global Technologies, LLC | Load path control mechanism |
9812685, | Nov 16 2012 | KAWASAKI MOTORS, LTD | Battery pack for electric vehicle |
9884545, | Nov 01 2016 | Ford Global Technologies, LLC | Traction battery mounting assembly and securing method |
9902348, | Sep 30 2015 | HONDA MOTOR CO , LTD | Vehicle body front structure |
20040134699, | |||
20040178602, | |||
20040231831, | |||
20050162015, | |||
20050218136, | |||
20080169139, | |||
20080225483, | |||
20080258682, | |||
20100000816, | |||
20100112843, | |||
20100163326, | |||
20100175940, | |||
20100320012, | |||
20110068622, | |||
20110114398, | |||
20120055725, | |||
20120090907, | |||
20120103714, | |||
20120160583, | |||
20120175177, | |||
20120255799, | |||
20130108897, | |||
20130248268, | |||
20140141288, | |||
20140338999, | |||
20150291056, | |||
20160079795, | |||
20160087256, | |||
20160190526, | |||
20160226041, | |||
20170282709, | |||
20170320382, | |||
20180022389, | |||
20180062125, | |||
20180145382, | |||
20180183118, | |||
20180190960, | |||
20180319263, | |||
20180339594, | |||
20180370368, | |||
20190036181, | |||
20190061505, | |||
20190074495, | |||
20190074497, | |||
20190081298, | |||
20190181517, | |||
20190229314, | |||
20190263449, | |||
20190291560, | |||
20190326573, | |||
20190393571, | |||
20200083573, | |||
20200088299, | |||
20200094669, | |||
20200139808, | |||
20200180848, | |||
20200247225, | |||
20200331334, | |||
20200331536, | |||
20200335840, | |||
20200384854, | |||
AU2018232986, | |||
CN103863080, | |||
CN105438262, | |||
CN2647706, | |||
DE10108713, | |||
DE102006009189, | |||
DE102011109024, | |||
DE102012109062, | |||
EP1577143, | |||
EP2712748, | |||
EP3640123, | |||
GB2546535, | |||
GB491788, | |||
GB527052, | |||
GB744973, | |||
JP2010100207, | |||
KR1019980035495, | |||
KR1020170000950, | |||
WO2014044618, | |||
WO2018123337, | |||
WO2020041630, | |||
WO2020215018, | |||
WO2020215023, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 31 2019 | TYERMAN, LANDON | Agility Fuel Systems LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056387 | /0515 | |
Nov 21 2019 | SLOAN, TODD F | Agility Fuel Systems LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056387 | /0515 | |
Nov 21 2019 | FORSBERG, CHRIS | Agility Fuel Systems LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056387 | /0515 | |
Nov 27 2019 | VAN HANEGEM, BRAD JONATHAN | Agility Fuel Systems LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056387 | /0515 | |
Dec 03 2019 | COUPAL-SIKES, ERIC M | Agility Fuel Systems LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056387 | /0515 | |
Apr 30 2020 | Hexagon Purus North America Holdings Inc. | (assignment on the face of the patent) | / | |||
May 26 2021 | Agility Fuel Systems LLC | HEXAGON PURUS NORTH AMERICA HOLDINGS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056398 | /0902 |
Date | Maintenance Fee Events |
Apr 30 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 24 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 22 2024 | 4 years fee payment window open |
Dec 22 2024 | 6 months grace period start (w surcharge) |
Jun 22 2025 | patent expiry (for year 4) |
Jun 22 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 22 2028 | 8 years fee payment window open |
Dec 22 2028 | 6 months grace period start (w surcharge) |
Jun 22 2029 | patent expiry (for year 8) |
Jun 22 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 22 2032 | 12 years fee payment window open |
Dec 22 2032 | 6 months grace period start (w surcharge) |
Jun 22 2033 | patent expiry (for year 12) |
Jun 22 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |