The present disclosure describes a system, apparatus, and method for storing, transporting, delivering, and dispensing carbonated beverages that maintains a high degree of carbonation and extends the shelf life of the beverage. The system includes a container that includes an outlet for dispensing the beverage. Disposed within the container is a first bladder that contains a fluid and an apparatus for exerting a constant pressure on the first bladder. The fluid is dispensed from the first bladder through the outlet, in response to the apparatus exerting pressure on the first bladder.

Patent
   11046569
Priority
Apr 19 2017
Filed
Oct 30 2019
Issued
Jun 29 2021
Expiry
Apr 19 2037
Assg.orig
Entity
Small
0
108
window open
1. A beverage dispensing system for reducing formation of headspace comprising:
a container comprising:
a base; and
a plurality of interconnected panels connected to the base to form the container, wherein at least one of the plurality of panels comprises an opening configured to receive an outlet;
a first bladder storing a carbonated fluid fitting within the container and comprising an outlet channel, wherein the first bladder comprises food grade material;
a valve connected to the outlet channel of the bladder, wherein the valve opens and closes to control a flow of the carbonated fluid from the first bladder;
a ratcheting mechanism for exerting a constant pressure on the first bladder to reduce formation of carbon dioxide in a headspace of the first bladder; and
a motor configured to raise or lower a diaphragm attached to a distal end of the ratcheting mechanism.
2. The beverage dispensing system of claim 1, wherein the container comprises a water-resistant coating.
3. The beverage dispensing system of claim 1, wherein the container is made of a waterproof material.
4. The beverage dispensing system of claim 1, wherein the valve comprises at least one of: a faucet, a one-way check valve, or a hinge-valve.
5. The beverage dispensing system of claim 1, further comprising a support structure disposed within the container.
6. The beverage dispensing system of claim 5, wherein the support structure is separate and distinct from the container.
7. The beverage dispensing system of claim 5, wherein the support structure comprises one or more compartments capable of storing cooling material.
8. The beverage dispensing system of claim 5, wherein the support structure comprises a compartment for holding the first bladder.
9. The beverage dispensing system of claim 5, wherein the support structure comprises at least one of: polyurethanes, polyesters, epoxy resins, or phenolic resins.
10. The beverage dispensing system of claim 1, wherein the food grade material comprises at least one of: polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly(butylene 2,6-naphthalate) (PBN), polyethylene (PE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), polypropylene (PP), fluoropolymer, Polychlorotrifluoroethylene (PCTFE), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), or perfluoroalkoxy (PFA).
11. The beverage dispensing system of claim 1, wherein the food grade material comprises at least one of: a nylon, a plastic, an ethylene-vinyl alcohol copolymer, a polyolefin, a natural polymer, or a synthetic polymer.
12. The beverage dispensing system of claim 1, wherein the base and the plurality of interconnected panels form a rectangular shape.
13. The beverage dispensing system of claim 1, wherein the first bladder is cube-shaped.
14. The beverage dispensing system of claim 1, wherein the valve is affixed to the outlet channel of the first bladder.
15. The beverage dispensing system of claim 1, wherein the valve comprises an interface to connect to the outlet channel of the first bladder.

The present application is a continuation of co-pending U.S. application Ser. No. 16/134,922, entitled “Beverage Dispensing System” and filed on Sep. 18, 2018, which is a continuation of U.S. application Ser. No. 15/491,524, entitled “Beverage Dispensing System” and filed on Apr. 19, 2017, which issued as U.S. Pat. No. 10,106,393 on Oct. 23, 2018, the entireties of which are hereby incorporated by reference.

The present application is directed to a system, apparatus, and method for the improved storage, transportation, delivery, and dispensing of carbonated beverages.

Carbonated beverages are traditionally stored, transported, and consumed from a can, bottle, or other large vessel. Cans and bottles typically contain 12 fluid ounces (fl. oz.) with six, twelve, or twenty-four cans or bottles per container. However, the cylindrical design of cans and bottles results in inefficient packing. Moreover, glass bottles are much heavier than aluminum cans or bottles resulting in greater transportation costs. Furthermore, in several states, glass bottles are returned to the brewer, which must clean and sanitize the bottles before reusing.

In addition to the shortcomings with cans and bottles discussed above, large vessels, such as 2 liter bottles and kegs, have an additional shortcoming in that a small percentage of the beverage will be wasted. Additionally, beverages that are stored in large vessels present a greater risk of oxidation and loss of carbonation. Kegs also present a number of disadvantages. For example, the weight of kegs increases shipping costs. Furthermore, kegs must be returned, and the tracking of each keg between the producer, distributor, and retailer is a logistical problem resulting in yet additional costs. Additionally, a separate tap represents an additional expense for consumers. Finally, the carbonated beverages in kegs risk oxidation and loss of carbonation if the beverage is not consumed in a timely fashion.

According to one aspect of the disclosure, a system for storing, transporting, delivering, and dispensing carbonated beverages that maintains a high degree of carbonation and extends the shelf life of the beverage. The system includes a container with an outlet for dispensing a liquid. Additionally, the container contains a first bladder for storing a liquid and a second bladder to exert pressure on the first bladder to dispense the liquid contained in the first bladder. A pump may be attached to the second bladder, through the container, to fill the second bladder, for example, with atmosphere, a gas, or other fluid. In some examples, the system includes a support structure that holds the first and second bladder inside the container. According to some examples, the second bladder is adjacent to the first bladder. In other examples, the second bladder is located within the first bladder.

According to another aspect of the disclosure, a system for storing, transporting, delivering, and dispensing beverages includes a container with an outlet for dispensing a liquid. The container also contains a first bladder that stores a liquid and a diaphragm that exerts pressure on the bladder to dispense the liquid. The system includes a diaphragm to raise and lower the diaphragm to control the pressure on the first bladder.

FIG. 1 shows a prior art beverage dispensing system.

FIG. 2 illustrates an embodiment of a dual-bladder beverage dispensing system.

FIG. 3 illustrates another embodiment of a dual-bladder beverage dispensing system.

FIG. 4 shows a dual-bladder beverage dispensing system according to another embodiment.

FIG. 5 shows an embodiment of a bladder-in-bladder beverage dispensing system.

FIG. 6 illustrates another embodiment of a beverage dispensing system according to the present disclosure.

FIG. 7 shows yet another embodiment of a beverage dispensing system according to another aspect of the disclosure.

As discussed above, carbonated beverages contain dissolved carbon dioxide at pressures greater than atmospheric pressure. However, once a carbonated beverage is opened to the atmosphere, the beverage slowly loses carbonation due to Henry's Law. To compensate for this loss in carbonation, carbonated beverage packagers fill the headspace of the container with carbon dioxide. However, once the container is opened, the partial pressure slowly returns to atmospheric conditions. As carbon dioxide accounts for less than 1% of the gas particles in the atmosphere, the dissolved carbon dioxide will leave the solution (e.g. carbonated beverage) and escape from the container, which results in the beverage losing carbonation and becoming “flat.”

The present disclosure describes a system, apparatus, and method for storing, transporting, delivering, and dispensing carbonated beverages that maintains a high degree of carbonation and extends the shelf life of the beverage. The system includes a container that includes an outlet for dispensing a beverage. The container may include a support structure. Disposed within the container and the support structure is a first bladder that is connected to the outlet. The first bladder contains a liquid that is dispensed through the outlet. The system includes a second bladder to exert pressure on the first bladder. As liquid is dispensed from the first bladder, the second bladder increases in pressure and expands in volume to exert pressure on the first bladder, thereby forcing the liquid toward lower pressure (e.g., the outlet valve). In this regard, a constant total volume may be maintained between the first and second bladders. Increasing the volume of the second bladder maintains pressure on the first bladder to sustain greater than atmospheric pressure on the first bladder to minimize the amount of atmosphere flowing back into the first bladder and reduce the formation of additional headspace. By minimizing the formation of additional headspace, the examples of the present disclosure reduce the loss of carbon dioxide dissolved in the liquid stored in the first bladder. This represents an improvement over prior art systems that permit atmosphere to flow into the vessel, thereby creating additional headspace for dissolved carbon dioxide to escape from the liquid.

Containers containing a bladder for dispensing beverages are known in the art. The most notable being a bladder contained within a box for dispensing wine, colloquially known as wine-in-a-box. FIG. 1 illustrates a prior art beverage dispensing system 100 that includes a bladder within a container. The beverage dispensing system 100 includes a container 110. The container 110 is typically rectangular in shape; however, the container 110 may be cylindrical or any other suitable shape. The container 110 also contains an outlet 120. The outlet valve 120 is connected to a bladder 130 located within the container 110. The outlet valve 120 dispenses the liquid contained in the bladder 130. The bladder 130 may include any suitable food grade material or combination of food grade materials. For example, bladder 130 may be manufactured from one or more polymers, including plastics, nylons, EVOH, polyolefins, or other natural or synthetic polymers. Alternatively, bladder 130 may be produced using polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly(butylene 2,6-naphthalate) (PBN), polyethylene (PE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), polypropylene (PP), and/or fluoropolymer, such as but not limited to, Polychlorotrifluoroethylene (PCTFE), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), and perfluoroalkoxy (PFA).

While prior art systems show a beverage dispensing system that includes a bladder disposed within a container, these systems are not equipped to accommodate fluids under pressure, especially carbonated beverages. FIG. 2 illustrates a bladder-on-bladder beverage dispensing system 200 for carbonated beverages that prevents the loss of carbonation and extends shelf life of the carbonated beverages. Bladder-on-bladder beverage dispensing system 200 includes a container 210. Container 210 includes a support structure 220, an outlet 230, and a pump 260. Within the support structure there is a first bladder 240 and a second bladder 250.

Container 210 may be made from any suitable material, including a waterproof material. Alternatively, the container 210 may be made from cardboard and coated in a water resistant material. A plurality of interconnected panels connected to the base to for the container. The container 210 is preferably rectangular-shaped, although other shapes may be used for the container, such as cylindrical. Support structure 220 is disposed within container 210. The support structure 220 would provide additional support to the beverage dispensing system 200, especially with respect to rectangular-shaped containers. In this regard, square vessels typically do not behave well under pressure, at least not as well as cylindrical containers. Support structure 220 provides additional support to compensate for the poor performance rectangular-shaped containers typically exhibit with fluids under pressure. Accordingly, support structure 220 may be made from a durable plastic, such as polyurethanes, polyesters, epoxy resins, and phenolic resins. Support structure 220 may also be produced as a molded plastic to form compartments between support structure 220 and the interior of container 210. The compartments may be filled with ice or other material (e.g. dry ice) to cool the liquid contained in first bladder 240. Additionally, support structure 220 may include a first channel (not shown) to connect outlet 230 to first bladder 240 and a second channel (not shown) to connect pump 260 to second bladder 250.

In preferred embodiments, outlet 230 may include a valve built into the container 210. Outlet 230 may be a spigot that opens to release the liquid from first bladder 240. In some embodiments, outlet 230 may be a one-way check valve to reduce the amount of air flowing into first bladder 240. Alternatively, outlet 230 may be an interface where a dispensing unit or tubing may be attached. In this regard, the dispensing unit and/or tubing may connect to a jockey box to chill the fluid contained in first bladder 240 prior to being dispensed through outlet 230. As noted above, outlet 230 connects to the first bladder 240 via a channel in the support structure 220. According to some embodiments, support structure 220 may include a compartment proximately located to the channel to store ice or other material to cool the liquid contained in first bladder 240 prior to it being dispensed.

Similar to outlet 230, pump 260 may be built into the container 210. In this regard, pump 260 may be connected to the second bladder 250 through a channel in the support structure. According to some examples, pump 260 may manually fill second bladder 260 with atmosphere through a pumping action. Alternatively, pump 260 may automatically fill the second bladder 250 with a gas, such as carbon dioxide or nitrous oxide. Accordingly, the pump 260 may include a cartridge containing the gas. The cartridge may contain a regulator and/or check valve. The cartridge may be connected to outlet 230 such that when outlet 230 is opened pump 260 is activated to fill the second bladder 250 with gas and dispense the liquid from the first bladder 240. In still yet alternative embodiments, second bladder 260 may be filled with a dense fluid. According to these embodiments, the dense fluid may be stored in a reservoir (not shown) and flow into second bladder 250. For example, the dense fluid may flow in response to a person opening outlet 230. In this regard, there may be an actuator connected to the reservoir to permit the dense fluid to flow from the reservoir into second bladder 250.

The first bladder 240 is a bladder made of food-grade material configured to hold a fluid, such as a carbonated beverage. In preferred embodiments, the first bladder 240 is cubic-shaped and made from any suitable food-grade material. For example, the first bladder 240 may include any suitable food-grade material or combination of food-grade materials, such as one or more polymers, including plastics, nylons, EVOH, polyolefins, or other natural or synthetic polymers, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly(butylene 2,6-naphthalate) (PBN), polyethylene (PE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), medium-density polyethylene (HDPE), high-density polyethylene (HDPE), polypropylene (PP), and/or fluoropolymer. While preferred examples include a cubic-shaped first bladder 240, rectangular or cylindrical shapes may be used for the first bladder 240.

The second bladder 250 is an air-tight bladder configured to expand and contract in response to the application of pressure. In this regard, the second bladder 250 may be made from any suitable material, including the same material as the first bladder 240. Moreover, the second bladder 250 may be the same shape as the first bladder 240. Alternatively, the second bladder 250 may be the same shape as the container 210 to better fill the interior cavity of container 210 and exert pressure on first bladder 240.

Turning to FIG. 3, another example of a bladder-on-bladder beverage dispensing system 300 is shown. The beverage dispensing system 300 includes a container 310. The surface of container 310 includes an outlet 320 and a pump 350, while a first bladder 330 and a second bladder 340 are disposed within the container 310. Container 310 is preferably rectangular-shaped and made from any suitable material, such as those discussed above. The bladder-on-bladder beverage dispensing system 300 does not show a support structure; however, the support structure, such as the one discussed above, may be included in the bladder-on-bladder dispensing system 300.

A previously discussed, outlet 320 may be a valve built into the container 310, such as a spigot, a faucet, one-way check valve, or a hinge-valve, that opens to release a fluid from the first bladder 330. Alternatively, outlet 320 may be an interface where a spigot, a faucet, one-way check valve, or a hinge-valve may be connected to the container 310. In this regard, the outlet 320 may include a channel connecting to the first bladder 340.

The pump 350 may also be built into the container 310. Specifically, the pump 350 may be connected to the second bladder 340 through the container 310. Preferably, pump 350 manually inflates the second bladder 340. Alternatively, pump 350 may be a disposable cartridge configured to automatically fill the second bladder 340 with a gas. According to these examples, the cartridge may be connected to the outlet 320 such that when the outlet 320 is opened the pump 350 is activated to fill the second bladder 340 with gas and dispense the liquid from the first bladder 330.

The first bladder 330 is a food-grade bladder made of any suitable material, such as one or more of the materials discussed above. The second bladder 340 is an air-tight bladder configured to expand and contract in response to the application of pressure. In operation, a user will fill second bladder 340 using pump 350. Second bladder 340 expands and exerts pressure on first bladder 330. The pressure exerted on first bladder 330 by second bladder 340 maintains a substantially constant pressure, thereby reducing the amount of carbonation that escapes from the carbonated fluid contained in first bladder 330. The pressure in second bladder 340 is increased, and the user will open outlet 320 at which time the fluid contained in first bladder 330 will flow through outlet 320. In this regard, a user may open outlet 320 after increasing the pressure on second bladder 340 or at the same time that pressure is being applied to second bladder 340.

In some embodiments, the second bladder may be attached to multiple locations on the interior of the container. FIG. 4 shows another embodiment of a bladder-on-bladder beverage dispensing system 400. The beverage dispensing system 400 includes a container 410 with an outlet 420 and a pump 450 located on the exterior surface container 410. As previously discussed, container 410 may be rectangular-shaped to maximize volumetric efficiency. A support structure (not shown), such as the one discussed above, may be included in the bladder-on-bladder dispensing system 400. Outlet 420 may be built into container 410 to release a fluid from the first bladder 430. Alternatively, outlet 430 may be an interface where a spigot, a faucet, a one-way check valve, or a hinge-valve may be connected to the container 410. In this regard, outlet 420 may be connected to first bladder 430 via a channel in container 410. Pump 450 may also be built into the container 410. In this regard, pump 450 may be connected to second bladder 440 through the container 410. According to preferred examples, pump 450 may be used to manually inflate second bladder 440. However, pump 450 may automatically inflate second bladder 440. That is, pump 450 may activate a tank or cartridge of compressed gas to release the gas second bladder 440. According to these examples, the tank or cartridge may be connected to outlet 420 such that when outlet 420 is opened, pump 450 is activated automatically to fill second bladder 440 with gas while simultaneously dispensing the liquid from first bladder 430.

As previously noted, first bladder 430 is a bladder made of any suitable, food-grade material. Second bladder 440 is an air-tight bladder configured to expand and contract in volume. Second bladder 440 may be conical shaped that encompasses first bladder 430 to maximize the volume of liquid contained within first bladder 430. According to some embodiments, second bladder 440 may include a first appendage 442, a second appendage 444, and a third appendage 446 that attach to an interior surface of container 410 to maintain the location of second bladder 440. While only three appendages are illustrated in FIG. 4, any number of appendages may be used. The appendages 442, 444, and 446 preferably connect to the bottom interior of container 410, although the appendages may be connected to any interior portion of container 410 to maintain the location of second bladder 440. Additionally, appendages 442, 444, and 446 may be extensions of second bladder 440. Alternatively, appendages 442, 444, and 446 may be a pliable material that attaches to both second bladder 440 and the interior of container 410. In operation, second bladder 440 expands in volume to compensate for the decrease in volume from first bladder 430 as liquid is dispensed via outlet 420. Accordingly, system 400 maintains a constant pressure on first bladder 430, which minimizes the amount of headspace in first bladder 440 and reduces the loss of carbonation from the liquid maintained in first bladder 440.

According to another embodiment of the disclosure, a bladder within a bladder beverage dispensing system could be used to reduce the loss of carbonation and extend the shelf-life of the carbonated fluid. FIG. 5 illustrates an example of a bladder within a bladder beverage dispensing system 500. The bladder within a bladder beverage dispensing system 500 includes a container 510 that has an outlet valve 520 and a pump 550. Disposed within container 510 is a first bladder 530. A second bladder 540 is located within the first bladder 530.

As discussed above, the outlet 520 is preferably a valve built into the container 510, such as a spigot, a faucet, a one-way check valve, or a hinge-valve that opens to release the liquid from the first bladder 530. Alternatively, the outlet 520 may be an interface where a spigot, a faucet, or a hinge-valve may be connected to the container 510. In this regard, outlet 520 may include a channel connecting to first bladder 530. Additionally, outlet valve 520 may include an interface on the interior of container 510 for the first bladder 530 to connect to the container 510 and outlet valve 520. In this regard, first bladder 530 may be disposable or interchangeable to allow for the exchange of the first bladder.

The pump 550 may also be built into the container 510. Alternatively, the pump 550 may be an interface on the exterior surface of container 510 where a removable pump may be connected. According to other examples, pump 550 may be a disposable cartridge that connects to an interface on the exterior surface of container 510.

Similar to the bladders discussed above, the first bladder 530 is a food-grade bladder made of any suitable material. Furthermore, the second bladder 540 is an air-tight bladder configured to expand and contract in response to the application of pressure from the pump 550. The first bladder 530 and second bladder 540 may be connected. For example, the first bladder 530 and second bladder 540 may be connected via an interface that connects to top, interior surface of container 510. The interface of the first bladder 530 and second bladder 540 may interlock with a corresponding interface on the interior surface of the container 510. The interface permits pump 550 to fill the second bladder 540 with atmosphere or another type of gas, while maximizing the amount of fluid contained by the first bladder 530.

In an alternative embodiment, the beverage dispensing system of the present disclosure may use a diaphragm in lieu of a second bladder. FIG. 6 illustrates an example of a diaphragm-based beverage dispensing system 600.

The diaphragm-based dispensing system 600 includes a container 610 that has an outlet valve 620 and a knob 650. A first bladder 630 may be located within the container 610. Additionally, the dispensing system 600 includes a diaphragm 640 located within the container 610 that is connected to the knob 650 via a rod.

The outlet 620 may be a valve built into the container 610 that dispenses the liquid from the first bladder 630. Alternatively, the outlet 620 may be an interface where a spigot, a faucet, a one-way check valve, or a hinge-valve may be connected to the container 610 to dispense the liquid from the first bladder 630. Accordingly, the outlet 620 includes a channel connecting to the first bladder 630. As discussed above, the outlet valve 620 may include an interface on the interior surface of container 610 where the first bladder 630 attaches to container 610 and outlet valve 620. The first bladder 630 is a bladder made of any suitable food-grade material, as discussed above.

The diaphragm 640 may be connected to the distal end of a rod. The proximal end of the rod connects to the knob 650. In preferred embodiments, diaphragm 640 has a shape and area substantially equal to the interior of container 610. Substantially equal means that the diaphragm is a several millimeters to a few centimeters smaller than the interior area of container 610. In embodiments that include an internal support structure, substantially equal means the diaphragm is several millimeters to a few centimeters smaller than the interior area of container 610 with the support structure. In this regard, the diaphragm 640 may apply a constant pressure to the first bladder 630. In order to maintain the constant pressure, the knob 650 may vertically raise and/or lower diaphragm 640 via a screw or ratcheting mechanism.

FIG. 7 illustrates an example of a diaphragm-based beverage dispensing system 700. The diaphragm-based dispensing system 700 includes a container 710 that has an outlet valve 720, a first bladder 730, a diaphragm 740, a ratcheting mechanism 750, and a motor 745. The outlet 720 may be any of the valves described above. The first bladder 730 may be constructed from any suitable food-grade material, as discussed above. Diaphragm 740 may have a shape and area substantially equal to the interior of container 710. The diaphragm 740 may apply a constant pressure to the first bladder 730. In order to maintain the constant pressure, the diaphragm 740 may be raised or lowered vertically via ratcheting mechanism 750 and motor 745.

In the embodiments described above, a rectangular shape is preferred for the container since a rectangular shape provides greater volumetric efficiency. That is, more fluid may be stored in rectangular-shaped containers than cylindrical containers. For example, a typical six-pack of bottles of beer is 5 inches wide, 7 inches deep, and 8¼ inches tall, holding 72 fluid ounces (6 bottles, each holding 12 fluid ounces) and occupying approximately 290 cubic inches. By comparison, a 6 inch wide, 6 inch deep, and 6 inch tall implementation of beverage dispensing system 200 would hold approximately 120 fluid ounces and occupy 216 cubic inches of space. Table 1 below illustrates the benefits of implementing a rectangular-shaped container for beverage dispensing system 200.

TABLE 1
edge of cube # 12 fl oz
(in) volume (in3) volume (gal) volume (fl oz) servings
6 216 0.94 120 10
7 343 1.48 190 16
8 512 2.22 284 24
9 729 3.16 404 34
10 1000 4.33 554 46
11 1331 5.76 738 61
12 1728 7.48 958 80
13 2197 9.51 1217 101
14 2744 11.88 1520 127
15 3375 14.61 1870 156
16 4096 17.73 2270 189
17 4913 21.27 2722 227
18 5832 25.25 3232 269
19 6859 29.69 3801 317
20 8000 34.63 4433 369

As illustrated above, the embodiments described in the present application allow for beverage companies to transport the same amount of volume in less space using smaller, uniform containers. Accordingly, the embodiments described herein provide for more efficient packing for shipping and storing purposes. That is, the present invention allows the same volume to be distributed in a smaller, uniformly shaped container allowing for more containers to be transported and/or stored. To further illustrate the advantages of the present disclosure, Table 2 below compares several common containers to examples of the present invention to illustrate how the embodiments provide an equal amount of volume using less space and fewer resources, which results in greater packing efficiency.

TABLE 2
nominal outer dimensions of container
volume volume
of of volume of volumetric
length width height container container beverage packing
(in) (in) (in) (in3) (gallons) (gallons) efficiency
case of cans 15.75 10.5 4.75 786 3.40 2.25 66%
case of bottles 14 9.75 9.25 1263 5.47 2.25 41%
8.5 in edge cube 8.5 8.5 8.5 614 2.66 2.25 85%
⅙ barrel 9.25 diameter 23.375 1571 6.80 5.17 76%
11 in edge cube 11.25 11.25 11.25 1424 6.16 5.17 84%
¼ barrel 16.125 diameter 13.875 2833 12.27 7.75 63%
¼ barrel slim 11.125 diameter 23.375 2272 9.84 7.75 79%
12.75 in edge cube 12.75 12.75 12.75 2073 8.97 7.75 86%

Assuming packing efficiency is determined as the volume of the beverage divided by the total volume of the beverage and its container. In this regard, a case of cans and a case of bottles (both of which contain 2.25 gallons) have an efficiency of 66% and 41%, respectively. In comparison, the beverage dispensing system described herein can transport the same volume (e.g., 2.25 gallons) in less space and making use of fewer resources, which results in a packing efficiency of 85%. On average, the beverage dispensing systems described herein result in approximately an 85% packing efficiency, while the most efficient of conventional containers only have a packing efficiency of 79%. Thus, the beverage dispensing system described herein provides improvements and advantages over prior art systems.

Unless otherwise stated, the foregoing alternative examples are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above can be utilized without departing from the subject matter defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the subject matter defined by the claims. In addition, the provision of the examples described herein, as well as clauses phrased as “such as,” “including” and the like, should not be interpreted as limiting the subject matter of the claims to the specific examples; rather, the examples are intended to illustrate only one of many possible embodiments. Further, the same reference numbers in different drawings can identify the same or similar elements.

Russell, Justin, Rojas, Christopher, LaForgia, Christian, Finneran, David

Patent Priority Assignee Title
Patent Priority Assignee Title
10005098, Jul 11 2016 Techway Industrial Co., Ltd. Power operated dispensing tool
1965271,
2766907,
3029987,
3294289,
3300102,
3323682,
3389838,
3417901,
3561644,
3884396,
3896970,
3949911, May 07 1973 Societe Anonyme dite: L'OREAL Pressurizable container by heat activation
3998072, Mar 12 1975 Shaw-Clayton Plastics, Inc. Portable wine cooler
4033479, Jul 26 1976 Pressure modulating valve
4249677, Feb 08 1978 Hand held electric caulking gun
4255944, Jul 30 1979 AURORA DESIGN ASSOCIATES, INC Server for wine bottles and the like
4265373, May 23 1979 Pressurized dispenser with dip tube extending through sac-in-can
4432473, Feb 21 1984 Sealright Co., Inc. Cartridge-type dispenser
4518103, Sep 09 1981 Aerosol Services Co. Method and apparatus for releasing additional ingredients in a pressurized container
4626243, Jun 21 1985 Applied Biomedical Corporation Gravity-independent infusion system
4669636, Mar 28 1985 Matsushita Electric Works, Ltd. Dispensing gun
4711373, Apr 10 1986 Inpaco Corporation Portable dispensing system
4756450, Jul 04 1984 Battelle Memorial Institute Dispenser of drinks capable of releasing gas in solution
4757920, Jan 20 1987 Refrigerated dispenser for beverages
4771918, Feb 26 1985 Corrugated Products Limited Packages for carbonated beverages
4796788, Aug 26 1987 Liqui-Box Corporation Bag-in-box packaging and dispensing of substances which will not readily flow by gravity
4812054, Aug 05 1988 Insulated beverage box carrier
4857055, Apr 15 1986 Compression device enabling flexible solution containers to produce constant delivery rate
4902278, Feb 18 1987 CARDINAL HEALTH 303, INC Fluid delivery micropump
4921135, Mar 03 1989 Pressurized beverage container dispensing system
4961324, Jan 25 1990 Refrigerated beverage container
5096092, Mar 13 1990 MMM, LTD , A CORP OF IL Food dispensing apparatus utilizing inflatable bladder
5161715, Mar 25 1991 Double-barreled epoxy injection gun
5240144, Jan 06 1989 SELECTOR LTD Beverage dispensing apparatus
5257987, May 21 1990 Pharmetrix Corporation Controlled release osmotic infusion system
5305920, Nov 20 1991 Procter & Gamble Company, The Bag-in-bottle package with reusable resilient squeeze bottle and disposable inner receptacle which inverts upon emptying without attachment near its midpoint to squeeze bottle
5318540, Apr 02 1990 Pharmetrix Corporation Controlled release infusion device
5399166, Nov 23 1992 SCITEK INTERNATIONAL CORPORATION Portable infusion device
5443181, Sep 19 1992 Hilti Aktiengesellschaft Cartridge and piston for dispensing mass
5492534, Apr 02 1990 FLORA INC Controlled release portable pump
5516004, Jun 23 1994 Quoin Industrial, Inc. Pressure regulator and amplifier
5551601, Nov 27 1991 Dispenser with internal diaphragm
5681284, Oct 31 1994 Infusion pump with tube spike holder
5700245, Jul 13 1995 PRO-MED, MEDIZINISHE Apparatus for the generation of gas pressure for controlled fluid delivery
5707361, Mar 10 1994 Siemens Aktiengesellschaft Implantable infusion system with a neutral pressure medication container
5738657, Jun 15 1992 HOSPIRA, INC Ambulatory energized container system
5775539, May 03 1996 Meritool Corporation Electrically operated material dispensing gun and method
5891097, Aug 12 1994 GS Yuasa Corporation Electrochemical fluid delivery device
6056157, Mar 14 1994 ARES CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT Device for dispensing flowable material from a flexible package
6062429, Sep 03 1998 Conmed Corporation Apparatus for supporting and discharging flexible fluid containers
6067906, Jun 10 1997 WALTER STABB ASSOCIATES, INC Method and apparatus for dispensing ink to a printing press
6111187, Mar 31 1998 The United States of America as represented by the Secretary of the Navy Isolated compensated fluid delivery system
6170715, Jun 20 1996 TIMEV PTY LTD Beverage dispenser
6234351, Jan 28 1998 A. R. Arena Products, Inc. Apparatus and method for enhancing evacuation of bulk material shipper bags
6234352, Aug 10 1998 AlliedSignal Inc Method and apparatus to reduce fractionation of fluid blend during storage and transfer
6394981, Apr 30 1996 Medtronic, Inc. Method and apparatus for drug infusion
6398760, Oct 01 1999 Baxter International, Inc. Volumetric infusion pump with servo valve control
6460736, Nov 28 2000 Heated confectionary dispenser
6564970, Jun 15 1999 Createchnic AG Disposable self-opener for opening a tubular bag-cartridge and for pressing out a pasty material from the latter
6732485, Oct 26 2001 LETT, MILE L Method and device for structural reinforcement
6763973, Jul 15 2002 Single use collapsible liquid containment vessel
6789707, Dec 07 1999 PERNA PTY LTD Storage and dispensing of carbonated beverages
6811056, Jun 15 2001 SKYLAB INDUSTRIES Device for supplying a fluid and for recovering said fluid in the same space
6874659, May 23 2002 Hilti Aktiengesellschaft Pressure container
7086566, Jul 03 2003 WHITEWAVE SERVICES, INC Under counter dispenser
7225824, Sep 29 2004 Life Technologies Corporation Dip tube anchor assembly and related container
7334703, May 15 2003 Hilti Aktiengsellschaft Method of producing a pressure container filled with a propellant
7498050, Dec 15 2003 Kraft Foods Group Brands LLC Edible spread composition and packaged product
7954670, Jun 07 2007 PAPER SYSTEMS, INC Container evacuation system
8006873, Jan 21 2003 I P S RESEARCH AND DEVELOPMENT B V Pressure package system
8118893, Jan 26 2009 Intelligent Energy Limited Hydrogen generating fuel cell cartridges
8348173, Dec 18 2006 ROYAL BIJOU Portable temperature controlled container
8360278, Dec 05 2007 Freeze King; International Freezer Corporation Pressure vessel, system and/or method for dispensing a comestible mixture
8459503, May 10 2007 Temperature controlled liquid dispenser, containers therefore, and bag-in-box container construction
8528785, Nov 15 2010 Milwaukee Electric Tool Corporation Powered dispensing tool
8544686, Jul 10 2009 Aervoe Industries, Inc. System for dispensing sprayable material
8579161, May 15 2009 Heartland Food Products, LLC Low profile batter dispenser
8596496, Jul 22 2010 Vinocopia, Inc. Wine storage and dispensing apparatus
8740021, Nov 15 2010 Milwaukee Electric Tool Corporation Powered dispensing tool
8800814, May 31 2011 Fluid pouch dispensing container, cooler and support
8857672, Jun 20 2011 Milwaukee Electric Tool Corporation Carriage assembly for dispensing tool
8960502, Jun 08 2011 Fluid dispenser, system and filling process
9039557, Sep 02 2011 Milwaukee Electric Tool Corporation Powered dispensing tool
9051167, Jul 16 2009 Coopers Brewery Limited Beverage dispensing apparatus
9114971, Apr 15 2009 CARLSBERG BREWERIES A S Method and a system for pressurising and dispensing fluid products stored in a bottle, can, container or similar device
9428326, Jun 03 2014 Marlido, LLC Portable water supply
9708113, Jun 03 2014 Marlido, LLC Portable water supply
9839928, Aug 14 2013 Pumping container for blocking air
20010002675,
20040007589,
20040226968,
20050023292,
20080105711,
20090108033,
20090212071,
20120104047,
20120111894,
20140231427,
20140276587,
20150008242,
20150053717,
20150190839,
20150284147,
20160128351,
20160347597,
20170073147,
EP2281753,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 30 2019Winter Creek Designs(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 30 2019BIG: Entity status set to Undiscounted (note the period is included in the code).
Nov 22 2019SMAL: Entity status set to Small.


Date Maintenance Schedule
Jun 29 20244 years fee payment window open
Dec 29 20246 months grace period start (w surcharge)
Jun 29 2025patent expiry (for year 4)
Jun 29 20272 years to revive unintentionally abandoned end. (for year 4)
Jun 29 20288 years fee payment window open
Dec 29 20286 months grace period start (w surcharge)
Jun 29 2029patent expiry (for year 8)
Jun 29 20312 years to revive unintentionally abandoned end. (for year 8)
Jun 29 203212 years fee payment window open
Dec 29 20326 months grace period start (w surcharge)
Jun 29 2033patent expiry (for year 12)
Jun 29 20352 years to revive unintentionally abandoned end. (for year 12)