A combiner positioning system for a head-up display includes a carrier and a locking element. The carrier supports a combiner for the head-up display, and the combiner is movable between a stowed position and a display position. The locking element has an engaged position and a disengaged position. The locking element engages a portion of the carrier in the display position and rigidly holds the carrier in the display position.
|
1. A combiner positioning system for a head-up display, the system comprising:
a carrier including at least an axle for the head-up display;
a camwheel configured to engage the carrier; and
a locking element configured to engage the camwheel,
wherein when the locking element engages a portion of the axle, the locking element rigidly holds the axle against lateral movement and allows rotation of the axle; and,
wherein when the locking element does not engage the portion of the axle, the locking element does not restrain the axle from moving laterally.
9. A method for positioning in a head-up display, the method comprising:
moving a carrier responsive to a camwheel, wherein the carrier includes an axle;
engaging a locking element with the camwheel to permit movement of the locking element; and
engaging a portion of the axle with the locking element,
wherein when the locking element engages a portion of the axle, the locking element rigidly holds the axle against lateral movement and allows rotation of the axle; and,
wherein when the locking element does not engage the portion of the axle, the locking element does not restrain the axle from moving laterally.
2. The system of
wherein the locking element urges the axle into a recess and rigidly holds the axle in the recess, wherein rigidly holding the axle in the recess increases a resonance frequency of the combiner positioning system.
3. The system of
4. The system of
5. The system of
10. The method of
urging the axle extending from the carrier into a recess with the locking element; and
rigidly holding the axle in the recess, wherein rigidly holding the axle in the recess increases a resonance frequency of the positioning system.
12. The method of
rotating the carrier about an axis defined by the axle extending from the carrier.
13. The method of
disengaging the locking element from the axle portion of the carrier; and
moving the carrier between positions.
14. The method of
15. The method of
|
This application is a continuation of U.S. patent application Ser. No. 15/344,094, filed Nov. 4, 2016, which is a continuation of U.S. patent application Ser. No. 13/656,016, filed Oct. 19, 2012, now U.S. Pat. No. 9,500,864, which claims the benefit of U.S. Provisional Application No. 61/549,999, filed Oct. 21, 2011, the entire contents of which are hereby incorporated by reference as if fully set forth.
A head-up display (HUD) is a translucent display panel which may be used to present information to a user without requiring the user to divert his or her gaze from a preferred gaze direction. For example, a HUD may be used to present a driver of a vehicle with a variety of information (e.g., speed, fuel consumption, navigation information, time, etc.) while allowing the driver to simultaneously view traffic conditions and the road in front of the vehicle.
A typical HUD includes a combiner, a projector, and a visual data source. The combiner is a translucent panel upon which visual data is projected. The combiner usually includes one or more optical coatings that reflect only the specific wavelengths of monochromatic light which are projected by the HUD projector. Thus, the combiner can be conceptualized as a translucent mirror. The HUD projector is positioned relative to the combiner to allow images, graphics, video, or other visual data to be projected onto the combiner. The combiner then reflects the projected images toward the user.
HUD systems require careful design consideration to ensure reliable performance under a variety of operational conditions. For example, a HUD may be exposed to varying environmental conditions such as high humidity, extreme temperatures, and the presence of contaminants which may cause corrosion. Additionally, when a HUD is implemented in a mobile environment, it is desirable to protect the combiner when the HUD system is inactive to mitigate the potential of damaging the combiner. For this purpose, a positioning system may be used to move the combiner between an active display position and a protected storage position.
Repeatable positional accuracy is important for combiner positioning systems because an improperly positioned combiner will not function properly in a HUD system. Such positional accuracy may be achieved by using high precision parts which are manufactured and maintained to very close tolerances. However, the need for such close tolerances has the undesirable effect of increasing the manufacture and maintenance expense associated with the positioning system.
Further, failure to control vibration associated with the combiner may result in a display that is irritating to the user and unpleasant to view over extended periods. Thus, a positioning system is needed which allows the combiner to move between a protected position and a display position and which reduces undesirable vibration to allow for a pleasant viewing experience.
In one embodiment, a combiner positioning system for a head-up display includes a carrier supporting a combiner for the head-up display, wherein the combiner is movable between a stowed position and a display position; a locking element having an engaged position and a disengaged position, wherein the locking element engages a portion of the carrier and rigidly holds the carrier in the display position, wherein, when the locking element is in the disengaged position, the locking element does not engage the portion of the carrier and does not restrain the carrier from moving laterally, wherein lateral movement of the carrier is required for the combiner to move between the stowed position and the display position.
In some embodiments, the combiner positioning system further includes an axle extending from the carrier and defining an axis about which the carrier and combiner rotate when in the display position, wherein the locking element urges the axle into a recess and rigidly holds the axle in the recess when in the display position, wherein rigidly holding the axle in the recess increases a resonance frequency of the combiner positioning system.
In some embodiments, the locking element includes a spring configured to exert a spring force for holding the axle in the display position and in some embodiments the locking element is shaped as a lever comprising a lever axle about which the locking element rotates between the engaged position and the disengaged position.
In some embodiments, the combiner positioning system further includes a guide element defining a path along which the carrier moves between the stowed position and the display position. The guide element may contained within a housing and may be a slot in the housing a rail protruding from the housing, or any other means for guiding the combiner between the stowed position and display position.
Additionally, a method of positioning a combiner for a head-up display is disclosed, the method including moving a carrier between a stowed position and a display position, wherein the carrier supports a combiner for the head-up display and engaging a portion of the carrier with a locking element and rigidly holding the carrier in the display position, wherein the locking element, when in a disengaged position, does not engage the carrier and does not restrain the carrier from moving laterally, wherein lateral movement of the carrier is required for the combiner to move between the stowed position and the display position. In some embodiments, the locking element is shaped as a lever comprising a lever axle about which the locking element rotates between the engaged position and the disengaged position.
In some embodiments, the method further includes urging an axle extending from the carrier into a recess and rigidly holding the axle in the recess when in the display position, wherein rigidly holding the axle in the recess increases a resonance frequency of the positioning system. In some embodiments, a spring may be used to hold the axle in the display position.
In some embodiments, the method further includes rotating the carrier and combiner about an axis defined by an axle extending from the carrier when in the display position. In some embodiments, the method further comprises disengaging the portion of the carrier with the locking element and moving the carrier from the displayed position to the stowed position.
In some embodiments, a guide element defines a path along which the carrier moves between the stowed position and the display position. The guide element may be contained within a housing as a slot in the housing, a rail protruding from the housing, or another guiding means.
Referring to
HUD system 100 may include a combiner 102. Combiner 102 may be any type of combiner designed for operation in a HUD system or otherwise. For example, combiner 102 may be a translucent or transparent panel formed of a generally planar substrate including transparent or translucent polymers, glass, or other transparent or translucent material. Combiner 102 may be treated with one or more optical coatings selected to reflect specific wavelengths of monochromatic light. Combiner 102 may be a flat panel or may have a curvature.
Combiner 102 may be used in conjunction with a complete HUD system. In such a configuration, the HUD system may also include a light projector, a controller, or a video generator (not shown). The projector may be used to project visual images (e.g., pictures, graphics, video, text, etc.) received from a video generator onto combiner 102, which then reflects the visual images to a user. The projector may be located in the dashboard of the vehicle and oriented upward or at an angle to project light toward combiner 102. However, in other embodiments, the projector may be located elsewhere (e.g., attached to the roof, attached to a visor, etc.) Combiner 102 may be oriented vertically or at an angle such that light projected upon combiner 102 is reflected toward a user.
Still referring to
Referring generally to
Referring now to
Still referring to
Referring again to
Still referring to
Referring now to
Still referring to
In some embodiments, camwheel 230 may be positioned to one side of combiner 102 (e.g., the left side or right side). However, in other embodiments, multiple camwheels 230 may be used. For example, one camwheel may be positioned on one side of combiner 102 and another camwheel may be positioned on the other side of combiner 102. If multiple camwheels are used, the camwheels may be connected by a shared camwheel axle extending from one camwheel to another camwheel along camwheel axis 232. Thus, rotation of one camwheel or the camwheel axle may cause the other camwheel(s) to rotate. Additionally, if multiple camwheels are used, various components of camwheel positioning system 200 may be positioned relative to one or more of the camwheels, as described below.
Referring now to
Referring now to
Locking element 210 may increase the resonance frequency or natural frequency of combiner 102, carrier 204, or combiner positioning system 200 as a whole by restraining axle 206 from moving laterally (e.g., movement along guide element 208 or otherwise) and by providing increased stiffness (e.g., resistance to movement, rigidity, stability, etc.) when locking element 210 engages carrier 204 in the display position. However, locking element 210 does not prevent carrier 204 and combiner 102 from rotating about an axis defined by axle 206 when in the display position. This allows the display angle of combiner 102 to be adjusted in the display position.
In some embodiments, locking element 210 may be shaped as a lever having a lever axle 214. Locking element 210 may rotate about lever axle 214 between a disengaged position (shown in
Referring now to
In some embodiments, a spring (not shown) may be attached to locking element 210. The spring may provide increased resilience for holding axle 206 in the display position when engaged by locking element 210. In some embodiments, the spring may be located on the opposite side of locking element 210 from axle 206, thereby providing a compression force urging locking element 210 and axle 206 toward recess 212. However, in other embodiments, the spring may be located elsewhere (e.g., above recess 212, on the other side of housing 220, etc.). In some embodiments, the spring may exert a tension force rather than a compression force, depending on its location, or may be a rotational spring exerting a torque rather than a force. However, in further embodiments, the spring may be eliminated entirely.
Referring again to
Referring still to
Advantageously, locking element slot 236 may be designed such that locking element 210 engages axle 206 or carrier 204 only when axle 206 is in the display position. Therefore, it may be kinematically impossible for locking element 210 to prematurely move into the engaged position before axle 206 or carrier 204 has reached the display position.
Referring now to
Referring specifically to
Referring now to
For example, still referring to
Still referring to
Referring now to
In some embodiments, flap 222 may move between an open position and a closed position. For example, in the closed position, flap 222 may cover slot 104, thereby protecting combiner 102 and the other components of combiner positioning system 200 from environmental damage (e.g., pollution, foreign particles, excessive heat, physical, electrical, or chemical damage, etc.). In the open position, flap 222 may retract from, or otherwise expose slot 104 such that combiner 102 may extend through slot 104 into the display position.
Referring again to
Advantageously, flap slot 240 may be designed (e.g., incorporated into camwheel 230) such that flap 222 is withdrawn from slot 104 via rotation of camwheel 230 before combiner 102 is moved into the space previously occupied by flap 222 when moving combiner 102 into the display position. Therefore, it may be kinematically impossible for combiner 102 to contact flap 222 or to extend into the display position before flap 222 has been withdrawn from slot 104.
In some embodiments, camwheel 230 may be positioned to one side of combiner 102 (e.g., the left side or right side). However, in other embodiments, multiple camwheels may be used. For example, one camwheel may be positioned on one side of combiner 102 and another camwheel may be positioned on the other side of combiner 102. If multiple camwheels are used, the camwheels may be connected by a shared camwheel axle extending from one camwheel to another camwheel along camwheel axis 232. Thus, rotation of one camwheel or the camwheel axle may cause the other camwheel(s) to rotate.
Additionally, if multiple camwheels are used, the various components of camwheel positioning system 200 (e.g., pins 238, 242, and 246, slots 236 and 240, locking element 210, angle adjustment support 234, guide element 208) may be coupled to one or more of the camwheels. For example, locking element 210 may located on only one side of combiner 102 and may be rotated via locking element slot 236 in the camwheel on that side. On the other side of combiner 102, angle adjustment support 234 may be used in place of, or in addition to, locking element 210 and locking element slot 236.
Referring to
Still referring to
Still referring to
Process 700 is shown to optionally include rotating the carrier and combiner about an axis defined by an axle extending from the carrier (step 706). Step 706 may be performed to adjust the angle of combiner 102 when in the display position in order to more accurately reflect projected light toward a user. Step 706 may be accomplished using a drive motor or camwheel system to rotate carrier 204 and combiner 102 about axle 206. However, in other embodiments, other power systems may be used.
Process 700 is further shown to optionally include disengaging the portion of the carrier with the locking element (step 708) and moving the carrier from the display position to the stowed position (step 710). Steps 708 and 710 may be performed to protect combiner 102 by retracting combiner 102 into housing 220 or another protective component in order to prevent damage to combiner 102 or combiner positioning system 200 when the HUD system is not in use. Step 708 may be accomplished by moving locking element 210 from an engaged position to a disengaged position, thereby allowing axle 206 to move laterally along guiderail 208 or otherwise. If step 706 is optionally performed, it may be necessary to rotate carrier 204 and combiner 102 such that axis 206 may be moved laterally. Then carrier 204 and combiner 102 may be moved from the display position to the stowed position. Step 708 and step 710 may be accomplished using a drive motor or camwheel system to disengage locking element 210, rotate combiner 102 and carrier 204, and move combiner 102 and carrier 204 from the display position to the stowed position. However, in other embodiments, other power systems may be used.
Referring now to
For example, rotating camwheel 230 (step 802) may cause carrier pin 246 to engage carrier 204 (step 804) and move carrier 204 along with combiner 102 between the stowed position and the display position (step 808). Optionally, if flap 222 is used in combiner positioning system 200, rotating camwheel 230 may also cause flap 222 to move between an open position and closed position (step 806) prior to moving combiner 102 into the display position (step 808). However, if combiner 102 is being moved from the display position to the stowed position, step 806 would occur after step 808, as the process would be performed in reverse order.
Still referring to
Locking element 210 may discharge the force exerted on carrier pin 246, thereby allowing carrier pin 246 to disengage from carrier 204 (step 812). Once carrier pin 246 has disengaged, camwheel 230 may continue to rotate without affecting the lateral position of carrier 204.
Process 800 may also include engaging the carrier 204 with an angle adjustment support 234 (step 814) as shown in
Advantageously, all steps of process 800 are driven by the rotation of camwheel 230. By rotating camwheel 230 in one direction, all steps necessary to move combiner 102 from the stowed position to the display position, and also several optional steps, are kinematically carried out. Because all moving parts (e.g., pins, levers, support structures, etc.) are directly connected to one or more camwheels, no intermediate elements (e.g., additional gears, wheels, levers, etc.) are required. In other words, all movement, whether rotational, linear, or a combination thereof, are kinematically caused by the rotation of one or more axially coupled camwheels.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. All such variations are within the scope of the disclosure.
Potakowskyj, Christoph, Hack, Gottfried
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10394026, | Oct 21 2011 | JABIL INC | Head-up display combiner positioning and locking system |
4188090, | Jun 01 1977 | GEC-Marconi Limited | Retractable head-up displays |
5028119, | Apr 07 1989 | Hughes Aircraft Company; HUGHES AIRCRAFT COMPANY, LOS ANGELES, CA, A CORP OF DE | Aircraft head-up display |
5457575, | Jun 20 1994 | Delphi Technologies, Inc | Retracting head up display with fine adjustment of combiner |
5755417, | Oct 08 1994 | Qioptiq Limited | Locking device |
6301053, | Aug 07 1999 | BAE SYSTEMS PLC | Combiner assemblies |
6618203, | Mar 30 2001 | Yazaki Corporation | Device for supporting combiner for use in vehicle display system |
7978414, | Sep 28 2007 | JABIL CIRCUIT, INC | Positioning system for a combiner in a head up display |
8081387, | May 04 2007 | Visteon Global Technologies, Inc | Display device |
8385074, | May 14 2008 | Continental Automotive GmbH | Display device |
8427751, | Jan 12 2011 | MAGNA ELECTRONICS SOLUTIONS GMBH | Combiner positioning system for head-up display |
9036256, | Sep 18 2010 | Johnson Controls Tyco IP Holdings LLP | Display unit having a projection screen for a head-up display |
9116339, | Oct 21 2011 | Jabil Circuit, Inc.; JABIL CIRCUIT, INC | Combiner positioning system |
9500864, | Oct 21 2011 | JABIL INC | Combiner positioning system |
20090086329, | |||
20100157431, | |||
GB2293861, | |||
WO2007103030, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 17 2019 | JABIL INC. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 17 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 16 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 29 2024 | 4 years fee payment window open |
Dec 29 2024 | 6 months grace period start (w surcharge) |
Jun 29 2025 | patent expiry (for year 4) |
Jun 29 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 29 2028 | 8 years fee payment window open |
Dec 29 2028 | 6 months grace period start (w surcharge) |
Jun 29 2029 | patent expiry (for year 8) |
Jun 29 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 29 2032 | 12 years fee payment window open |
Dec 29 2032 | 6 months grace period start (w surcharge) |
Jun 29 2033 | patent expiry (for year 12) |
Jun 29 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |