A transmission speed reduction device, comprising: a worm assembly (1) which is located within a container body (2), a worm wheel assembly (3) and an output axle (4); an input axle (11) is provided on the worm assembly (1), while the worm assembly (1) and the worm wheel assembly (3) achieve primary stage mesh transmission there between by means of worm teeth which are provided on the worm assembly (1) and a first worm wheel tooth (34) which is provided on the worm wheel assembly (3); the worm wheel assembly (3) and the output axle (4) achieve secondary stage mesh transmission by means of an intermediate rotary body (32) which is provided on the worm wheel assembly (3) and a rotary disc assembly (5) which is fixed on the output axle (4). The transmission speed reduction device has a compact structure, a large transmission ratio, is high precision, has low friction wear, and is easily applicable in the development of industrial production and manufacturing, while being low cost and being suitable for precision heavy load transmission scenarios having large transmission ratio requirements and volume restrictions, such as joints of industrial robots and the like.
|
1. A transmission device including a worm assembly (1) and a worm wheel assembly (3) which are disposed in a casing (2), wherein the worm wheel assembly (3) is accommodated in the worm assembly (1), characterized in that, the worm wheel assembly (3) is assembled into an approximately sphere by an approximately hemispherical lower worm wheel body (31) and an approximately hemispherical upper worm wheel body (33); each of the lower worm wheel body (31) and the upper worm wheel body (33) is provided with a circulating groove; each groove of the lower worm wheel body (31) and the upper worm wheel body (33) is comprised of a spiral groove disposed on the outer surface thereof and a guide groove disposed inside thereof which connects with the spiral groove consecutively; the groove is filled full with spherical first worm wheel teeth (34); and the first worm wheel teeth (34) can reciprocate in the groove, so as to achieve primary stage mesh transmission by meshing with the worm teeth of the worm assembly (1) in a rolling manner.
2. The transmission device according to
3. The transmission device according to
4. The transmission device according to
5. The transmission device according to
6. The transmission device according to
7. The transmission device according to
8. The transmission device according to
9. The transmission device according to
|
The invention belongs to the technical field of mechanical engineering, and relates to a transmission device, in particular to a transmission speed reduction device suitable for an industrial robot.
The transmission speed reduction device is a key component of the industrial robot. It is mainly used to match the speeds and transmit torques between the drive mechanism and the actuator, thereby achieving the goal of reducing the speed and increasing the torque.
At present, in the field of industrial robot technology, the transmission speed reduction devices frequently used include worm-worm wheel reducers, harmonic reducers and planetary reducers, etc. However, the worm-worm wheel reducer has a cumbersome structure, low transmission efficiency, poor precision, and different axes for the input and output, and poor running stability; the core component of the harmonic reducer produces periodic deformation during operation, which is prone to damage due to fatigue, and the impact resistance and rigidity of the whole machine are poor, and the input speed is limited. Although the planetary reducer has excellent performance on the whole and can meet the operation requirements for the device, the requirements for raw material selection of the components, manufacturing process and processing precision and the like are very high. The device is expensive.
The object of the present invention is to overcome the defects of the prior art and provide a transmission speed reduction device of high-precision and a large-transmission ratio, which has a compact structure, has a small size, has low friction wear, can bear large load, has simple production process, has low price, and the like, and is suitable for the scenarios of precision heavy load and large transmission ratio of industrial robots.
In order to realize the above object, the present invention provides the technical solutions as follows.
A transmission speed reduction device including a worm assembly, a worm wheel assembly and an output axle which are disposed in a casing, wherein the worm wheel assembly is accommodated in the worm assembly and an input axle is further disposed on the worm assembly, characterized in that, the worm assembly and the worm wheel assembly achieve primary stage mesh transmission there between by means of worm teeth which are provided on the worm assembly and a first worm wheel tooth which is provided on the worm wheel assembly. The worm wheel assembly and the output axle achieve secondary stage mesh transmission by means of an intermediate rotary body which is provided on the worm wheel assembly and a rotary disc assembly which is fixed on the output axle.
Preferably, the output axle and the input axle are respectively disposed at opposite ends of the transmission speed reduction device, and the axes of the output axle and the input axle coincide with each other.
Preferably, the axis of the worm wheel assembly is parallel to the axis of the output axle, and there are three worm wheel assemblies evenly distributed in the circumferential direction of the output axle.
Preferably, the intermediate rotary body of the worm wheel assembly is disc-shaped and is located in the middle of the worm wheel assembly, and the axis thereof is coaxial with the axis of rotation of the worm wheel assembly.
Preferably, the intermediate rotary body is circumferentially provided with smooth grooves for cooperation with the rotary disc assembly.
Preferably, the rotary disc assembly is disc-shaped and is circumferentially provided with the second worm wheel teeth for cooperation with the intermediate rotary body.
Preferably, the worm assembly comprises an input axle, a lower casing, an upper casing and first worm wheels, the lower casing and the upper casing are both approximately hemispherical and are assembled together to form an approximately spherical cavity for accommodating the worm wheel assembly therein. The upper portion of the spherical cavity is open, and the lower portion of the spherical cavity is closed by a worm base which has a disc shape. The input axle is disposed under the worm base. The inner sides of the lower casing and the upper casing are provided with first worm teeth for meshing with the worm wheel assembly, and the first worm teeth are helical teeth.
Preferably, the axes of the lower casing, upper casing, spherical cavity, worm base and input axle coincide with each other.
Preferably, the casing is generally substantially cylindrical in shape, and is comprised of a disc-shaped lower base, an upper base, and a cylindrical intermediate base. The lower base is centrally provided with a downwardly concave circular boss. The inside of the circular boss is provided with a first thrust bearing for supporting the worm base of the worm assembly. The circular boss is also centrally provided with a first angular contact ball bearing for supporting an input axle of the worm assembly. The upper base is centrally provided with a first upper bearing for supporting the output axle. The upper base is further provided with three second upper bearings which are circumferentially evenly distributed, for supporting the upper ends of the rotary shafts of the three worm wheel assemblies.
Preferably, the worm wheel assembly is assembled into an approximately sphere by an approximately hemispherical lower worm wheel body and an approximately hemispherical upper worm wheel body, and a disk-shape intermediate rotary body is provided between the lower worm wheel body and the upper worm wheel body. A rotary shaft is arranged in the axial direction, and the lower end and the upper end of the rotary shaft extend out from the lower and upper portions of the approximately sphere in the axial direction respectively. Each of the lower worm wheel body and the upper worm wheel body is provided with a circulating groove. Each groove of the lower worm wheel body and the upper worm wheel body is comprised of a spiral groove disposed on the outer surface thereof and a guide groove disposed inside thereof which connects with the spiral groove consecutively. The groove is filled full with spherical first worm wheel teeth. And the first worm wheel teeth can reciprocate in the groove.
Preferably, the lower worm wheel body and the upper worm wheel body are further provided with worm wheel teeth mounting bodies for mounting the first worm wheel teeth in the grooves of the lower worm wheel body and the upper worm wheel body during factory assembly or inspection.
Preferably, the rotary disc assembly has a disk shape and is comprised of a circular lower rotary disc and a circular upper rotary disc. The second worm wheel teeth are evenly disposed between the lower rotary disc and the upper rotary disc in the outer circumferential direction, and the second worm wheel teeth mesh with the grooves on the intermediate rotary body of the worm wheel assembly to realize power transmission. The second worm wheel teeth can also be shaped as rotating balls. A through hole is provided in the middle of the rotary disc assembly for connecting and fixing the output axle.
Preferably, the output axle is connected to a worm base of the worm assembly via an output axle mounting assembly. The output axle mounting assembly is disc-shaped, and is centrally provided with a downwardly projecting cylindrical output axle mounting plate, and a second angular contact ball bearing for mounting the output axle. The output axle mounting plate is further provided with three circumferentially evenly distributed deep groove ball bearings for supporting the lower ends of the rotary shafts. The deep groove ball bearing cooperates with the second upper bearing of the upper base of the casing for axial positioning of the worm wheel assembly.
Preferably, the output axle mounting assembly is connected to a worm base of the worm assembly via a chassis assembly. The chassis assembly is disc-shaped and includes a disk-shaped chassis and a second thrust bearing disposed in the middle of the chassis. The second thrust bearing is configured for supporting the output axle mounting plate.
Preferably, the output axle is a diameter-varying cylinder, and connects from top to bottom with the first upper bearing on the base of the casing, the through hole in the middle of the rotary disc assembly, and the second angular contact ball bearing on the output axle mounting assembly.
The invention provides a transmission speed reduction device which has a compact structure, a large transmission ratio, is high precision, has low friction wear, and is easily applicable in the development of industrial production and manufacturing, while being low cost and being suitable for precision heavy load transmission scenarios having large transmission ratio requirements and volume restrictions, such as joints of industrial robots and the like.
A detailed description of a transmission speed reduction device according to the present invention will be further illustrated below with reference to the embodiments shown in
As shown in
As shown in
Preferably, the first worm teeth 15 are fixed on inside of the lower casing 12 and the upper casing 14 by means of a plurality of first bolts 13. The advantage of such arrangement is that, after the first worm teeth 15 are independently processed to obtain the teeth shapes, the upper case 14 and the lower case 12 and the first worm teeth 15 are combined and fixed together by means of the first bolts 13 tightening within the bolt holes 18 of the first worm teeth 15, which can overcome the difficulty of integrally forming the spiral first worm teeth 15 within the spherical cavity 16 and at the same time effectively improves the machining precision of the first worm teeth 15.
As shown in
After the assembly of the device as a whole is completed, only the output axle 4 and the input axle 11 of the worm assembly 1 vertically extend out above and below the casing 2 respectively, and other components are mounted inside of the casing 2. By adopting the designs of the cylindrical casing 2, and the power input and output directions in coincide with the geometric axis direction of the device, and the geometric axis in coincide with the center of gravity, the overall structure of the device is compact and small sized, and the operation is stable.
As shown in
Each of the lower worm wheel body 31 and the upper worm wheel body 33 is provided with a circulating groove. Specifically, the groove of the lower worm wheel body 31 is comprised of a spiral groove disposed on the outer surface thereof and a guide groove disposed inside thereof which connects with the spiral groove consecutively. In turn, the groove is filled full with spherical first worm wheel teeth 34, and the first worm wheel teeth 34 can reciprocate in the groove. The structure of the groove of the upper worm body 33 is similar to that of the groove of the lower worm wheel 31.
In one embodiment, the upper worm wheel body 33 is connected to the intermediate rotary body 32 via hexagon socket bolts 37, and the intermediate rotary body 32 is connected to the lower worm wheel body 31 via the fifth bolts 30. In another specific embodiment, the rotary shaft 36 may be of an integrated structure and designed as an integrated component. A separate structure may also be employed. When the separate structure is adopted, the upper portion of the rotary shaft 36 is mounted above the upper worm wheel body 33 by a plurality of third bolts 35. The lower portion of the rotary shaft 36 may be embodied the same as that of the upper portion, or may be integrally formed with the lower worm wheel body 31.
The intermediate rotary body 32 is circumferentially evenly provided with smooth grooves for cooperation with the rotary disc assembly 5. The lower worm wheel body 31 and the upper worm wheel body 33 are further provided with worm wheel teeth mounting bodies 39 for mounting the first worm wheel teeth 34 in the grooves of the lower worm wheel body 31 and the upper worm wheel body 33 during factory assembly or inspection. Specifically as shown in
The present invention proposes the configuration of the three worm wheel assemblies 3 and the worm assembly 1 which adopts a type of small tooth number difference mesh mode to realize a large wheel ratio output.
The teeth surface of the first worm teeth 15 is enveloped by a sphere, and meshes from inside. The first worm wheel teeth 34 are shaped as rotating balls and reciprocate in a rolling mesh manner in the grooves of the lower worm wheel body 31 and the upper worm wheel body 33, and the rolling mesh motion converts the sliding friction between the worm wheel and the worm into rolling friction, thereby reducing the meshing resistance.
As shown in
Preferably, the second worm wheel teeth 52 can also be shaped as rotating balls. A through hole 55 is provided in the middle of the rotary disc assembly 5 for connecting and fixing the output axle 4. In one embodiment, the lower rotary disc 51 and the upper rotary disc 53 are connected and fixed by a plurality of sixth bolts 54.
As shown in
As shown in
As shown in
The assembling manner of a transmission speed reduction device according to the present invention is shown in
The operation principle and process of a transmission speed reduction device according to the present invention are as follows: the power input is obtained by the worm assembly 1 which is mounted and positioned on the lower base 23 by means of the first thrust bearing 21 and the first angular contact ball bearing 22, and thereafter, the first worm teeth 15 of the worm assembly 1 mesh with the first worm wheel teeth 34 of the worm wheel assemblies 3 and drive the three worm wheel assemblies 3 to rotate, so as to achieve the primary stage of transmission reduction. The groove of the intermediate rotary body 32 of the worm wheel assembly 3 is meshed with the rotary disc assembly 5 which is fixed on the output axle 4 and drives the output axle 4 to rotate, so as to achieve the secondary stage of transmission reduction.
By means of two-stage transmission reduction, a large transmission ratio, a high torque, a low friction loss and high precision operation of the transmission speed reduction device are finally realized.
The context above is a detailed description of the present invention in connection with the specific preferred embodiments, and the specific embodiments of the present invention are not limited to the context above. It will be apparent to those skilled in the art that simple adjustments, modifications and replacements may be made to the present invention without departing from the spirit and scope of the invention.
Zhang, Pan, Feng, Zhipeng, Jiang, Yuanyuan, Deng, Xingqiao, Li, Shuangcen, Kong, Fanxing
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2451998, | |||
4297919, | Apr 19 1979 | Mechanical power transmission method and means | |
5112284, | Dec 10 1990 | ZEXEL-GLEASON USA, INC , A NY CORP | Rocker-mounting for differential gear |
CN103615499, | |||
CN106499774, | |||
CN106499775, | |||
CN1291265, | |||
CN1514915, | |||
CN204805439, | |||
CN204904273, | |||
CN208419433, | |||
CN208419434, | |||
GB1290249, | |||
26476, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 27 2017 | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO., LTD | (assignment on the face of the patent) | / | |||
Jun 20 2019 | DENG, XINGQIAO | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 | |
Jun 20 2019 | ZHANG, PAN | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 | |
Jun 20 2019 | JIANG, YUANYUAN | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 | |
Jun 20 2019 | FENG, ZHIPENG | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 | |
Jun 20 2019 | LI, SHUANGCEN | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 | |
Jun 20 2019 | KONG, FANXING | CHENGDU ZHONGLIANGCHUANGONG TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049565 | /0662 |
Date | Maintenance Fee Events |
Jun 24 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jul 05 2019 | SMAL: Entity status set to Small. |
Aug 11 2024 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Jul 20 2024 | 4 years fee payment window open |
Jan 20 2025 | 6 months grace period start (w surcharge) |
Jul 20 2025 | patent expiry (for year 4) |
Jul 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 20 2028 | 8 years fee payment window open |
Jan 20 2029 | 6 months grace period start (w surcharge) |
Jul 20 2029 | patent expiry (for year 8) |
Jul 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 20 2032 | 12 years fee payment window open |
Jan 20 2033 | 6 months grace period start (w surcharge) |
Jul 20 2033 | patent expiry (for year 12) |
Jul 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |