An interface for positive pressure therapy includes a mask assembly and a headgear assembly. The mask assembly comprises a mask seal that is adapted to underlie the nose. The mask seal extends up the lateral sides of the nose. The mask seal has a primary seal below the nose and a secondary seal alongside the nose.
|
12. A mask seal assembly for use with a respiratory interface for providing respiratory gas to a user, the mask seal assembly comprising:
a mask base comprising a distal inlet and a proximal peripheral end;
a seal member having a sidewall portion and a face contacting wall portion, the sidewall portion being connected to the proximal peripheral end of the mask base, wherein the mask base and seal member define a mask seal assembly sidewall comprising a flexible connector portion; and
a tab disposed on an inner side of the mask seal assembly and comprising a first end portion, a second end portion, and first and second side edges extending from the first end portion to the second end portion, the first end portion extending from a first proximal location of the face contacting wall portion and the second end portion connected to the flexible connector portion disposed at a first distal location of the mask seal assembly sidewall that is disposed distally from the first proximal location, wherein the tab includes first and second side edges extending from the first proximal location to the first distal location and wherein the tab forms a first loop with the mask seal assembly sidewall.
4. A mask assembly for use with a respiratory interface for providing respiratory gas to a user, the mask assembly comprising:
a mask base comprising a mask base wall, the mask base wall having a distal portion defining a respiratory gases inlet, the mask base wall extending from the distal portion to a peripheral edge of the mask base wall, the mask base wall having an inner mask base wall surface;
a seal member having a distal peripheral edge, a sidewall portion, and a face contacting wall portion, the distal peripheral edge being connected to the peripheral edge of the mask base wall, the sidewall portion extending from the distal peripheral edge of the seal member proximally toward a user in use;
wherein the mask base wall, the sidewall portion, and the face contacting wall portion define a mask assembly sidewall, the mask assembly sidewall comprising a connector portion of a flexible material; and
a tab disposed on an inner side of the mask assembly and having a proximal end portion, a distal end portion, and first and second side edges extending from the proximal end portion to the distal end portion, the proximal end portion of the tab extending from the face contacting wall portion to the distal end portion of the tab which is coupled with the connector portion at a second location that is disposed distally from the proximal end portion such that the tab forms a first loop with the mask assembly sidewall.
1. A mask assembly for use with a respiratory interface for providing respiratory gas to a user in use, including nose tabs providing additional lateral compressive forces against a user's nose for nose bridge support and to reduce air leakage, the mask assembly comprising:
a mask base comprising a mask base wall made of a first material, the mask base wall having a distal portion defining a respiratory gases inlet, the mask base wall extending from the distal portion, around the respiratory gases inlet and proximally toward a user in use, to a proximal peripheral end of the mask base wall, the mask base wall having an inner mask base wall surface;
a seal member made of a second material that is more flexible than the first material, the seal member having a distal peripheral end, a sidewall portion, a face contacting wall portion, and a proximal end of the face contacting wall portion, the distal peripheral end being connected to the proximal peripheral end of the mask base wall, the sidewall portion extending from the distal peripheral end of the seal member proximally toward a user in use, to the face contacting wall portion of the seal member, the proximal end of the face contacting wall portion being disposed radially inwardly from the sidewall portion, the sidewall portion having a sidewall outer surface facing radially outwardly and the face contacting wall portion having a face contacting wall outer surface facing toward a user in use, wherein the sidewall portion and the face contacting wall portion have a sidewall inner surface and a face contacting wall inner surface, respectively, and wherein the sidewall portion, the face contacting wall portion, and the mask base wall define a mask assembly sidewall, and wherein the sidewall inner surface, the face contacting wall inner surface, and the inner mask base wall surface define an inwardly facing surface of the mask assembly, the mask assembly sidewall comprising a flexible silicone connector portion;
a tab integrally formed with the seal member and disposed on an inner side of the mask assembly, the tab having a proximal end portion and a distal end portion, the proximal end portion of the tab extending from the face contacting wall inner surface to the distal end portion of the tab which is sealed to the mask assembly sidewall with the flexible silicone connector portion, the flexible silicone connector portion being disposed at a first location that is disposed distally from the face contacting wall portion, the tab including first and second side edges extending from the proximal end portion to the distal end portion, the tab forming a first loop with the inwardly facing surface of the mask assembly and configured to press at least part of the face contacting wall outer surface laterally against a first side of a user's nose in use.
2. The mask assembly according to
3. The mask assembly according to
5. The mask assembly according to
6. The mask assembly according to
7. The mask assembly according to
8. The mask assembly according to
9. The mask assembly according to
10. The mask assembly according to
11. The mask assembly according to
13. The mask seal assembly according to
14. The mask seal assembly according to
15. The mask seal assembly according to
16. The mask seal assembly according to
17. The mask seal assembly according to
18. The mask seal assembly according to
19. The mask seal assembly according to
|
Field of the Inventions
The present inventions generally relate to face masks that cover at least one of a nose and a mouth of a user to supply respiratory gas under positive pressure. More particularly, certain aspects of the present inventions relate to such masks that have an improved nasal seal portion.
Description of the Related Art
Face masks can be used to provide respiratory gases to a user under positive pressure. In configurations in which both a mouth and a nose of a user are covered, the full face mask typically will overlie a bridge of the nose. Generally, a single seal will circumscribe the nose and the mouth of the user.
Such full face masks commonly are secured to a head of the user with headgear. In order to sufficiently reduce leakage, the headgear typically is tightened, which results in an elevated pressure being exerted on a bridge of a user's nose. As the headgear is tightened, the seal typically applies a progressively increasing load on the bridge of the nose. The pressure can be a source of discomfort and, in some circumstances, can lead to pressure sores over time. Looser fitting headgear may provide greater patient comfort, but air leakage can occur. In particular, loose fitting and in some cases even tight fitting masks can leak air around the portion of the mask near the user's tear ducts and nasal bridge.
It is an object of the present disclosure to provide one or more constructions and/or methods that will at least go some way towards improving on the above or that will at least provide the public or the medical profession with a useful choice.
Accordingly, an interface is provided for use in providing positive pressure respiratory therapy. The interface comprises a mask assembly. The mask assembly comprises a mask seal, a mask base that can be removably or permanently connected to the mask seal, and a seal adjustment mechanism. The seal adjustment mechanism can provide and control a lateral force to compress the seal against the user's nasal bone without applying additional pressure to the user's nasal bridge. In some configurations, the mask assembly may further comprise a headgear assembly. A connection port assembly may also be provided independently, attached to, or integrated with the mask base.
In one configuration an interface for use in providing positive pressure respiratory therapy comprises: a mask assembly comprising a mask seal and a mask base that is removably connected to the mask seal; a seal adjustment mechanism coupled to the mask base and configured to compress the mask seal primarily in a lateral direction across a width of the mask assembly; a headgear assembly comprising a pair of upper straps and a pair of lower straps, one of the pair of upper straps and one of the pair of lower straps being connected to a first clip, another of the pair of upper straps and another of the pair of lower straps being connected to a second clip, the first clip and the second clip being detachably securable to the mask base such that the clips are brought into engagement with the mask base by moving in a direction substantially normal to a strap tensile force direction; and a connection port assembly comprising an elbow terminating in a ball shaped member, the ball shaped member being sized and configured to be held within a wall of the mask base.
In one configuration, a mask assembly comprising a mask seal, the mask seal, a mask base, and a mask seal adjustment mechanism, the mask seal adjustment mechanism configured to adjust the distance between opposite walls of the mask seal. In one configuration, the mask seal adjustment mechanism comprises a dial coupled to a screw and a cage, the screw positioned within a thread of a cage, the cage having two arms that contact the mask seal, wherein rotating the dial causes the cage to move towards the mask base and squeeze the seal inwardly to decrease the distance between the opposite walls of the mask seal engaged by the cage. In one configuration, the cage defines a cavity and the mask seal is positioned at least partially within the cavity.
In one configuration, the mask seal adjustment mechanism comprises a swing arm pivotably coupled to the mask base, the swing arm comprising a lift bar and first and second ends, wherein lifting the lift bar lowers the first and second ends to compress opposite walls of the mask seal and to decrease a distance between the opposite walls of the mask seal.
In one configuration, the swing arm further comprises first and second pads attached to the first and second ends, respectively, the first and second pads configured to contact and squeeze opposite walls of the mask seal when the lift bar is raised.
In one configuration, the mask seal adjustment mechanism further comprises a ratchet configured to retain the lift bar in a desired position with respect to the mask base. In one configuration, the mask seal adjustment mechanism further comprises a dial and cog configured to retain the lift bar in a desired position with respect to the mask base. In one configuration, the mask seal adjustment mechanism comprises a malleable strip that is fixed to the mask seal. In one configuration, the malleable strip is fixed to the mask seal at the malleable strips end regions.
In one configuration, the mask seal adjustment mechanism comprises a T-piece swing arm coupled to the mask base at first and second pivots, the T-piece swing arm comprising a laterally-extending section configured to attach to a headgear assembly and a two compression arm positioned closer to the pivots than the laterally-extending section, the compression arms extending posteriorly towards the mask seal, wherein tension applied to the laterally-extending section rotates the T-piece swing arm about the pivots and causes the compression arms to squeeze and decrease the distance between opposite sides of the mask seal.
In one configuration, the mask seal adjustment mechanism comprises a drum vice, the drum vice comprising a finger wheel, a screw coupled to the finger wheel, and compression arms attached to opposite ends of the screw, wherein rotating the finger wheel rotates the screw which turns within a thread of the compression arms and moves the compression arms towards each other, wherein the moving compression arms compress and decrease the distance between opposite sides of the mask seal. In one configuration, the screw comprises a double threaded screw.
In one configuration, the mask seal adjustment mechanism comprises a dial, a cam coupled to the dial, and two rocker arms pivotably attached to the mask base, wherein turning the dial rotates the cam and causes the cam to lift first ends of the rocker arms, the rocker arms being substantially L-shaped such that as the cam lifts the first ends of the rocker arms, second ends of the rocker arms drum compress and decrease the distance between opposite sides of the mask seal.
In one configuration, the mask seal adjustment mechanism comprises a dial having a geared surface, a screw having a screw head configured to engage the geared surface and a threaded shaft, two paddles, the paddles comprising gear teeth at one end and configured to engage the threaded shaft, the paddles further comprising arms that extend to compression ends, wherein rotating the dial about a first axis turns the screw about a second axis, the second axis being perpendicular to the first axis, and wherein the screw rotates the paddles about third and fourth axes, the third and fourth axes being parallel to each other and the first axis, wherein rotating the paddles moves the arms and compression ends towards each other and decreases the distance between opposite sides of the mask seal between the compression ends.
In one configuration, the mask seal adjustment mechanism comprises: a dial positioned within a threaded opening in the mask base and having an external thread and an internal, tapered channel; and two compression arms having posteriorly-projection portions that extend into the tapered channel and anteriorly-projecting portions that extend along opposite sides of the mask seal, wherein rotating the dial within geared surface moves the two compressions arms towards each other and decreases the distance between opposite sides of the mask seal between the posteriorly-projecting portions.
In one configuration, the mask seal adjustment mechanism comprises two scissor arms that pinch opposite sides of the mask seal when the arms are rotated with respect to each other, wherein rotating the arms with respect to each other decreases the distance between opposite sides of the mask seal between the compression ends. In one configuration, the scissor arms extend horizontally, across a front surface of the mask base. In one configuration, the scissor arms extend vertically, across a top surface of the mask base.
In one configuration, the mask seal adjustment mechanism comprises two lugs attached to the mask seal and configured to receive straps from a headgear assembly, the lugs extending beyond the outer surface of the mask seal and configured to compress the mask seal and decrease the distance between opposite sides of the mask seal between the lugs when tension is applied to the straps. In one configuration, the lugs are molded as part of the mask seal.
In one configuration, the mask seal adjustment mechanism comprises two buttons positioned within a channel defined by the mask base, and a ratcheting lever arm, the buttons having first ends, second ends, and ratcheting teeth configured to engage the ratcheting lever arm and retain the buttons in desired position, the second ends positioned at opposite sides of the mask seal, wherein pressing the first end of the buttons moves the second ends of the buttons towards each other, and decreases the distance between opposite sides of the mask seal between the buttons.
In one configuration, the mask seal adjustment mechanism comprises a dial; a first and second links coupled to the dial; and first and second paddles coupled to the first and second links; wherein the paddles are rotatably coupled to the mask base by first and second pins, and wherein turning the dial causes the links to push on proximal ends of the first and second paddles, wherein pushing the proximal ends rotates the paddles about the first and second pins and moves the paddles' distal ends towards each other and squeezes the mask seal such that the distance between opposite sides of the mask seal between the paddles' distal ends decreases as the dial is rotated.
A headgear assembly comprises a pair of upper straps and a pair of lower straps. One of the pair of upper straps and one of the pair of lower straps is connected to a first clip. Another of the pair of upper straps and another of the pair of lower straps is connected to a second clip. The first clip and the second clip are securable within the pockets of the mask base such that the clips are brought into engagement within the pockets by moving in a direction substantially normal to a strap tensile force direction.
In some configurations, the mask seal is a full face mask. In some configurations, the mask seal clip is integrated into the mask seal such that the mask seal clip is non-separable from the mask seal. In some configurations, the mask base is removably connected to the mask seal. In some configurations, the upper portion of the mask seal comprises an apex defined by a first wall and a second wall and the reinforcing component extends along at least a portion of the first wall and along at least a portion of the second wall. Preferably, the reinforcing component extends over the apex of the upper portion of the mask seal.
A mask assembly can comprise a mask seal. The mask seal comprises a nasal region and an oral region. The nasal region and the oral region are integrally formed. The nasal region is movable relative to the oral region such that forces exerted by the nasal region in multiple positions remain substantially constant while forces exerted by the oral region increase.
A mask assembly comprises a mask seal connected to a headgear assembly. The mask seal is configured to encircle a nasal bridge region and an oral region of a user. The mask seal comprises nonpleated means for applying a substantially constant force to the nasal bridge region while applying increasing forces to an oral region when the headgear assembly is tightened.
A mask assembly comprises a seal. The seal comprises a flange that engages a face of a user. The seal is removably connected to a mask base. The mask base comprises a first opening and a second opening. The first opening and the second opening receive a first clip and a second clip from an associated headgear assembly. The mask base further comprises a passageway positioned generally between the first opening and the second opening. The passageway is adapted to receive a breathing tube connector.
In some configurations, the mask assembly further comprises a mask seal clip that is connected to the mask seal and that is removably connected to the mask base. Preferably, the mask base overlies a substantial portion of the mask seal clip. More preferably, the mask base comprises a peripheral edge and at least one recess is defined along the peripheral edge of the mask base at a location that overlies the mask seal clip.
A mask assembly comprises a mask seal. The mask seal comprises a proximal flange adapted to contact a face of a user. The mask seal comprises a distal facing surface. A mask base comprises a peripheral edge and a cover surface extends from the peripheral edge. The mask base cover surface overlies at least a portion of the distal facing surface of the mask seal such that the mask base cover surface is spaced apart in a distal direction from the mask seal distal facing surface whereby the mask base cover surface and the mask seal distal facing surface provide an insulating effect to the mask assembly that reduces humidity rainout.
An interface for providing positive pressure air flow to a user can comprise a mask base and a mask seal removably connected to the mask base. The mask seal comprises a first sealing surface that is adapted to underlie a nose of a user and a second sealing surface that is adapted to extend over at least a fibro-fatty tissue of one or more alar of the nose of the user without wrapping over a tip of the nose of the user.
In some configurations, the first sealing surface is defined by an upper surface. A chamber can be defined within the seal member and an opening through the upper surface can be generally flush with the upper surface.
These and other features, aspects and advantages of embodiments of the present invention will be described with reference to the following drawings.
With reference initially to
The interface 100 can comprise any suitable mask configuration. For example, certain features, aspects and advantages of the present invention can find utility with nasal masks, full face masks, oronasal masks or any other positive pressure mask. The illustrated mask is a full face mask. The interface 100 generally comprises a mask assembly 102, a seal adjustment mechanism 103, a connection port assembly 104 and a headgear assembly 106. A mask seal 110 is attached to an edge of the mask assembly 102, and generally traverses the mask assembly's 102 perimeter. The headgear assembly 106 is used to secure the interface 100 to the patient's face. As the headgear assembly 106 is tightened (e.g., as its straps are pulled into tension), the interface 100 is pulled in an anterior direction F to compress the mask seal 110 against the user's face. However, due to typical irregularity in the contours of a user's face, the mask seal 110 may not adequately prevent air from escaping, or leaking, at all locations. In particular, the regions 105 of the mask seal 110 near the user's tear ducts can leak air. Air that escapes from inside the mask assembly 102 at the tear duct regions 105 can dry out the user's eyes, and provide general discomfort during use. A seal adjustment mechanism 103 can provide additional control over mask seal 110 compression and help eliminate air leakage, particularly around the tear duct regions 105.
The seal adjustment mechanism 103, shown in generic, block form in
For example,
As the control dial 712 is rotated, threads on the threaded shaft 716 spin while engaged with an opening in the cage 714. Dial 712 rotation causes the cage 714 to advance anteriorly A (towards the mask base 710) or posteriorly P (away from the mask base 710), depending upon whether the dial 712 is rotated in a clockwise or counterclockwise direction. As the cage 714 moves towards the mask base 710, arms 720 push against the outside surface of the seal 708. Because the seal 708 is generally more flexible than the mask base 710, this movement of the arms 720 causes the flexible seal 708 to bend about the area where it is attached the more rigid mask base 710. As the seal 708 bends, the seal's distal ends 724 are pushed inwardly, towards the user's nasal bone B. The compressive forces applied by the seal 708 help prevent air leakage around the user's tear ducts.
Similarly, as the control dial 712 is rotated in the opposite direction, the cage 714 moves posteriorly, away from the user's face. As the cage 714 moves posteriorly, the cage's arms 720 move away from the seal 708, which allows the seal 708 to flex back to its original shape. By turning the control dial 712 the user may control the amount of compressive force provided by the seal adjustment mechanism 704 in order to achieve maximum comfort and to eliminate air leakage.
As a crossbar portion 746 of the lift bar 742 is raised (e.g., moved in the superior S direction towards the top of the interface 730), the ends 748 of the lift bar 742 move in the opposite direction. Pads 750 positioned at the lift bar 742 ends 748 compress or squeeze the seal 738 as the ends 748 are lowered. In some configurations, the lift bar 742 position is maintained as a result of frictional forces between the pads 750 and the seal 738. In other configurations, a control mechanism 752 is provided. For example, the configuration of
The malleable strip 782 is formed from a malleable strip of material that can be easily shaped by sqeezing, pushing, or pulling on the material. The malleable strip 782 may be formed from any suitable material, such as metal, an alloy, or plastic, including but not limited to, aluminum, copper, magnesium, gold, silver, tin, etc. The malleable strip 782 extends from one side of the mask seal to the other. In other configurations, the malleable strip 782 is embedded within the mask seal 778. The malleable 782 extends within a channel formed in the mask base 780. Pinching the malleable strip 782 at locations near or at the attachment points 784 causes the malleable strip 782 to apply and sustain a compressive force against the mask seal 778. In this manner the user may control the amount of compressive force provided by the seal adjustment mechanism 774 in order to achieve maximum comfort and to eliminate air leakage.
The T-piece 804 comprises tabs 808 that squeeze and compress the mask seal 800 as the T-piece 804 is rotated about the pivots 806 from an open position (as shown in
The seal adjustment mechanism 814 comprises a finger wheel 822, a double threaded screw 824, and adjustment arms 826 positioned at opposite ends of the double threaded screw 824. As the finger wheel 822 is rotated, the screw 824 spins and causes adjustment arms 826 to move inwardly (towards each other) or outwardly (away from each other), depending upon the direction of finger wheel 822 rotation. The adjustment arms 826 are positioned outside of respective portions of the mask seal 816, such that the mask seal 816 is compressed as the adjustment arms 826 are moved towards each other. Similarly, the compressive force acting upon the mask seal 816 is reduced as the adjustment arms 826 are moved away from each other. By rotating the finger wheel 822, the user may control the amount of compressive force provided by the seal adjustment mechanism 814 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 834 comprises a dial 842 coupled to a cam 844. The seal adjustment mechanism 834 also comprises L-shaped rocker arms 846 that are rotatably coupled to the mask assembly 832 at pivots 848. First ends of the rocker arms 846 are aligned with the cam 844 and second ends of the rocker arms 846 are aligned with the mask seal 838. Rotating the dial 842 causes the cam 844 to rotate and engage or disengage the first ends of the rocker arms 846 and push them upward and away from the dial 842. As the first end of the rocker arms 846 move away from the dial 842, the second ends of the rocker arms 846 are rotated towards each other about respective pivots 848. The second ends of the rocker arms 846 engage and compress the outside surface of the mask seal 838, thereby providing compressive force to improve sealing. By rotating the dial 842, the user may control the amount of compressive force provided by the seal adjustment mechanism 834 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 854 comprises a gear dial assembly formed from a dial 864, a screw 866, and two geared paddles 868. Dial 864 is rotated to turn the threads on the screw 866. The rotating screw 866 engages the geared ends of the paddles 868 and causes the paddles 868 to rotate about respective pivots 870. Arms 872 attached to the paddles 868 comprise compression portions 874 at their distal ends. The compression portions 874 rotate into and compress the mask seal 858 as the dial 864 is rotated. By rotating the dial 864, the user may control the amount of compressive force provided by the seal adjustment mechanism 854 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 884 comprises a taper dial assembly formed from a dial 894 and two arms 896. The dial 894 comprises a threaded outer surface 898 and a tapered internal channel 900. The dial 894 is positioned within a thread 902 formed within or attached to the mask base 890. As the dial 894 is rotated within the thread 902, the dial 894 moves inward or outward with respect to the thread 902 and mask base 890. When the dial 894 moves inward, proximal end portions 904 of the arms 896 interface with the tapered internal channel 900, which causes the arms 896 to move towards each other. As the arms 896 move towards each other, the arms' distal end portions 906 compress the outer surface of the mask seal 888. Similarly, rotating the dial 894 in the opposite direction causes the dial 894 to move outward with respect to the mask base 890. As the dial 894 move outward, proximal end portions 904 of the arms 896 move away from each other, thereby reducing the compression of the outer surface of the mask seal 888. By rotating the dial 894, the user may control the amount of compressive force provided by the seal adjustment mechanism 884 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 914 comprises a horizontal scissors assembly formed from first and second scissor arms 924. The first and second scissor arms 924 connect to each other at a pivot 926 and extend from the rear toward the front of the mask assembly 912. The diameter of the pivot 926 is aligned with a vertical axis V that bisects the mask assembly 912. As first ends 928 of the scissor arms 924 are pinched and moved towards each other, second ends 930 of the scissor arms 924 are advanced towards each other, as well. The second ends 930 comprise enlarged regions configured to engage and compress the mask seal 918 towards the vertical axis V. By pinching the first ends 928 of the scissor arms 924, the user may control the amount of compressive force provided by the seal adjustment mechanism 914 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 944 comprises a vertical scissor assembly formed from first and second scissor arms 952. The first and second scissor arms 952 connect to each other at a pivot 954 and extend from a position above the top of the mask assembly 942 toward the bottom of the mask assembly 942. The pivot 954 includes a geared interface in the configurations of
Straps of the headgear assembly 946 attach to slots formed in at the upper ends of the scissor arms 952. As the straps are drawn into tension, the upper ends of the scissor arms 952 are pulled away from each other. Rotation of the upper ends of the scissor arms 952 away from each other causes the lower ends of the scissor arms 952 to rotate towards each other. As the lower ends of the scissor arms 952 rotate towards each other, they pinch and compress the mask seal (as shown in
The seal adjustment mechanism 964 comprises one or more lugs 974 attached to or integrally formed with the mask seal 968. Straps of the headgear assembly 966 pass through openings in the lugs 974 and attach to the mask base 970 at attachment points 976. In some configurations, the attachment points 976 are also lugs, as illustrated in
As the headgear 966 straps are tensioned around the user's head, the lugs 974 are compressed into the mask seal 968, as shown in
The seal adjustment mechanism 984 comprises a ratchet mechanism and button assembly configured to apply pressure on opposite sides of the mask seal 988. The seal adjustment mechanism 984 comprises a button 994 that slides within a channel of the mask assembly 982. As the user presses against the outside surface of the button 994, the inside surface of the button 994 presses into the side of the mask seal 988, thereby compressing the seal 988 laterally, for example, against the user's nasal bone. A ratchet mechanism 996 (as shown in
Another configuration of a ratchet mechanism 1006 is illustrated in
The seal adjustment mechanism 1024 comprises a dial 1032, linkage 1034, and paddles 1036. The dial 1032 is secured to mask base 1030 via a pivot 1035. Proximal ends of the linkage are attached to the dial 1032 at openings within the dial 1032. The openings 1032 are larger than the diameters of the linkage proximal ends, such that linkage freely rotates within the openings as the dial is rotated about the pivot 1035.
The distal ends of the linkage 1034 fit within receptacles located at the proximal ends of the paddles 1036. The paddles 1036 are secured to the mask base 1030 at pivots 1038. The distal ends of the paddles 1036 are comprise enlarged contact portions configured to compress the mask seal 1028.
As the dial 1032 is rotated, the linkage length changes from a short configuration (as shown in
To compress the mask seal 1038, the dial 1032 is rotated to bring the linkage length into the long configuration. In the long configuration, the linkage arms push the proximal ends of the paddles 1036 outward and away from each other. The paddles 1036 rotate about their respective pivots 1038 to bring their distal ends closer towards each other. The paddle 1036 distal ends compress the mask seal 1038 in a lateral direction, for example, inward, toward the user's nasal bone. By rotating the dial 1032, the user controls the amount of compressive force provided by the seal adjustment mechanism 1024 in order to achieve maximum comfort and to eliminate air leakage.
The seal adjustment mechanism 1606 comprises a slider 1608, which in the illustrated embodiment, is formed as an end portion 1610 of the mask seal 1604. The slider 1608 may be integrally formed with the mask seal 1604, or may be attached to the mask seal 1604. The slider 1608 and/or end portion 1610 may be made from a harder material than the mask seal 1604. For example, in one embodiment, the slider 1608 is formed from a harder grade of silicone than the remaining portion of the mask seal 1604.
The slider 1608 extends through a channel 1612 in the mask base 1602. Moving the slider 1608 within the channel 1612 adjusts the seal geometry around the user's side nose bridge. For example, in one embodiment, the inclination angle 1614 between the seal side nose bridge portion 1616 and the end plane 1618 of the seal 1604 increases or decreases depending upon the distance and direction that the slider 1608 is moved. In one embodiment, adjusting the slider 1608 from a first position, as shown in
The slider 1608 can include a control 1620 to facilitate manipulation by a user. The slider 1608 can also include a tang 1622 to help maintain the slider 1608 in the desired position with respect to the base 1602 once adjusted. The tang 1622 can be configured to contact an inside surface of the base 1602. In one embodiment, frictional forces between the tang 1622 and the base 1602 maintain the slider 1608 in the desired position. In other embodiments, the tang 1622 includes a ratcheting mechanism that interfaces with a corresponding structure on the mask base 1602.
The seal adjustment mechanism 1706 comprises a dial 1708, which in the illustrated embodiment, is positioned within an opening 1710 of the mask base 1702. The dial 1708 is configured to rotate within the opening 1710. The dial 1708 includes one or more channels 1712, through which an end portion 1714 of the seal 1704 extends. In the illustrated embodiment, the dial 1708 includes two channels 1712. An end portion 1714 extends through each of the channels 1712. In some embodiments, the end portions 1714 are integrally formed with the seal 1704. In other embodiments, the end portions 1714 are attached to the seal 1704. For example, in some embodiments, the end portions 1714 comprise one or more cables, wires, or other flexible member.
As the dial 1708 is rotated within the opening 1710, the end portions 1714 wind (or unwind, depending upon the direction of rotation) around the dial's outside surface 1716. As the end portions 1714 wind around the dial's outside surface 1716, the seal 1704 is pulled upward, in tension, towards the dial 1708, which causes an inclination angle 1718 to increase. As the end portions 1714 are unwound from the dial's outside surface 1716, the seal 1704 is relaxed, which causes the inclination angle 1718 to decrease.
In one embodiment, rotating the dial 1708 from a first position, as shown in
The seal adjustment mechanism 1806 comprises a tab 1808, which in the illustrated embodiment, is formed as an end portion 1810 of the seal 1804. The tab 1808 may be integrally formed with the mask seal 1804, or may be attached to the mask seal 1804. The tab 1808 extends through an opening 1812 in the mask base 1802. The tab 1808 may include ratcheting features or teeth that engage the edge of the mask base opening 1812. The teeth of the tab 1808 hold the end portion 1810 at the desired position.
Pulling or pushing the tab 1808 with respect to the base 1802 adjusts the seal geometry around the user's side nose bridge. For example, the inclination angle 1814 between the seal side nose bridge portion 1816 and the seal end plane 1818 increases or decreases depending upon the direction that the tab 1808 is moved. For example, pulling the tab 1808 from a first position (as shown in
In some embodiments, a gasket 1820 is provided within the mask base opening 1812. The gasket 1820 can provide a seal between the tab 1808 and the mask base 1802. In one embodiment, the gasket 1820 is formed of a flexible silicone material. The gasket 1820 is configured to flex from a first position when the tab 1808 is not pulled (as shown in
In some embodiments, the mask assembly 1800 comprises a seal 1804 that includes at least one additional seal wall 1900. The additional seal wall 1900 is formed on an inside portion of the seal 1804. In some embodiments, the additional seal wall 1900 extends from the seal 1804 at the location where the tab 1808 is formed. However, the additional seal wall 1900 may be provided with any of the mask seals described herein. In some embodiments, the seal wall 1900 extends from the seal 1804 near or at the points where the seal 1804 intersects the seal end plane 1818, such as shown in
Pulling or pushing the tab 1808 with respect to the base 1802 adjusts the seal geometry around the user's side nose bridge. For example, the inclination angle 1902 between the seal wall 1900 and the seal end plane 1818 increases or decreases depending upon the direction that the tab 1808 is moved. For example, pulling the tab 1808 from a first position (as shown in
The seal adjustment mechanism 2006 is provided as a thinner section of the seal 2004 wall. In the illustrated embodiment, the thinner wall section is formed between two notches 2008 in the wall of the seal 2004. The apexes of the notches 2008 are aligned with each other on opposite sides of the seal 2004. In some embodiments, the seal adjustment mechanism 2006 includes 1, 3, 5 or less than 10 notches 2008. The notches 2008 may be provided on the outside and/or inside surface of the seal 2004. In some embodiments, the inside and outside notches are aligned with each other (as shown in
The outside notch 2008 is configured to open from about 45°, as shown in
As the seal side nose bridge portion 2010 bends, the inclination angle 2012 between the seal side nose bridge portion 2010 and the seal end plane 2014 changes. By adjusting the position of the mask assembly 2000 on the user's face, the user controls the amount of compressive force provided by the seal 2004 in order to achieve maximum comfort and eliminate air leakage.
With reference to
With reference to
With continued reference to
Referring again to
As shown in
With reference to
The illustrated mask seal also comprises a generally central passage 144 that is defined by a wall 146. In the illustrated configuration, the wall 146 generally encloses the passage 144. Preferably, the wall 146 is generally cylindrical in configuration and extends through the wall 126. Other configurations are possible.
With reference now to
With reference now to
The illustrated mask base 114 overlies at least a portion of the mask seal clip 112. In some configurations, the mask base 114 almost entirely covers the mask seal clip 112. In some configurations, the mask base 114 extends over more than half of the mask seal clip 112. When the mask base 114 overlies a substantial portion of the mask seal clip 112 or the mask seal 110, a double layer effect is created (e.g., the mask seal clip 112 and the mask base 114). The double layer effect provides increased insulation when a significant portion of the mask base 114 overlaps a significant portion of the mask seal clip 112 or the mask seal 110. The increased insulation provides a warmer inner portion (e.g., mask seal 110 and/or mask seal clip 112), which results in less rain out of humidity during use. Preferably, at least a portion of the mask seal clip 112 is exposed from under the mask base 114 such that the mask base 114 can be more easily separated from the mask seal clip 112. To aid in the separation of the mask base 114 from the underlying mask seal 110 and/or mask seal clip 112, the illustrated mask base 114 comprises a peripheral surface 200 on the proximal end. The mask base 114 is concave on the inside to accommodate the underlying components. In other words, the mask base 114 is bowl shaped in a distal direction relative to the proximal peripheral surface 200.
The peripheral surface 200 comprises one or more recessed portions 202. Preferably, the recessed portions 202 comprise at least two recessed portions 202 that are positioned on opposite sides of the mask base 114 from each other. The recessed portions 202 are configured to receive a thumb and a finger such that the mask base 114 can be more easily removed from the front of the underlying mask seal clip 112. While the recessed portions 202 can define means for grasping the assembly underlying the mask base 114 for removal of the mask base, other configurations can be used, such as outwardly extending tabs, protruding portions and the like, for example but without limitation. In addition, while the illustrated recessed portions 202 are disposed on opposing lateral sides of the mask base 114, the recessed portions 202 can be positioned on the top and bottom or on other regions as desired.
As shown in
The wall 212 comprises a contoured inner surface 214. The contoured surface 214 can be radiused to receive a ball end 220 of a swiveling elbow 222, such as that shown in
With reference again to
The illustrated pockets 230 are formed such that one pocket 230 is formed on each lateral side of the mask base 114. The pockets 230 can be positioned to be symmetrical relative to the central plane CP, which plane substantially bisects the mask base 114. In some configurations, the pockets 230 have an enlarged vertical dimension 240 relative to a transverse dimension 242. Similarly, the openings 232 have an enlarged vertical dimension 244 relative to a transverse dimension 246.
In the illustrated mask base 114, the laterally inward portion of each pocket 230 comprises a support wall 250. The support wall 250 is positioned toward the center plane CP relative to normal to a base surface 248 of the pocket 230. Each of the pockets 230 is configured to receive a clip 252 (see
With reference to
As shown in
The clip 252 includes an interlock feature 264. The interlock feature 264 is configured for insertion into the opening 232 defined in the pocket 230 of the mask base 114. The interlock feature 264 can engage in a snap-fit manner with a tab 236 defined along the wall 234 that defines the opening 232 in the mask base 114, as shown in
Referring to
The end of the release lever 266 protrudes through an opening 270 defined by a wall 272. Preferably, the end of the release lever 266 protrudes through the opening 270 a sufficient distance to allow easy manipulation of the release lever 266. Moving the release lever 266 in manner that closes the U-shape of the interlock feature 264 allows the interlock feature 264 to be removed from engagement with the tab 236 in the wall 234 that defines the opening 232 in the mask base 112.
The inner catch 256 includes an elongated slot 404, as shown in
One configuration of a mask base 114 suitable for use with the clip 252 of
The mounting post 412 can also comprise an elongated, elliptical, elevated portion 414 (sometimes referred to as a lug or wing) that is sized to mate with the elongated slot 404 of the inner catch 256. The elongated, elevated portion 414 comprises a chamfered edge to help properly align the head gear 106 with respect to the mask assembly 102. The portion 414 also prevents the clip 252 from rotating with respect to the mask assembly 102. This helps assure constant tension on the headgear straps 260 while the user sleeps.
The inner catch 256 also includes several pressure bumps 414. As discussed above, the pressure bumps provide additional pressure against the outer cover 254 and inner catch 256, so that they are secured to one another.
Additional configurations of a clip 252 are illustrated in
A similar configuration is shown in
All of the foregoing configurations simplify the procedure for securing the mask assembly 102 to the user's head. For example, the clips 252 allow the headgear 106 to open up so that it is not a closed loop. By opening up, the headgear 106 may be swung around the head rather than forcing the user to pull his head through it.
With reference to
The straps 260 can be connected to the back strap 280 in any suitable manner. In the illustrated configuration, the straps 260 connect to the upper arm 284 and the lower arm 286 respectively. Preferably, the upper arm 284 and the lower arm 286 are more rigid than the straps 260 such that the arms 284, 286 generally maintain shape as the headgear assembly 106 is being donned. In some configurations, each of the upper arm 284 and the lower arm 286 supports its own weight. In some configurations, each of the upper arm 284 and the lower arm 286 is structured to be tangle-free during donning. For example, the arms 284, 286 have sufficient torsion stiffness to reduce the likelihood of twisting when being put on.
Preferably, the straps 260 connect to at least one of the upper arm 284 and the lower arm 286 at a location forward of the ear. Such a configuration helps the user to locate the straps 260 without much difficulty. In addition, because the straps 260 in the illustrated configuration are embedded into the clips 252, the ends of the upper arms 284 and the lower arms 286 can comprise slots 290, 292 such that the straps 260 can be threaded through the slots 290, 292. In addition, the straps 260 can comprise an adjustment mechanism 294, such as a Velcro or buckle configuration. The adjustment mechanism 294 allows a force between the mask seal 110 and the face of the user U to be adjusted. Any suitable adjustment mechanism 294 can be used.
As shown in
Advantageously, as shown in
In another configuration, the headgear assembly 106 includes a semi-rigid headgear 380 (as shown in
Especially in connection with a semi-rigid headgear assembly, it has been found that the shape holding, or self-supporting nature, can result in an overall assembly that is intuitive to fit. In particular, where the connection and/or headgear members are self-supporting such that they maintain a three-dimensional form, the headgear can be fitted in the correct orientation with very little if any instruction. In a self-supporting arrangement, the tendency of the straps to not tangle also reduces the time taken to fit the overall assembly.
As used herein, the term “semi-rigid” is used to denote that the headgear assembly is sufficiently stiff such that the headgear assembly 380 can assume a three-dimensional shape with dimensions approximating the head of the patient for which the headgear is designed to fit while also being sufficiently flexible to generally conform to the anatomy of the patient. For example, some of the other components (e.g., arms or straps) of the headgear assembly 380 may also be partially or wholly “semi-rigid” such that the components are capable of holding a three-dimensional form that is substantially self-supporting. A “semi-rigid” headgear assembly is not intended to mean that each and every component of the headgear assembly is necessarily semi-rigid. For example, the substantially three-dimensional form that the self-supporting headgear assembly 380 may assume may relate primarily to the rear and top portions of the headgear assembly 380. In addition, the semi-rigid headgear assembly 380 may include semi-rigid regions that extend forward of the ears and above the ears when placed on the head of the patient.
The left and right upper and lower arms 284, 286 may be formed of a semi-rigid material, as well. Where used herein, the semi-rigid materials may include molded plastic or sheet materials that include but are not limited to homogeneous plastic materials and bonded non-woven fiber materials.
In some configurations, one or more of arms or straps are formed of a substantially inelastic material. The arms or straps can be formed of a semi-rigid, self-supporting material such that the semi-rigid headgear assembly 380 can assume a substantially three-dimensional shape and generally does not tangle. In some configurations, the material can comprise a laminate structure of both conformable and semi-rigid portions, for example but without limitation. The semi-rigid strap 382 may be of a self-supporting, resilient, substantially inelastic material, such as Santoprene, polyolefin, polypropylene, polyethylene, foamed polyolefin, nylon or non-woven polymer material for example but without limitation. In some configurations, the semi-rigid strap 382 is formed from the polyethylene or polypropylene families. The material can be a low density polyethylene such as Dowlex 2517, which is a linear low density polyethylene that has a yield tensile strength of 9.65 MPa, a break tensile strength of 8.96 MPa, and a flexural modulus—2% secant of 234 MPa. The semi-rigid strap 382 preferably is formed of a material such that the semi-rigid headgear 380 is substantially shape-sustaining under its own weight regardless of its orientation. In some configurations, the semi-rigid strap 382 does not stretch more than approximately 6 mm under a 30 N tensile load. In some configurations, the semi-rigid strap 382 does not stretch more than approximately 3 mm under a 30 N tensile load.
In some configurations, the semi-rigid strap 382 is formed from non woven polyolefin (NWP), which is bonded (e.g., overmolded or laminated) with a polyolefin. In such configurations, the overmolded polyolefin material provides the principle shape sustaining properties. In addition, the softer NWP material is adapted to contact the skin and provide a desired comfort level. Furthermore, the NWP material may assist in providing the desired load bearing properties, such as the desired tensile load bearing properties.
The semi-rigid headgear 380 is generally formed of a semi-rigid material. Where used herein, the semi-rigid materials may include molded plastic or sheet materials that include but are not limited to homogeneous plastic materials and bonded non-woven fiber materials. The upper and lower arms 284, 286 also include such semi-rigid materials, as the arms 284, 286 are formed integrally with and are portions of the semi-rigid headgear 380. Preferably, the right and left lower arms 286 are formed as an integrated component that, in use, will extend around the back of the head and above the neck of the patient.
A soft edging 384 covers or attaches to at least a portion of the periphery of the semi-rigid strap 382. In one configuration, the soft edging 384 does not cover the front or rear faces of the semi-rigid strap 382. For example, the thicknesses of the soft edging 384 and semi-rigid strap 382 can be the same at the location where they are joined together.
The soft edging 384 provides a soft, comfortable interface between the periphery of the semi-rigid strap 382 and the user's skin. The soft edging 384 can be made from a variety of soft materials, including but not limited to a plastic, an elastomer, silicone or thermoplastic polyurethane (TPU) plastic. The soft edging 384 can have a Shore hardness in the range of 10-80 Shore A.
As used herein with respect to headgear and straps, “soft” is used to describe a hand of the material, which means the quality of the material assessed by the reaction obtained from the sense touch. In addition, as used herein with respect to headgear and straps, “conformable” is used to describe the ability of the material to conform to the anatomical features of the patient (e.g., around a facial feature). In particular, a strap including at least an element of “soft” and/or “conformable” material also may be “semi-rigid” and/or axially inelastic.
The soft edging 384 can have a uniform thickness, or in some configurations, an uneven thickness. For example, in some configurations the soft edging 384 is the same thickness as the semi-rigid strap 382. In other configurations, the soft edging 384 is thinner than the semi-rigid strap 382, forms a bulbous end to the semi-rigid strap 382, or is simply thicker than the semi-rigid strap 382. A variety of cross-sectional views of the semi-rigid headgear 380 are shown in
Many other thickness configurations may be provided, as well. In addition, material thickness may be symmetrically or asymmetrically applied to the semi-rigid strap 382. For example, cross-sectional views C-C′ and F-F′ are shown as asymmetric; however, in other configurations the thickness of either end the soft edging 384 is symmetrically applied to the semi-rigid strap 382. In some configurations the semi-rigid strap 382 is selectively thickened to provide extra rigidity and support. For example, the second of the two configurations illustrated as cross-sectional view F-F′ has such a thickening. Finally, in some configurations, venting through-holes 396 are provided throughout the semi-rigid headgear 380 (such as on the semi-rigid strap 382, as shown in
When laid flat, as shown in
The curvature of each arm 280, 284, 286 can be selected to provide a comfortable fit and to facilitate application and removal of the semi-rigid headgear 380 from the user's head. For example, in the illustrated configuration, the upper arms 284 have a concave curvature and the lower arms 286 have a convex curvature with respect to the opening in the upper ear surrounding arcuate regions 386, 388. The back strap portion 280 and the lower arms 286 all have a concave curvature with respect to opening in the neck surrounding arcuate region 390. These curvatures facilitate application and removal of the semi-rigid headgear 380 from the user's head by, for example, providing openings to the arcuate regions sized and oriented to easily fit over a user's neck and ears.
The configuration of
The crown straps extend laterally over the top of the skull in line with the ears. When the crown straps extend in this manner and the arcuate regions 386, 388 are positioned to partially encircle the user's ears, the back strap 280 of the semi-rigid headgear 380 should locate on or below the inion. The user's inion is the most prominent projection of the occiptal bone at the posterioinferior portion of the skull. In other words, the inion is the highest point of the external occipital protruberance. The semi-rigid headgear 380 can be positioned on the user's head according to any desired configuration.
For example, the back strap portion 280 is adapted to engage with the rear of head of the user. Preferably, the back strap portion 280 is adapted to engage with the head at a location on or below the external occipital protuberance. The back strap portion 280 spans the distance around the back of the head and extends to each side of the head. In some configurations, the back strap portion 280 comprises a longitudinal center that is adapted to be located about 25 degrees below a horizontal plane that extends through the ear canal of the patient.
On either side of the head, the semi-rigid headgear 380 extends upward and downward into left and right side regions that form arcuate regions 386, 388. The side regions are adapted to extend behind the ears of the patient. Preferably, the side regions also are adapted to extend behind the mastoid processes of the patient. Each of the left and right side regions of the semi-rigid headgear 380 extends into or comprises an arched portion 386, 388. The arched portions 386, 388 bend forward. The arched portions 386, 388 are adapted to extend around the respective ears of the patient. Preferably, each of the arched portions 386, 388 terminates at a respective termination portion. The termination portions preferably are adapted to be located forward of the ears of the patient. In some configurations, the side regions and the arched portions 386, 388 of the semi-rigid headgear 380 do not include a soft inner padding portion but may comprise a self-supporting, resilient material that is in direct contact with the head/hair of the patient.
The top portion of the semi-rigid headgear 380 connects the arched portions 386, 388 together. The top portion can be positioned forward of the ears in some configurations. Preferably, the top portion is positioned generally vertical from the ears. More preferably, a longitudinal center of the top portion is adapted to be spaced more than 13 mm, preferably between 13-100 mm, rearward of a vertical plane that intersects the ear canals. In some configurations, the top portion comprises a first segment 392 and a second segment 394 with the first segment 392 and the second segment 394 combining to form the top portion. The first segment 394 extends upward from an apex of the left arched portion 386 while the second segment 392 extends upward from an apex of the right arched portion 388. Preferably, the top portion is formed of a self-supporting and semi-rigid material. In some configurations, the top portion does not include any backing, including a soft padded backing layer.
Each of the upper and lower arms 284, 286 comprises a slot 292, 290 near each arm end. Each slot is configured to receive straps 260 from the mask assembly 102, as shown in
In addition, the upper arms 284 are configured to extend downward from a location above the user's ear such that the adjustable top straps 260 extend no closer than about 10 mm to the user's eye when worn. The lower arm 286 is configured to be located off of the user's neck when the head is tilted up and down, and the termination point of the lower arm 286 is located generally below the user's ears so that the lower strap as attached to the lower arm 286 angles upwards from the termination point 290 to the mask assembly 120. In such a configuration, as illustrated in
With reference to
A sleeve 310 comprises a flange 312 that is received within the recess 308. The sleeve 310 can be secured into position within the elbow 222 using any suitable technique. The sleeve 310 comprises a generally cylindrical outer wall 314. The flange 312 comprises a section that extends outward to connect to a lever 316. Preferably, the flange 312 and the lever 316 are integrally formed. With reference to
A swivel 330 comprises a generally cylindrical inner wall 332. The inner wall 332 slides over the outer wall 314 of the sleeve 310 such that a sliding fit results between the swivel 330 and the sleeve 310. An upper portion 334 comprises a shoulder 336. The catch 320 of the lever 316 can secure the swivel 330 in axial position on the sleeve 310 by engaging with the shoulder 336. When the upper portion 322 of the lever 316 is depressed, the catch 320 moves away from the shoulder 336, which allows the swivel 330 to be removed from the sleeve 310.
A flap 350 can be mounted between the stem 304 and the sleeve 310. In the illustrated configuration, the flap 350 extends into a flow channel 352 from a base 354 that is sandwiched between the stem 304 and the sleeve 310. The flap 350 can pivot upward (as shown in
With reference to
In some configurations, the port 360 extends through a wall of the elbow 222 that comprises a generally planar inner wall 362. The generally planar inner wall 362 helps the flap 350 to generally seal the port 360 when the flap is moved upward away from the flange 312 of the sleeve 310.
In some configurations, the lever 316 overlies a majority of the port 360 such that the port 360 is generally obscured from view. As shown in
While not shown, the elbow 222 also can comprise one or more bias flow vent holes. The bias flow vent holes preferably are positioned in a forwardly directed orientation such that any bias flow does not directly impinge upon the user.
Another configuration of an elbow assembly 302 is illustrated in
With reference to
The swivel 330 preferably is generally cylindrical in configuration. As shown in
The elbow 222 comprises openings 420 at its sides that are in fluid communication with an air venting channel 422. The air venting channel 422 is formed by the spacing between the elbow's inner and outer walls 362, 424, as shown in
When the flap 350 drops to its closed position, as shown in
The configuration of
Although the present invention has been described in terms of a certain embodiment, other embodiments apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes and modifications may be made without departing from the spirit and scope of the invention. For instance, various components may be repositioned as desired. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.
Stephenson, Matthew Roger, Bornholdt, Melissa Catherine
Patent | Priority | Assignee | Title |
11413481, | May 12 2015 | 3M Innovative Properties Company | Respirator tab |
11813581, | Jul 14 2017 | 3M Innovative Properties Company | Method and adapter for conveying plural liquid streams |
11877604, | May 03 2007 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
11904191, | May 03 2007 | 3M Innovative Properties Company | Anti-fog respirator |
Patent | Priority | Assignee | Title |
10201678, | Jun 24 2009 | ResMed Pty Ltd | Adjustable mask system and related methods |
10258757, | May 12 2008 | Fisher & Paykel Healthcare Limited | Patient interface and aspects thereof |
10265488, | Feb 25 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask and a sealing lip device for a breathing mask |
10518054, | Aug 25 2014 | Fisher & Paykel Healthcare Limited | Respiratory mask and related portions, components or sub-assemblies |
10603456, | Apr 15 2011 | Fisher & Paykel Healthcare Limited | Interface comprising a nasal sealing portion |
10835697, | Apr 15 2011 | Fisher & Paykel Healthcare Limited | Interface comprising a rolling nasal bridge portion |
1229050, | |||
1359073, | |||
1445010, | |||
1635545, | |||
1710160, | |||
2126755, | |||
2228218, | |||
2296150, | |||
2353643, | |||
2359506, | |||
2376871, | |||
2388604, | |||
2403046, | |||
2414405, | |||
2415846, | |||
2444417, | |||
2452845, | |||
2508050, | |||
2540567, | |||
2693800, | |||
2706983, | |||
2738788, | |||
2843121, | |||
2858828, | |||
2859748, | |||
2874693, | |||
2875759, | |||
2881444, | |||
2893387, | |||
2931356, | |||
2939458, | |||
2999498, | |||
301111, | |||
3027617, | |||
3037501, | |||
3040741, | |||
3092105, | |||
3117574, | |||
3234939, | |||
3234940, | |||
3292618, | |||
3295529, | |||
3315674, | |||
3330273, | |||
3330274, | |||
3424633, | |||
3490452, | |||
3530031, | |||
3545436, | |||
3599635, | |||
3752157, | |||
3850171, | |||
3890966, | |||
3936914, | Apr 07 1975 | Separable fastener | |
3969991, | Mar 03 1975 | Bellofram Corporation | Rolling diaphragm and rolling diaphragm devices |
3972321, | Feb 20 1975 | Upper lip mounted retaining means for medical-surgical tubes | |
3977432, | Jan 13 1975 | GENERAL ELECTRIC CAPITAL CORPORATION, A NEW YORK CORP | Breathing mask and variable concentration oxygen diluting device therefor |
3982532, | Dec 19 1973 | Gnosjoplast AB | Breathing mask, particularly for artificial respiration |
3992720, | Dec 29 1975 | Adjustable headband | |
4062357, | Apr 08 1974 | Respirator mask | |
4069516, | Jul 21 1976 | FIGGIE INTERNATIONAL INC | Breathing face mask |
4090510, | Feb 05 1976 | Rebo-Produkter | Face mask with exchangeable filter |
4141118, | Oct 21 1977 | Jacoby-Bender, Inc. | Hook and ring clasp |
4150464, | Aug 10 1977 | Illinois Tool Works Inc. | Buckle |
4167185, | Apr 18 1977 | SCOTT TECHNOLOGIES, INC | Face mask seal |
4201205, | Jan 20 1978 | CREDITANSTALT CORPORATE FINANCE, INC | Oxygen mask |
4258710, | Aug 16 1978 | Mask-type respirator | |
4263908, | Jul 25 1979 | Nasal cannula mask | |
4266540, | Oct 13 1978 | Nasal oxygen therapy mask | |
4278082, | May 11 1979 | Adjustable nasal cannula | |
4354488, | Nov 24 1980 | Dow Corning Corporation | Nose mask gas delivery device |
4367735, | Dec 31 1979 | UNION TRUST COMPANY | Nasal cannula |
4378011, | Apr 24 1980 | Dragerwerk Aktiengesellschaft | Lung controlled pressure gas respirator for use with an oxygen mask and valving mechanism therefor |
4384577, | Apr 03 1981 | Moldex-Metric, Inc | Disposable face mask |
443191, | |||
4437462, | Nov 19 1981 | SCOTT TECHNOLOGIES, INC | Pneumatic head harness |
4454880, | May 12 1982 | Nasal hood with open-bottom mixing chamber | |
4470413, | Jan 29 1982 | Dr/a/ gerwerk Aktiengesellschaft | Protective breathing apparatus including a mask and mouthpiece |
4603602, | Dec 17 1982 | Nissan Motor Company, Limited | Method of controlling continuously variable transmission |
4621632, | Nov 01 1984 | BEAR MEDICAL SYSTEMS INC | Humidifier system |
4641379, | Apr 25 1986 | Face mask | |
4675919, | May 08 1985 | PROPPER MANUFACTURING CO , INC ; HEINE OPTOTECHNIK GMBH & CO KG | Headband with cushion |
4676241, | Jan 16 1984 | Sherwood Services AG; TYCO GROUP S A R L | Ventilation tube swivel |
4706683, | Dec 20 1985 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Method and apparatus for bolus delivery of gases and aerosols and insufflations |
472238, | |||
4739755, | Oct 17 1986 | DALLOZ INVESTMENT, INC | Respirator |
4753233, | Feb 10 1987 | Advantage Medical | Nasal cannula |
4764989, | May 20 1987 | JPCA, INC | Safety goggles retainer for hard hat |
4770169, | Feb 13 1987 | MDT CORPORATION, A CORP OF DE | Anaesthetic mask |
4782832, | Jul 30 1987 | Puritan-Bennett Corporation | Nasal puff with adjustable sealing means |
4836200, | Feb 29 1988 | CLARK, RODNEY D | Oxygen tube support strap |
4856508, | Apr 13 1987 | New England Thermoplastics, Inc.; NEW ENGLAND THERMOPLASTICS, INC , 15 UNION STREET - STONE MILL, LAWRENCE, MASSACHUSETTS 01842, A CORP OF MASSACHUSETTS | Face mask |
4907584, | Mar 03 1988 | Respironics, Inc | Respiratory mask |
4915104, | Jan 09 1989 | Cynthia L., Vogt | Nasal oxygen tube support and method |
4915105, | Oct 28 1988 | Miniature respiratory apparatus | |
4919128, | Aug 26 1988 | UNIVERSITY TECHNOLOGIES INTERNATIONAL, INC | Nasal adaptor device and seal |
4938209, | Jan 12 1989 | Mask for a nebulizer | |
4941467, | Apr 19 1988 | Humidification face mask | |
4944310, | Apr 24 1981 | ResMed Limited | Device for treating snoring sickness |
4947488, | Feb 06 1990 | Forehead guard | |
4960121, | Mar 18 1987 | SCOTT TECHNOLOGIES, INC | Half-face mask assembly |
4971051, | Jul 13 1987 | TOFFOLON, SHIRLEY I | Pneumatic cushion and seal |
4974586, | Oct 07 1987 | Moldex-Metric, Inc | Breathing mask |
4986269, | May 23 1985 | Etela-Hameen Keuhkovammayhdistys R.Y. | Respiration therapy apparatus |
5005571, | Nov 25 1988 | Mouth nose mask for use with an inhalation therapy and/or breathing monitoring apparatus | |
5010925, | Apr 09 1990 | Vernay Laboratories, Inc. | Normally closed duckbill valve assembly |
5016625, | Aug 23 1989 | SHEEN, TONY C J | Full head respirator |
5031261, | Mar 15 1990 | CARPENTER CO | Mattress overlay for avoidance of decubitus ulcers |
5042478, | Aug 26 1988 | UNIVERSITY TECHNOLOGIES INTERNATIONAL, INC , A CORP OF PROVINCE OF ALBERTA | Method of ventilation using nares seal |
5062421, | Nov 16 1987 | Minnesota Mining and Manufacturing Company | Respiratory mask having a soft, compliant facepiece and a thin, rigid insert and method of making |
5065756, | Dec 22 1987 | New York University | Method and apparatus for the treatment of obstructive sleep apnea |
5074297, | Dec 19 1989 | The General Hospital Corporation; General Hospital Corporation, The | Self-sealing mask for delivering intermittent positive pressure ventilation |
5094236, | Apr 13 1987 | Better Breathing Inc. | Face mask |
5113857, | Aug 27 1990 | Breathing gas delivery system and holding clip member therefor | |
5121745, | Jul 23 1990 | Self-inflatable rescue mask | |
5148802, | Sep 22 1989 | RIC Investments, Inc | Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders |
5164652, | Apr 21 1989 | Motorola, Inc.; MOTOROLA, INC , A CORP OF DE | Method and apparatus for determining battery type and modifying operating characteristics |
5231979, | Feb 14 1992 | Nellcor Puritan Bennett Incorporated; Nellcor Puritan Bennett LLC | Humidifier for CPAP device |
5243971, | May 21 1990 | ResMed Limited | Nasal mask for CPAP having ballooning/moulding seal with wearer's nose and facial contours |
5245995, | Dec 21 1989 | ResMed Limited | Device and method for monitoring breathing during sleep, control of CPAP treatment, and preventing of apnea |
5259377, | Mar 30 1992 | Parker Medical | Endotracheal tube stylet |
5269296, | Oct 29 1991 | Airways Associates | Nasal continuous positive airway pressure apparatus and method |
5323516, | Jul 14 1993 | Watch band or bracelet closure with magnetically biased keeper | |
5349949, | Oct 03 1991 | Intertechnique | Face mask with lip, fold, and resilient spring means to improve seal |
5353789, | Nov 21 1991 | Dragerwerk AG | A flaccid mask with straps and a supporting element that force the mask into sealing engagement with the wearer's face in response to force exerted by the straps on the supporting element |
5355878, | Jun 26 1990 | CAM LOCK LIMITED | Breathing equipment for aircrew |
5366805, | Dec 10 1992 | Shin-Etsu Chemical Company, Ltd. | Polycarbonate resin/silicone rubber integrally molded article and method for making |
5400776, | Jul 09 1993 | Proprietary Technology, Inc. | Apparatus for maintaining a bend in a medical insufflation tube |
5429683, | May 22 1991 | Face mask for breathing | |
5438981, | Sep 30 1993 | RIC Investments, LLC | Automatic safety valve and diffuser for nasal and/or oral gas delivery mask |
5441046, | Sep 29 1993 | RIC Investments, LLC | Quick release mechanism for nasal and/or oral gas delivery mask |
5449206, | Jan 04 1994 | Lockwood Products, Inc.; LOCKWOOD PRODUCTS, INC | Ball and socket joint with internal stop |
5449234, | Nov 29 1993 | Caterpillar Inc. | Air temperature sensor |
5458202, | Sep 09 1993 | MEGGITT SAFETY SYSTEMS, INC | Pressurized extinguishant release device with rolling diaphragm |
5477852, | Oct 29 1991 | Airways Associates | Nasal positive airway pressure apparatus and method |
5513634, | May 06 1994 | GI SUPPLY, INC | Combination integral bite block airway and nasal cannula |
5517986, | Sep 28 1993 | RIC Investments, LLC | Two-point/four-point adjustable headgear for gas delivery mask |
5518802, | May 31 1989 | Cushioning structure | |
5533506, | Jan 13 1995 | E BARTER SOLUTIONS, INC | Nasal tube assembly |
5540223, | Feb 17 1994 | RIC Investments, LLC | Respiratory mask facial seal |
5542128, | Apr 20 1993 | Headwear for supporting a breathing apparatus | |
5551419, | Dec 15 1994 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Control for CPAP apparatus |
5558090, | Oct 30 1995 | Multi-purpose head-mounted adjustable medical tube holder | |
5560354, | Jun 18 1993 | ResMed Limited | Facial masks for assisted respiration or CPAP |
5570689, | Sep 30 1993 | RIC Investments, LLC | Respiratory mask having a vertically adjustable spacer element that limits seal deformation on a wearer's face |
5588423, | Aug 20 1994 | Fisher & Paykel Healthcare Limited | Humidifier chamber |
5595174, | Feb 28 1994 | Nasal adaptor, mask, and method | |
5601078, | Jul 16 1994 | Dragerwerk AG | Breathing apparatus with a display unit |
5647355, | Sep 30 1993 | RIC Investments, LLC | Automatic safety valve for respiratory equipment which is counter-balanced and self-adjusting |
5649532, | May 05 1992 | Breathing equipment for aircrew | |
5657752, | Mar 28 1996 | Airways Associates | Nasal positive airway pressure mask and method |
5662101, | Dec 07 1995 | RIC Investments, LLC | Respiratory facial mask |
5664566, | Sep 30 1994 | BE INTELLECTUAL PROPERTY, INC | Quick-donning full face oxygen mask with inflatable harness and soft foldable lens |
5690097, | May 31 1996 | Board of Regents, The University of Texas System | Combination anesthetic mask and oxygen transport system |
5697363, | Apr 12 1996 | PEDISEDATE LLC | Inhalation and monitoring mask with headset |
5724965, | Jun 06 1995 | RIC Investments, LLC | Nasal mask |
5746201, | Jan 23 1997 | Nellcor Puritan Bennett LLC | CPAP nose mask |
5752510, | Nov 14 1996 | Nasal and oral air passageway delivery management apparatus | |
5755578, | Oct 30 1995 | U S PHILIPS CORPORATION | Vacuum-cleaner-hose assembly having a swivel bend and vacuum cleaner having such assembly |
5758642, | Oct 02 1996 | Gas delivery mask | |
577926, | |||
5806727, | Mar 14 1996 | ZPRODUCTS INTERNATIONAL, INC | Garment hangers |
5842470, | May 03 1996 | Kimberly-Clark Worldwide, Inc | Facial surgical mask with easier breathing device |
5857460, | Mar 14 1996 | Beth Israel Deaconess Medical Center, Inc. | Gas-sensing mask |
5878743, | Sep 23 1996 | RIC Investments, LLC | Pressure sensitive flow control valve |
5884624, | Sep 08 1995 | RIC Investments, LLC | Respiratory mask facial seal |
5896857, | Dec 20 1996 | ResMed Limited | Valve for use in a gas delivery system |
5904278, | May 18 1995 | MAWA Metallwarenfabrik Wagner GmbH | Clothes hanger, in particular for hanging articles of clothing from the grab handles inside passenger cars |
5921239, | Jan 07 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Face mask for patient breathing |
5937851, | Feb 27 1997 | RIC Investments, LLC | Swivel device utilizing bearing clearance to allow carbon dioxide laden exhaust |
5941245, | Oct 20 1997 | BE INTELLECTUAL PROPERTY, INC | Crew oxygen mask with improved comfort control apparatus |
5943473, | May 29 1997 | MEZZANINE OPPORTUNITIES LLC, AS AGENT | Heated cartridge humidifier |
5953763, | Nov 11 1996 | GOUGET, ROBERT | Safety urinal |
5966745, | Feb 03 1997 | GELTIGHT ENTERPRISES, LLC | Goggles with pliable and resilient sealing pad |
6006748, | Oct 16 1996 | ResMed Limited | Vent valve apparatus |
6016804, | Oct 24 1997 | SCOTT TECHNOLOGIES, INC | Respiratory mask and method of making thereof |
6017315, | Feb 25 1998 | RIC Investments, LLC | Patient monitor and method of using same |
6019101, | Oct 31 1996 | SleepNet Corporation | Nasal air mask |
6021528, | Sep 01 1995 | AMPAC Enterprises, Inc. | Chest protector harness |
6039044, | Dec 08 1995 | University of Sydney | Gas delivery mask |
6050260, | Dec 02 1996 | Fisher & Paykel Healthcare Limited | Humidifier sleep apnea treatment apparatus |
6050294, | Mar 17 1999 | Val-Matic Valve and Manufacturing Corp. | Spring return check valve |
6112746, | Jul 26 1996 | ResMed Limited | Nasal mask and mask cushion therefor |
6116235, | May 29 1996 | Alliance Pharmaceutical Corp. | Vapor retention assembly |
6119693, | Jan 16 1998 | KWA DESIGN GROUP P L | Forehead support for facial mask |
6119694, | Jul 24 1997 | RIC Investments, LLC | Nasal mask and headgear |
6123071, | Jun 18 1993 | ResMed Limited | Facial masks for assisted respiration or CPAP |
6135109, | Aug 15 1997 | Inhalation apparatus | |
6135432, | Jun 08 1995 | ResMed Limited | Humidifier |
6192886, | Oct 17 1996 | Hans Rudolph, Inc. | Nasal mask |
6196223, | Apr 10 1998 | Strapless respiratory facial mask for customizing to the wearer's face | |
6269814, | Jun 18 1999 | Accu-Med Technologies, Inc.; ACCU-MED TECHNOLOGIES, INC | Sleep apnea headgear |
6272933, | Jun 16 1998 | Fisher & Paykel Healthcare Limited | Respiratory humidification system |
6292985, | Dec 22 1997 | Sama S.p.A. | Magnetic closure with mutual interlock for bags, knapsacks, items of clothing and the like |
6298850, | Aug 05 1999 | Nasal cannula assembly and securing device | |
6302105, | Mar 17 1998 | ResMed Pty Ltd | Apparatus for supplying breathable gas |
6338342, | Feb 22 1999 | 3M Innovative Properties Company | Respirator headpiece and release mechanism |
6341382, | Nov 06 2000 | SUREWERX USA INC | One-piece adjustable headgear support |
6341606, | May 19 1999 | Covidien LP | Disposable respiratory mask with adhesive skin interface |
6347631, | Nov 09 1999 | Covidien LP | Cantilever device and method for breathing devices and the like |
6355878, | Dec 24 1999 | AMIC CO , LTD A CORPORATION CHARTERED IN AND EXSTING UNDER THE LAWS OF THE REPUBLIC OF KOREA, AND MAINTAINING ITS PRINCIPAL OFFICES AT: | Clip type conductive gasket |
6371110, | Mar 25 1999 | PETERSON, MARK A | Automatic release apparatus and methods for respirator devices |
6374826, | Mar 18 1999 | ResMed Pty Ltd | Mask and headgear connector |
6398197, | May 10 1999 | Fisher & Paykel Healthcare Limited | Water chamber |
6412487, | Jan 31 1997 | ResMed Limited | Mask cushion and frame assembly |
6412488, | May 12 1999 | RIC Investments, LLC | Low contact nasal mask and system using same |
6418928, | Sep 25 2000 | Covidien LP | Multi-seal respirator mask |
6422238, | Jan 12 1999 | ResMed Limited | Headgear |
6427694, | Nov 22 2000 | MPV-Truma Gesellschaft fur | Nasal breathing mask |
6431172, | Oct 20 2000 | Covidien LP | Nasal cannula with inflatable plenum chamber |
6435181, | Aug 30 1999 | DeVilbiss Healthcare LLC | Respiratory mask with adjustable exhaust vent |
6439234, | Apr 03 1998 | Salter Labs | Nasal cannula |
6457473, | Oct 03 1997 | 3M Innovative Properties Company | Drop-down face mask assembly |
6460539, | Sep 21 2000 | 3M Innovative Properties Company | Respirator that includes an integral filter element, an exhalation valve, and impactor element |
6467483, | Jul 28 1999 | RIC Investments, LLC | Respiratory mask |
6470886, | Mar 23 1999 | CREATIONS BY BJH, LLC; THE BERNADETTE J JESTRABEK-HART TRUST | Continuous positive airway pressure headgear |
6478026, | Mar 13 1999 | MACQUARIE PF SERVICES LLC | Nasal ventilation interface |
6484725, | Jun 25 2001 | Nose plug device having air breathing structure | |
6488664, | Jul 28 2000 | Koninklijke Philips Electronics N V | Easily releasable clamp |
6491034, | Feb 09 1999 | ResMed Pty Ltd | Gas delivery connection assembly |
6513526, | Jul 26 1996 | ResMed Limited, an Australian Company | Full-face mask and mask cushion therefor |
6526978, | Jun 19 2001 | Endotracheal tube holder | |
6530373, | Aug 04 2000 | Covidien LP | Respirator mask |
6557555, | Oct 16 1996 | ResMed Limited | Vent valve apparatus |
6561188, | Aug 21 2000 | Nasal breathing apparatus and methods | |
6561190, | Feb 10 1997 | ResMed Limited | Mask and a vent assembly therefor |
6561191, | Feb 10 1998 | ResMed Limited | Mask and a vent assembly therefor |
6581594, | May 15 2000 | ResMed Pty Ltd | Respiratory mask having gas washout vent and gas washout vent for respiratory mask |
6581601, | Jun 18 1999 | Nasal mask with balloon exhalation valve | |
6581602, | Jul 26 1996 | ResMed Limited | Nasal mask and mask cushion therefor |
6584975, | Aug 28 2000 | Respirator mask for filtering breathed air | |
6584977, | Apr 06 2000 | RIC Investments, LLC | Combined patient interface and exhaust assembly |
6588424, | Mar 10 2000 | Intertechnique | Protective equipment with fast fixing head |
6595214, | Nov 22 2000 | MPV-TRUMA Gesellschaft fur Medizintechnische Produkte GmbH | Nasal respiration mask |
6598271, | Dec 26 2000 | Yamato Trading Nire Co. Ltd. | Clasp |
6598272, | Jan 01 2001 | Yamato Trading Nire Co., Ltd. | Clasp |
6606767, | Jul 09 2001 | Magnetic strap fastener | |
6615832, | Jun 22 1999 | BRAGEL INTERNATIONAL, INC | Wear article with detachable interface assembly |
6629531, | Apr 17 2000 | AVOX SYSTEMS INC | Respiratory mask and service module |
6631718, | Jun 08 1999 | SleepNet Corporation | Air mask with seal |
6634357, | Feb 22 2000 | AUTO CPR INC | Resuscitation valve assembly |
6634358, | Jul 26 1996 | ResMed Limited | Nasal mask cushion assembly |
6637434, | Oct 30 1998 | NOBLE, LINDA J | Nasal gas delivery system and method for use thereof |
6644315, | Jun 18 1999 | Nasal mask | |
6644316, | Oct 12 1999 | Covidien LP | Variable aperture venting for respiratory mask |
6647597, | Jan 19 2001 | Lodestone Fasteners, LLC | Adjustable magnetic snap fastener |
6651658, | Aug 03 2000 | CAIRE INC | Portable oxygen concentration system and method of using the same |
6651663, | May 12 1999 | RIC Investments, LLC | Nasal mask and system using same |
6659102, | Jul 23 2002 | Oxygen mask filter system | |
6662803, | Jun 14 2000 | Fisher & Paykel Healthcare Limited | Nasal mask |
6668828, | Oct 16 2000 | ADVANCED INHALATION THERAPIES AIT LTD | System and elements for managing therapeutic gas administration to a spontaneously breathing non-ventilated patient |
6679257, | Jun 04 1998 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
6679265, | Oct 25 2001 | InnoMed Technologies, Inc | Nasal cannula |
6691707, | Jun 18 1999 | ResMed Pty Ltd | Connector for a respiratory mask and a respiratory mask |
6712072, | Feb 25 1998 | ResMed R&D Germany GmbH | Respirator mask |
6729333, | May 12 1999 | RIC Investments, LLC | Low contact nasal mask and system using same |
6736139, | Feb 20 2003 | Ventilation mask assist device | |
6772761, | Aug 19 2002 | Gas delivery tube | |
6796308, | Dec 09 1998 | ResMed Pty Ltd | Mask cushion and frame assembly |
6817362, | Aug 10 2001 | HONEYWELL SAFETY PRODUCTS USA, INC , A DELAWARE CORPORATION | Respirator |
6823869, | Sep 07 2001 | ResMed Pty Ltd | Mask assembly |
6851425, | May 25 2001 | RIC Investments, LLC | Exhaust port assembly for a pressure support system |
6851428, | Jan 08 2002 | Carnell K., Dennis | Respiratory mask |
687973, | |||
6883177, | May 13 2002 | Portable kneepad | |
6889692, | Oct 16 1996 | ResMed Limited | Vent valve assembly |
6892729, | Nov 20 2001 | Fisher & Paykel Healthcare Limited | Patient interfaces |
6895965, | Sep 08 1995 | RIC Investments, LLC | Customizable seal, mask with customizable seal and method of using such a seal |
6907882, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with headgear assembly |
6918390, | Aug 24 2000 | ResMed Limited | Forehead support for facial mask |
6951218, | Jun 14 2000 | Fisher & Paykel Health Care Limited | Breathing assistance apparatus |
6953354, | Jun 05 2002 | Fisher & Paykel Healthcare Limited | Connector for breathing conduits |
6990691, | Jul 18 2003 | DePuy Products, Inc.; DEPUY PRODUCTS, INC | Head gear apparatus |
7004165, | Jan 09 2004 | Nose filter | |
7007696, | May 18 2001 | ZOLL Medical Corporation | Mask cushion and method of using same |
7021311, | Dec 09 1998 | ResMed Pty Ltd | Mask cushion and frame assembly |
7066178, | Jun 18 1999 | ResMed Pty Ltd | Connector for a respiratory mask and a respiratory mask |
7066179, | Aug 09 2002 | PHILIPS RS NORTH AMERICA LLC | Patient interface and headgear connector |
7077126, | May 19 2003 | PARI GmbH Spezialisten fur effektive inhalation | Inhalation therapy mask and device for animals |
7089939, | Feb 09 1999 | ResMed Pty Ltd | Gas delivery connection assembly |
7096864, | Aug 05 1999 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Device for supplying respiratory gas |
7100610, | Oct 19 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas |
7111624, | Mar 21 2000 | Fisher & Paykel Healthcare Limited | Apparatus for delivering humidified gases |
7152602, | Mar 08 2002 | Smiths Group PLC | Mask apparatus |
7174893, | Feb 09 1999 | ResMed Pty Ltd | Mask with anti-asphyxia valve |
7178525, | Feb 06 2004 | PHILIPS RS NORTH AMERICA LLC | Patient interface assembly supported under the mandible |
7178528, | Mar 01 2005 | Ventlab, LLC | Headgear for noninvasive ventilation interface |
718470, | |||
7185652, | Feb 09 1999 | ResMed Pty Ltd | Gas delivery connection assembly |
7201169, | Jun 19 2000 | Australian Centre for Advanced Medical Technology Ltd | Mask |
7207333, | May 22 2002 | BIO INTERNATIONAL CO , LTD | Nose mask |
7210481, | May 26 2000 | SleepNet Corporation | Nose mask |
7219669, | Jun 08 1999 | SleepNet Corporation | Nose mask |
7225811, | Oct 30 2002 | Headgear apparatus | |
7255106, | Jun 01 2001 | PARI GmbH Spezialisten fur effektive inhalation | Inhalation mask |
7260440, | Nov 26 2002 | ResMed Limited | Method and apparatus for measurement of pressure at a device/body interface |
7287528, | Apr 13 2005 | PHILIPS RS NORTH AMERICA LLC | Cushion inside a cushion patient interface |
7290546, | Mar 22 2002 | VENTEC LIFE SYSTEMS,INC | Nasal mask |
7296575, | Dec 05 2003 | RIC Investments, LLC | Headgear and interface assembly using same |
7318437, | Feb 21 2003 | RESMED LTD PTY; ResMed Pty Ltd | Nasal assembly |
7320323, | Oct 22 2001 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask device and application device and frontal support device thereof |
7353826, | Aug 08 2003 | ZOLL Medical Corporation | Sealing nasal cannula |
7353827, | Sep 01 2004 | Vitol Signs, Inc.; Vital Signs, Inc | Mask, mask shell and seal with improved mounting, mask seal, method of mask manufacture and mask with reduced exhalation noise |
7406966, | Aug 18 2003 | BREATHE TECHNOLOGIES, INC | Method and device for non-invasive ventilation with nasal interface |
7448386, | Dec 07 2005 | PHILIPS RS NORTH AMERICA LLC | Full face respiratory mask with integrated nasal interface |
7487772, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with elbow assembly |
7509958, | Nov 08 2002 | ResMed Pty Ltd | Headgear assembly for a respiratory mask assembly |
751091, | |||
7523754, | Sep 07 2001 | ResMed Pty Ltd | Cushion for a respiratory mask assembly |
7556043, | Oct 24 2005 | PHILIPS RS NORTH AMERICA LLC | Patient interface with an integral cushion and nasal pillows |
7562658, | Jul 21 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Holding device for a respiratory mask |
7568482, | May 25 2001 | PHILIPS RS NORTH AMERICA LLC | Exhaust port assembly for a pressure support system |
7597100, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with vent cover |
7658189, | Dec 31 2003 | RESMED LTD PTY; ResMed Pty Ltd | Compact oronasal patient interface |
7665464, | Jul 28 1999 | RIC Investments, LLC | Respiratory mask |
7681575, | Jul 12 2002 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
7694677, | Jan 26 2006 | Covidien LP | Noise suppression for an assisted breathing device |
770013, | |||
7708017, | Dec 24 2004 | ResMed Pty Ltd | Compact oronasal patient interface |
7721737, | Dec 05 2003 | RIC Investments, LLC | Headgear and interface assembly using same |
7753051, | Mar 17 2006 | King Systems Corporation | Face mask strap system |
7779832, | Aug 09 2002 | RIC Investments, LLC | Headgear for use with a patient interface device |
7793987, | Mar 24 2006 | PHILIPS RS NORTH AMERICA LLC | Magnetic coupling assembly and method of using same |
7810497, | Mar 20 2006 | PHILIPS RS NORTH AMERICA LLC | Ventilatory control system |
7814911, | Oct 15 2004 | SOMNETICS INTERNATIONAL, INC | Nares seal |
7827990, | Feb 25 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Sealing lip device for a respiratory mask, respiratory mask and a method and a mould for producing the same |
7877817, | Jul 15 2005 | PHILIPS RS NORTH AMERICA LLC | Mask attachment assembly |
7896003, | Jun 16 2006 | PHILIPS RS NORTH AMERICA LLC | Chin pivot patient interface device |
7931024, | Dec 22 2004 | PHILIPS RS NORTH AMERICA LLC | Cushion for a patient interface |
7934501, | Jul 23 2004 | ResMed Pty Ltd | Swivel elbow for a patient interface |
7942148, | Dec 31 2003 | ResMed Pty Ltd | Compact oronasal patient interface |
7958893, | Sep 07 2001 | ResMed Pty Ltd | Cushion for a respiratory mask assembly |
7971590, | Jun 16 2004 | ResMed Pty Ltd | Cushion for a respiratory mask assembly |
7975694, | Oct 24 2005 | Koninklijke Philips Electronics N V | Non-intrusive mask interface with nasal support |
7992560, | Jun 03 2004 | Compumedics Limited | Adaptable breathing mask |
8028699, | Dec 07 2005 | PHILIPS RS NORTH AMERICA LLC | Full face respiratory mask with integrated nasal interface |
8042538, | Feb 21 2003 | ResMed Pty Ltd | Nasal mask assembly |
8042539, | Dec 10 2004 | MACQUARIE PF SERVICES LLC | Hybrid ventilation mask with nasal interface and method for configuring such a mask |
8042542, | Apr 23 2002 | ResMed Pty Ltd | Respiratory mask assembly with magnetic coupling to headgear assembly |
804272, | |||
8091547, | Mar 21 2000 | Fisher & Paykel Healthcare Limited | Apparatus for delivering humidified gases |
8127764, | Nov 05 2004 | PHILIPS RS NORTH AMERICA LLC | Respiratory mask cushion and mask using same |
8132270, | Nov 11 2003 | ResMed Pty Ltd | Headband device for an oxygen mask |
8136523, | Mar 19 2007 | Hans Rudolph, Inc. | Ventilation mask with continuous seal connected by resilient cushion |
8136524, | Dec 31 2003 | ResMed Pty Ltd | Disposable mask system |
8136525, | Jun 06 2005 | ResMed Pty Ltd | Mask system |
8146595, | Aug 31 2006 | Covidien LP | Adjustable patient interface for a breathing assistance system |
8146596, | Jun 18 2003 | ResMed Pty Ltd | Vent and/or diverter assembly for use in breathing apparatus |
8171933, | Aug 25 2005 | 3M Innovative Properties Company | Respirator having preloaded nose clip |
8186345, | Aug 20 2004 | Fisher & Paykel Healthcare Limited | Apparatus for supplying gases to a patient |
8196583, | Dec 05 2003 | RIC Investments, LLC | Patient interface assembly with simultaneous mask strap adjustment |
8245711, | Aug 15 2005 | PHILIPS RS NORTH AMERICA LLC | Patient interface with adjustable cushion |
8251066, | Dec 22 2004 | RIC Investments, LLC | Exhalation port with built-in entrainment valve |
8254637, | Jul 27 2006 | ResMed Pty Ltd | Mask fitting system and method |
8261745, | Dec 10 2004 | MACQUARIE PF SERVICES LLC | Ventilation interface |
8267089, | Apr 13 2005 | Koninklijke Philips Electronics N.V.; Koninklijke Philips Electronics N V | Cushion inside a cushion patient interface |
8276588, | Oct 23 2009 | Sleepnea LLC | Respiratory mask with adjustable shape |
8286636, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8291906, | Jun 04 2008 | ResMed Pty Ltd | Patient interface systems |
8297285, | Jul 28 2006 | ResMed Pty Ltd | Delivery of respiratory therapy |
8342181, | Jun 16 2006 | ResMed Pty Ltd | Elbow assembly |
8353294, | Jun 16 2004 | ResMed Pty Ltd | Respiratory mask assembly |
8371302, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with frame |
8397727, | Aug 24 2007 | ResMed Pty Ltd | Mask vent |
8439035, | Dec 22 2000 | ResMed Pty Ltd | Flow regulation vent |
8443807, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
8453641, | Aug 20 2004 | Fisher & Paykel Healthcare Limited | Apparatus for measuring properties of gases supplied to a patient |
8479726, | Jun 16 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
8479736, | Apr 23 2002 | ResMed Pty Ltd | Respiratory mask assembly |
8479741, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
8490623, | Nov 06 2002 | ResMed Pty Ltd | Mask and components thereof |
8490624, | Nov 13 2006 | RIC Investments, LLC | Patient interface with variable footprint |
8517023, | Jan 30 2007 | ResMed Pty Ltd | Mask system with interchangeable headgear connectors |
8517024, | Jun 16 2006 | ResMed Pty Ltd | Elbow assembly |
8550072, | Mar 21 2000 | Fisher & Paykel Healthcare Limited | Apparatus for delivering humidified gases |
8550084, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
8567404, | Jan 12 2005 | ResMed Pty Ltd | Cushion for patient interface |
8573212, | Jan 12 2005 | ResMed Pty Ltd | Reinforcing member for a patient interface |
8596271, | Mar 11 2004 | PHILIPS RS NORTH AMERICA LLC | Patient interface device |
8596276, | Jul 18 2006 | Teijin Limited | Nasal respiratory mask system |
8616211, | Jan 12 2005 | ResMed Pty Ltd | Cushion for patient interface |
8622057, | Feb 16 2001 | ResMed Pty Ltd | Methods and apparatus for supplying clean breathable gas |
8631793, | Mar 29 2006 | Teijin Limited | Nasal respiratory mask system and connection/disconnection means used therein |
8636005, | Oct 08 2003 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
8636007, | Oct 22 2007 | ResMed Pty Ltd | Patient interface systems |
8646449, | Nov 13 2007 | INTERSURGICAL AG | Anti-asphyxiation valves |
8701667, | May 05 2006 | PHILIPS RS NORTH AMERICA LLC | Patient interface device with limited support area on the face |
8714157, | Sep 03 2003 | Fisher & Paykel Healthcare Limited | Mask |
8720444, | Jan 20 2012 | Hsiner Co., Ltd. | Breathing assistance apparatus having floating function |
8733358, | Sep 07 2001 | ResMed Pty Ltd | Cushion for a respiratory mask assembly |
8757157, | Aug 02 2007 | ResMed Pty Ltd | Mask for delivery of respiratory therapy to a patient |
8770190, | Apr 25 2007 | ResMed Pty Ltd | Connectors for connecting components of a breathing apparatus |
8783257, | Feb 23 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
8800563, | Nov 05 2007 | ResMed Pty Ltd | Headgear for a respiratory mask and a method for donning a respiratory mask |
8807134, | Dec 07 2005 | PHILIPS RS NORTH AMERICA LLC | Full face respiratory mask with integrated nasal interface |
8856975, | Nov 11 2003 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Headband device for an oxygen mask, and method for the production thereof |
8857435, | Feb 06 2004 | PHILIPS RS NORTH AMERICA LLC | Patient interface assembly with conduits on each side of the head |
8869797, | Apr 19 2007 | ResMed Pty Ltd | Cushion and cushion to frame assembly mechanism for patient interface |
8869798, | Sep 12 2008 | ResMed Pty Ltd | Foam-based interfacing structure method and apparatus |
8875709, | May 10 2007 | ResMed Pty Ltd | Mask assembly |
8887728, | Jul 05 2011 | Respiratory assistance mask | |
8910626, | Jun 16 2006 | PHILIPS RS NORTH AMERICA LLC | Chin pivot patient interface device |
8931484, | Feb 25 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Sealing lip device for a respiratory mask, respiratory mask and a method and mould for producing the same |
8944061, | Oct 14 2005 | ResMed Limited | Cushion to frame assembly mechanism |
8950404, | Dec 10 2008 | ResMed Limited | Headgear for masks |
8960196, | Jan 30 2007 | ResMed Pty Ltd | Mask system with interchangeable headgear connectors |
8978653, | Jun 22 2000 | ResMed Pty Ltd | Mask with gusset |
8985117, | Feb 21 2003 | ResMed Pty Ltd | Nasal assembly |
8997742, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with cushion |
9010330, | Sep 30 2010 | RESMED LTD PTY; ResMed Pty Ltd | Patient interface systems |
9010331, | Feb 13 2008 | ResMed Pty Ltd | Patient interface structure and method/tool for manufacturing same |
9027556, | Mar 04 2008 | ResMed Limited | Mask system |
9032955, | Jun 06 2005 | RESMED LTD PTY; ResMed Pty Ltd | Mask system |
9032956, | Oct 02 2006 | ResMed Pty Ltd | Cushion for mask system |
9044564, | May 29 2009 | ResMed Pty Ltd | Nasal mask system |
9056177, | Dec 11 2008 | KONINKLIJKE PHILIPS ELECTRONICS N V | Respiratory interface with flexing faceplate |
9067033, | Dec 31 2003 | ResMed Pty Ltd | Compact oronasal patient interface |
9072852, | Apr 02 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9095673, | Jun 02 2009 | ResMed Pty Ltd | Unobtrusive nasal mask |
9119929, | Dec 08 2003 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9119931, | Mar 04 2008 | ResMed Pty Ltd | Mask system |
9132256, | Jun 18 1999 | ResMed Pty Ltd | Connector for a respiratory mask and a respiratory mask |
9138555, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9144655, | Sep 03 2003 | Fisher & Paykel Healthcare Limited | Mask |
9149593, | May 29 2009 | ResMed Pty Ltd | Nasal mask system |
9149596, | Mar 23 2007 | ResMed Pty Ltd | Release mechanism for patient interface and method for releasing patient interface |
9155857, | Oct 20 2009 | Human Design Medical, LLC | CPAP system with heat moisture exchange (HME) and multiple channel hose |
9186474, | Apr 06 2010 | ROLLINS INTERNATIONAL MEDICAL INNOVATIONS INC | Multi-function oxygen mask |
9211388, | May 31 2011 | ResMed Pty Ltd | Mask assembly supporting arrangements |
9220860, | Dec 31 2003 | RESMED LTD PTY; ResMed Pty Ltd | Compact oronasal patient interface |
9242062, | Feb 25 2000 | RESMED HUMIDIFICATION TECHNOLOGIES GMBH | Breathing mask and a sealing lip device for a breathing mask |
9265902, | Aug 20 2004 | Fisher & Paykel Healthcare Limited | Apparatus for measuring properties of gases supplied to a patient |
9265909, | Dec 23 2008 | KONINKLIJKE PHILIPS ELECTRONICS N V | Adjustable headgear |
9292799, | Feb 28 2013 | CHEVRON U S A INC | Global model for failure prediction for artificial lift systems |
9295799, | Apr 02 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9320566, | Dec 08 2011 | Applicator for inserting an enlarged lens onto an eye of a user | |
9320866, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9333315, | Feb 23 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9339621, | Sep 03 2003 | Fisher & Paykel Healthcare Limited | Mask |
9339622, | Feb 23 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9339624, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9375545, | Jun 16 2004 | ResMed Pty Ltd | Respiratory mask assembly |
9381316, | Oct 25 2005 | ResMed Pty Ltd | Interchangeable mask assembly |
9387302, | May 29 2009 | ResMed Pty Ltd | Nasal mask system |
9457162, | Apr 23 2002 | ResMed Pty Ltd | Ergonomic and adjustable respiratory mask assembly with headgear assembly |
9486601, | Jul 12 2006 | ResMed Pty Ltd | Ports cap for mask assembly |
9517317, | Jul 14 2006 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9522246, | Jun 22 2000 | ResMed Pty Ltd | Mask with gusset |
9539405, | Feb 23 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9550038, | Feb 23 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9561338, | Oct 08 2010 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9561339, | Nov 18 2009 | Fisher & Paykel Healthcare Limited | Nasal interface |
9757533, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
9770568, | Mar 04 2008 | ResMed Pty Ltd | Mask system with snap-fit shroud |
9884160, | Apr 02 2004 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
9901699, | Jun 04 2008 | ResMed Pty Ltd | Pad for a mask |
9907922, | Sep 04 2012 | Fisher & Paykel Healthcare Limited | Valsalva mask |
9907923, | Sep 04 2012 | Fisher & Paykel Healthcare Limited | Valsalva mask |
9950130, | Sep 04 2012 | Fisher & Paykel Healthcare Limited | Valsalva mask |
20010017134, | |||
20010020474, | |||
20010029952, | |||
20020014241, | |||
20020020416, | |||
20020026934, | |||
20020029780, | |||
20020043265, | |||
20020046755, | |||
20020053347, | |||
20020059935, | |||
20020096178, | |||
20020100479, | |||
20020108613, | |||
20020195108, | |||
20030005509, | |||
20030005931, | |||
20030005933, | |||
20030019495, | |||
20030019496, | |||
20030029454, | |||
20030037788, | |||
20030047185, | |||
20030075180, | |||
20030075182, | |||
20030079749, | |||
20030089373, | |||
20030094177, | |||
20030121519, | |||
20030127101, | |||
20030149384, | |||
20030164170, | |||
20030172936, | |||
20030196655, | |||
20030196656, | |||
20030196658, | |||
20030196659, | |||
20030196664, | |||
20030200970, | |||
20030217746, | |||
20030226564, | |||
20030236015, | |||
20040025882, | |||
20040035427, | |||
20040065328, | |||
20040067333, | |||
20040094157, | |||
20040107547, | |||
20040107968, | |||
20040112377, | |||
20040112384, | |||
20040112385, | |||
20040118406, | |||
20040118412, | |||
20040134497, | |||
20040139973, | |||
20040149280, | |||
20040182396, | |||
20040182398, | |||
20040211425, | |||
20040211427, | |||
20040226566, | |||
20040255949, | |||
20050011524, | |||
20050016532, | |||
20050022820, | |||
20050028822, | |||
20050033247, | |||
20050045182, | |||
20050051177, | |||
20050066976, | |||
20050076913, | |||
20050092327, | |||
20050098183, | |||
20050121037, | |||
20050133038, | |||
20050150497, | |||
20050155604, | |||
20050199239, | |||
20050199242, | |||
20050205096, | |||
20050235999, | |||
20050241644, | |||
20060032504, | |||
20060042629, | |||
20060042632, | |||
20060060200, | |||
20060076019, | |||
20060081256, | |||
20060096598, | |||
20060107958, | |||
20060118117, | |||
20060124131, | |||
20060130844, | |||
20060137690, | |||
20060169286, | |||
20060174887, | |||
20060174892, | |||
20060196511, | |||
20060201514, | |||
20060207599, | |||
20060219236, | |||
20060219246, | |||
20060237017, | |||
20060237018, | |||
20060249159, | |||
20060254593, | |||
20060266361, | |||
20060266365, | |||
20060283459, | |||
20060283461, | |||
20070000492, | |||
20070006879, | |||
20070010786, | |||
20070044804, | |||
20070089749, | |||
20070107733, | |||
20070125385, | |||
20070125387, | |||
20070137653, | |||
20070142785, | |||
20070144525, | |||
20070157353, | |||
20070163600, | |||
20070174952, | |||
20070175480, | |||
20070209663, | |||
20070215161, | |||
20070221226, | |||
20070221227, | |||
20070227541, | |||
20070246043, | |||
20070267017, | |||
20070272169, | |||
20070295335, | |||
20080032036, | |||
20080035152, | |||
20080041388, | |||
20080041393, | |||
20080047560, | |||
20080060648, | |||
20080060653, | |||
20080060657, | |||
20080083412, | |||
20080099024, | |||
20080105257, | |||
20080110464, | |||
20080142019, | |||
20080171737, | |||
20080178875, | |||
20080178886, | |||
20080190432, | |||
20080190436, | |||
20080196728, | |||
20080210241, | |||
20080223370, | |||
20080223373, | |||
20080230068, | |||
20080236586, | |||
20080257354, | |||
20080264422, | |||
20080271739, | |||
20080302366, | |||
20080314388, | |||
20080319334, | |||
20090014007, | |||
20090014008, | |||
20090032024, | |||
20090038619, | |||
20090044808, | |||
20090065729, | |||
20090078267, | |||
20090095301, | |||
20090107504, | |||
20090110141, | |||
20090114227, | |||
20090114229, | |||
20090120442, | |||
20090126739, | |||
20090133697, | |||
20090139526, | |||
20090139527, | |||
20090151729, | |||
20090173349, | |||
20090178679, | |||
20090183734, | |||
20090183739, | |||
20090188505, | |||
20090223519, | |||
20090223521, | |||
20090272380, | |||
20090277452, | |||
20100000538, | |||
20100000543, | |||
20100000544, | |||
20100043798, | |||
20100051031, | |||
20100083961, | |||
20100108072, | |||
20100132717, | |||
20100154798, | |||
20100170516, | |||
20100192955, | |||
20100199992, | |||
20100218768, | |||
20100258132, | |||
20100258136, | |||
20100282265, | |||
20100294281, | |||
20100307502, | |||
20100313891, | |||
20100319700, | |||
20100326445, | |||
20110000492, | |||
20110005524, | |||
20110048425, | |||
20110067704, | |||
20110072553, | |||
20110088699, | |||
20110146684, | |||
20110146685, | |||
20110162654, | |||
20110197341, | |||
20110220112, | |||
20110247625, | |||
20110253143, | |||
20110265796, | |||
20110290253, | |||
20110308520, | |||
20110308526, | |||
20110315143, | |||
20120067349, | |||
20120080035, | |||
20120125339, | |||
20120132208, | |||
20120132209, | |||
20120138060, | |||
20120138061, | |||
20120138063, | |||
20120152255, | |||
20120167892, | |||
20120190998, | |||
20120204879, | |||
20120216819, | |||
20120234326, | |||
20120285452, | |||
20120285457, | |||
20120285469, | |||
20120304999, | |||
20120318265, | |||
20120318270, | |||
20120325219, | |||
20130000648, | |||
20130008446, | |||
20130008449, | |||
20130037033, | |||
20130068230, | |||
20130092169, | |||
20130133659, | |||
20130133664, | |||
20130139822, | |||
20130152918, | |||
20130160769, | |||
20130186404, | |||
20130199537, | |||
20130213400, | |||
20130220327, | |||
20130263858, | |||
20130306066, | |||
20130306077, | |||
20130319422, | |||
20130327336, | |||
20140026888, | |||
20140034057, | |||
20140041664, | |||
20140069433, | |||
20140083428, | |||
20140083430, | |||
20140094669, | |||
20140096774, | |||
20140137870, | |||
20140158136, | |||
20140166018, | |||
20140166019, | |||
20140174444, | |||
20140174446, | |||
20140174447, | |||
20140190486, | |||
20140202464, | |||
20140209098, | |||
20140216462, | |||
20140224253, | |||
20140261412, | |||
20140261432, | |||
20140261434, | |||
20140261435, | |||
20140261440, | |||
20140283822, | |||
20140283826, | |||
20140283831, | |||
20140283841, | |||
20140283843, | |||
20140305433, | |||
20140305439, | |||
20140311492, | |||
20140311494, | |||
20140311496, | |||
20140326243, | |||
20140326246, | |||
20140338671, | |||
20140338672, | |||
20140352134, | |||
20140360503, | |||
20140366886, | |||
20150013678, | |||
20150013682, | |||
20150033457, | |||
20150040911, | |||
20150047640, | |||
20150059759, | |||
20150083124, | |||
20150090266, | |||
20150128952, | |||
20150128953, | |||
20150174435, | |||
20150182719, | |||
20150193650, | |||
20150196726, | |||
20150246198, | |||
20150246199, | |||
20150335846, | |||
20150352308, | |||
20150367095, | |||
20150374944, | |||
20160001028, | |||
20160008558, | |||
20160015922, | |||
20160022944, | |||
20160038707, | |||
20160051786, | |||
20160067437, | |||
20160067442, | |||
20160074613, | |||
20160106942, | |||
20160106944, | |||
20160129210, | |||
20160166792, | |||
20160206843, | |||
20160213873, | |||
20160213874, | |||
20160296720, | |||
20160310687, | |||
20170028148, | |||
20170065786, | |||
20170072155, | |||
20170119988, | |||
20170143925, | |||
20170239438, | |||
20170246411, | |||
20170296768, | |||
20170304574, | |||
20170326324, | |||
20170326325, | |||
20170368288, | |||
20180250483, | |||
20180256844, | |||
20180280738, | |||
20180289913, | |||
20190001095, | |||
20190247600, | |||
20190344027, | |||
20190344028, | |||
20190344029, | |||
20190351163, | |||
20200030556, | |||
20200121880, | |||
20200230341, | |||
AU2003246441, | |||
AU2003257274, | |||
AU2004201337, | |||
AU2008906390, | |||
AU2009900327, | |||
AU2009902731, | |||
AU2009904236, | |||
AU2014202233, | |||
AU744593, | |||
CA1311662, | |||
CA2440431, | |||
CN101378810, | |||
CN101547619, | |||
CN101951984, | |||
CN102014999, | |||
CN1759896, | |||
CN1784250, | |||
CN202666149, | |||
CN2172538, | |||
D250047, | Oct 18 1976 | ALLIED HEALTHCARE PRODUCTS, INC | Breathing mask |
D250131, | Oct 18 1976 | ALLIED HEALTHCARE PRODUCTS, INC | Breathing mask |
D252322, | Sep 05 1975 | Finger ring | |
D293613, | Nov 18 1985 | BRIGAM, INC , 103 NORTH STERLING, MORGANTON, NORTH CAROLINA 28655, A CORP OF NC | Anesthesia and respiratory face mask |
D310431, | Jan 30 1987 | LIFELINE LIMITED, BRAY ROAD, VALE, GUERNSEY CHANNEL ISLANDS, A GUERNSEY COMPANY | Gas delivery mask |
D320677, | Nov 16 1989 | Gas mask | |
D321419, | Nov 09 1989 | SIMS PORTEX, INC | Face mask |
D322318, | Sep 30 1988 | ResMed Limited | Nasal manifold for treatment of snoring sickness |
D340317, | Jun 06 1991 | Respiratory protection mask | |
D354128, | Jan 21 1993 | Combination mask and breathing apparatus adaptor | |
D355484, | Jan 21 1993 | Combination mask with breathing apparatus adaptor | |
D378610, | Oct 27 1995 | Minnesota Mining and Manufacturing Company | Full face respirator |
D440302, | Apr 03 2000 | Face mask | |
D453247, | Jul 27 2000 | U.S. Philips Corporation | Suction nozzle for vacuum cleaner |
D455891, | Apr 19 2001 | Novelty mask | |
D488600, | Apr 11 2003 | OLYMPIC POOL ACCESSORIES INC ACCESSOIRES DE PISCINE OLYMPIC INC | Vacuum cleaner head |
D490950, | Apr 11 2003 | OLYMPIC POOL ACCESSORIES INC ACCESSOIRES DE PISCINE OLYMPIC INC | Vacuum cleaner head |
D520140, | Jun 18 2004 | FUJIFILM SONOSITE, INC | Nosepiece |
D526094, | Jul 07 2005 | Mask | |
D533269, | Aug 19 2004 | Fisher & Paykel Healthcare Limited | Nasal cannula |
D567366, | Jul 23 2007 | 3M Innovative Properties; 3M Innovative Properties Company | Full face respirator lens outlet ports |
D582546, | Mar 07 2007 | TEIJIN PHARMA LIMITED | Mask for respirator |
D586906, | Jan 12 2006 | ResMed Pty Ltd | Frame for respiratory mask |
D595841, | Oct 10 2008 | Fisher & Paykel Healthcare Limited | Full face mask |
D635661, | Nov 14 2006 | ResMed Pty Ltd | Frame for respiratory mask |
D639420, | Jan 08 2010 | ResMed Pty Ltd | Frame for a respiratory mask |
D652914, | Jan 08 2010 | ResMed Pty Ltd | Frame for a respiratory mask |
D661796, | Sep 01 2006 | RIC Investments, LLC. | Chin mounted patient interface |
D668408, | Feb 15 2011 | Samsung Electronics Co., Ltd | Dust collecting case for a vacuum cleaner |
D681192, | Jan 08 2010 | ResMed Pty Ltd | Frame for a respiratory mask |
D686313, | Jan 07 2001 | Koninklijke Philips Electronics N V | Nasal mask assembly |
D693461, | Nov 10 2011 | Koninklijke Philips Electronics N V | Frame for a patient interface assembly |
D716440, | Jan 08 2010 | ResMed Pty Ltd | Frame for a respiratory mask |
D724282, | Aug 14 2012 | Techtronic Floor Care Technology Limited | Vacuum cleaner |
D753813, | Sep 10 2010 | ResMed Pty Ltd | Frame for respiratory mask |
D767755, | Jan 08 2010 | ResMed Pty Ltd | Mask assembly |
D784516, | Sep 25 2015 | Fisher & Paykel Healthcare Limited | Face mask frame |
DE602424, | |||
DE102006011151, | |||
DE10312881, | |||
DE1226422, | |||
DE19603949, | |||
DE19962515, | |||
DE20017940, | |||
DE202010011334, | |||
DE29723101, | |||
DE3026375, | |||
DE3719009, | |||
DE4004157, | |||
DE895692, | |||
EP303090, | |||
EP427474, | |||
EP747078, | |||
EP830180, | |||
EP982042, | |||
EP1099452, | |||
EP1116492, | |||
EP1152787, | |||
EP1245250, | |||
EP1258266, | |||
EP1259279, | |||
EP1488820, | |||
EP1582231, | |||
EP1632262, | |||
EP1646910, | |||
EP1841482, | |||
EP1954355, | |||
EP2054114, | |||
EP2060294, | |||
EP2130563, | |||
EP2145645, | |||
EP2281596, | |||
EP2417994, | |||
EP2451518, | |||
EP2452716, | |||
EP2474335, | |||
EP2510968, | |||
EP2749176, | |||
EP2818194, | |||
EP2954920, | |||
FR1299470, | |||
FR2390116, | |||
FR2658725, | |||
FR2749176, | |||
GB1072741, | |||
GB1467828, | |||
GB190224431, | |||
GB2133275, | |||
GB2173274, | |||
GB2186801, | |||
GB2385533, | |||
GB2393126, | |||
GB309770, | |||
GB761263, | |||
GB823887, | |||
GB823897, | |||
GB880824, | |||
GB960115, | |||
GB979357, | |||
JP11000397, | |||
JP1165052, | |||
JP2000325481, | |||
JP2004016488, | |||
JP2005529687, | |||
JP2007516750, | |||
JP2007527271, | |||
JP2008526393, | |||
JP2126665, | |||
JP3160631, | |||
JP451928, | |||
JP47002239, | |||
JP488995, | |||
JP4947495, | |||
JP4985895, | |||
JP5287095, | |||
JP57182456, | |||
JP61156943, | |||
JP61185446, | |||
JP63184062, | |||
JP9010311, | |||
NZ528029, | |||
NZ551715, | |||
NZ556043, | |||
NZ556198, | |||
NZ573196, | |||
NZ608551, | |||
RU2186597, | |||
SU726692, | |||
WO50122, | |||
WO57942, | |||
WO69497, | |||
WO74758, | |||
WO78384, | |||
WO78381, | |||
WO1000266, | |||
WO1041854, | |||
WO1058293, | |||
WO1062326, | |||
WO1097893, | |||
WO132250, | |||
WO162326, | |||
WO197892, | |||
WO2005883, | |||
WO2007806, | |||
WO2011804, | |||
WO2047749, | |||
WO2074372, | |||
WO3013657, | |||
WO3035156, | |||
WO3076020, | |||
WO3092755, | |||
WO4007010, | |||
WO4021960, | |||
WO4022146, | |||
WO4022147, | |||
WO4030736, | |||
WO4041341, | |||
WO4041342, | |||
WO4071565, | |||
WO4073777, | |||
WO4073778, | |||
WO5018523, | |||
WO5021075, | |||
WO5032634, | |||
WO5051468, | |||
WO5063328, | |||
WO5068002, | |||
WO5076874, | |||
WO5079726, | |||
WO5086943, | |||
WO5097247, | |||
WO5118040, | |||
WO5118042, | |||
WO5123166, | |||
WO6000046, | |||
WO6050559, | |||
WO6069415, | |||
WO6074513, | |||
WO6074514, | |||
WO6074515, | |||
WO6096924, | |||
WO6130903, | |||
WO6138416, | |||
WO7006089, | |||
WO7009182, | |||
WO7021777, | |||
WO7022562, | |||
WO7041751, | |||
WO7041786, | |||
WO7045008, | |||
WO7048174, | |||
WO7050557, | |||
WO7053878, | |||
WO7059504, | |||
WO7139531, | |||
WO7147088, | |||
WO8003081, | |||
WO8007985, | |||
WO8030831, | |||
WO8037031, | |||
WO8040050, | |||
WO8060295, | |||
WO8063923, | |||
WO8068966, | |||
WO8070929, | |||
WO8106716, | |||
WO8148086, | |||
WO9002608, | |||
WO9026627, | |||
WO9052560, | |||
WO9059353, | |||
WO9065368, | |||
WO9092057, | |||
WO9108995, | |||
WO9143586, | |||
WO10009877, | |||
WO10066004, | |||
WO10067237, | |||
WO10071453, | |||
WO10073138, | |||
WO10073142, | |||
WO10131189, | |||
WO10135785, | |||
WO10148453, | |||
WO11014931, | |||
WO11022751, | |||
WO11059346, | |||
WO11060479, | |||
WO11077254, | |||
WO11078703, | |||
WO12020359, | |||
WO12025843, | |||
WO12040791, | |||
WO12045127, | |||
WO12052902, | |||
WO12055886, | |||
WO12140514, | |||
WO13006899, | |||
WO13056389, | |||
WO13061260, | |||
WO13064950, | |||
WO13066195, | |||
WO13084110, | |||
WO13168041, | |||
WO13175409, | |||
WO13186654, | |||
WO14020468, | |||
WO14020481, | |||
WO14038959, | |||
WO14045245, | |||
WO14077708, | |||
WO14109749, | |||
WO14110622, | |||
WO14141029, | |||
WO14165906, | |||
WO14175753, | |||
WO14181214, | |||
WO14183167, | |||
WO15006826, | |||
WO15022629, | |||
WO15033287, | |||
WO15057087, | |||
WO15068067, | |||
WO15092621, | |||
WO15161345, | |||
WO16000040, | |||
WO16009393, | |||
WO16032343, | |||
WO16033857, | |||
WO16041008, | |||
WO16041019, | |||
WO16075658, | |||
WO16149769, | |||
WO17049356, | |||
WO17049357, | |||
WO18007966, | |||
WO18064712, | |||
WO82003548, | |||
WO94002190, | |||
WO98004310, | |||
WO98018514, | |||
WO98024499, | |||
WO9804311, | |||
WO98048878, | |||
WO9857691, | |||
WO99006116, | |||
WO99021618, | |||
WO9904842, | |||
WO99058181, | |||
WO99058198, | |||
WO9943375, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 13 2013 | BORNHOLDT, MELISSA CATHERINE | Fisher & Paykel Healthcare Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052239 | /0657 | |
Oct 03 2013 | STEPHENSON, MATTHEW ROGER | Fisher & Paykel Healthcare Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052239 | /0657 | |
Mar 25 2020 | Fisher & Paykel Healthcare Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 25 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 21 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 20 2024 | 4 years fee payment window open |
Jan 20 2025 | 6 months grace period start (w surcharge) |
Jul 20 2025 | patent expiry (for year 4) |
Jul 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 20 2028 | 8 years fee payment window open |
Jan 20 2029 | 6 months grace period start (w surcharge) |
Jul 20 2029 | patent expiry (for year 8) |
Jul 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 20 2032 | 12 years fee payment window open |
Jan 20 2033 | 6 months grace period start (w surcharge) |
Jul 20 2033 | patent expiry (for year 12) |
Jul 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |