Some embodiments provide a method for configuring a machine-trained (MT) network that includes input nodes, output nodes, and interior nodes between the input and output nodes. Each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value. The weights are configurable parameters for training. The method propagates a set of inputs through the MT network to generate a set of outputs. Each input has a corresponding expected output. The method calculates a value of a continuously-differentiable augmented loss function that combines a measurement of a difference between each output and its corresponding expected output and a term that biases training of the weights towards a set of discrete values. The method trains the weights by backpropagating a gradient of the continuously-differentiable augmented loss function at the calculated value.
|
1. A method for configuring a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the method comprising:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, the set of discrete values for each weight comprising zero, a positive value for the weight, and a negation of the positive value for the weight, the term comprising a function of each of the weights that is (i) continuously differentiable and (ii) equal to zero for a particular weight when the particular weight equals any one of the discrete values for the weight; and
training the weights by back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value.
10. A method for configuring a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein the nodes are arranged in layers comprising an input node layer, one or more intermediate node layers, and an output node layer, wherein each layer has an associated value, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the method comprising:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, wherein the set of discrete values comprises a separate set for each layer, wherein the set of discrete values for each layer comprises the associated value, 0, and the negative of the associated value; and
training the weights by back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value.
18. A non-transitory machine readable medium storing a program which when executed by at least one processing unit configures a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the program comprising sets of instructions for:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, the set of discrete values for each weight comprising zero, a positive value for the weight, and a negation of the positive value for the weight, the term comprising a function of each of the weights that is (i) continuously differentiable and (ii) equal to zero for a particular weight when the particular weight equals any one of the discrete values for the weight; and
training the weights by back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value.
23. A non-transitory machine readable medium storing a program which when executed by at least one processing unit configures a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein the nodes are arranged in layers comprising an input node layer, one or more intermediate node layers, and an output node layer, wherein each layer has an associated value, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the program comprising sets of instructions for:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, wherein the set of discrete values comprises a separate set for each layer, wherein the set of discrete values for each layer comprises the associated value, 0, and the negative of the associated value; and
training the weights by back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value.
7. A method for configuring a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the method comprising:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, the set of discrete values for each weight comprising zero, a positive value for the weight, and a negation of the positive value for the weight, wherein the term has a rate of change of zero for a particular weight when the particular weight is equidistant between two adjacent discrete values for the particular weight; and
training the weights by (i) back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value, (ii) back propagating the calculated value through the MT network to determine, for each weight, a rate of change in the calculated value relative to a rate of change in the weight, and (iii) modifying each particular weight according to the determined rate of change for the particular weight.
22. A non-transitory machine readable medium storing a program which when executed by at least one processing unit configures a machine-trained (MT) network comprising input nodes, output nodes, and interior nodes between the input and output nodes, wherein each node produces an output value and each interior node and output node receives as input values a set of output values of other nodes and applies weights to each received input value, wherein the weights are configurable parameters for training, the program comprising sets of instructions for:
propagating a set of inputs through the MT network to generate a set of outputs, each input having a corresponding expected output;
calculating a value of a continuously-differentiable augmented loss function that combines (i) a measurement of a difference between each output and its corresponding expected output and (ii) a term that biases training of the weights towards a set of discrete values, the set of discrete values for each weight comprising zero, a positive value for the weight, and a negation of the positive value for the weight, wherein the term has a rate of change of zero for a particular weight when the particular weight is equidistant between two adjacent discrete values for the particular weight; and
training the weights by (i) back propagating a gradient of the continuously-differentiable augmented loss function at the calculated value, (ii) back propagating the calculated value through the MT network to determine, for each weight, a rate of change in the calculated value relative to a rate of change in the weight, and (iii) modifying each particular weight according to the determined rate of change for the particular weight.
2. The method of
3. The method of
4. The method of
5. The method of
back propagating the calculated value through the MT network to determine, for each weight, a rate of change in the calculated value relative to a rate of change in the weight; and
modifying each particular weight according to the determined rate of change for the particular weight.
6. The method of
8. The method of
9. The method of
11. The method of
12. The method of
13. The method of
14. The method of
receiving a set of input values from a set of other nodes;
calculating a linear summation of each input value multiplied by a corresponding weight value; and
applying a non-linear function to the summation to calculate the output value for the particular node.
16. The method of
19. The non-transitory machine readable medium of
20. The non-transitory machine readable medium of
back propagating the calculated value through the MT network to determine, for each weight, a rate of change in the calculated value relative to a rate of change in the weight; and
modifying each particular weight according to the determined rate of change for the particular weight.
21. The non-transitory machine readable medium of
|
Machine learning automates the creation, based on historical data, of models that can then be used to make predictions. A class of models called deep neural networks (or DNNs) has become popular over the last few years, and there is now a menagerie of types of DNNs. Some examples of DNN's include feed-forward, convolutional, recurrent, long-short term memory (LSTM), and Neural Turing Machines (NTM).
Neural networks typically involve many (e.g., thousands, millions, or even potentially billions) of weights that are calculated during training and then used when the neural network is embedded into a device. These weights are generally floating-point values (e.g., 32-bit values), such that in total they occupy a large amount of memory. As such, these weight values are often stored on a separate memory located off of the processor that runs the neural network and, at runtime, are ported in from this memory. This import of large weight values is a major consumer of power for the processor.
Furthermore, each floating-point weight value is typically multiplied with another input value as part of the neural network calculations. These multiplications are another source of significant power consumption for the processor. Techniques that allow for lower power consumption without a reduction in the effectiveness of a neural network would represent an important step forward in the art.
Some embodiments of the invention provide a novel method for training a multi-layer node network that results in weights used by the nodes being assigned only a discrete set of values. The multi-layer network of some embodiments includes a layer of one or more input nodes, a layer of one or more output nodes, and one or more layers of hidden (interior) nodes. Each node in the multi-layer network produces an output value based on one or more input values. Specifically, each hidden node and output node, in some embodiments, bases the output value on the output values of a set of other nodes (e.g., the set of nodes of the previous layer). In some embodiments, each node includes (i) a linear component that uses a set of weight values to linearly combine the input values of the node to produce an intermediate result and (ii) a non-linear component that applies a non-linear function to the intermediate result to calculate the output value for the node.
During training of the network, the weight values are adjusted to arrive at a trained network that produces optimal outputs for any input value. The multi-layer network may be designed to perform a specific function when embedded in a device (e.g., a mobile device such as a smart phone, an Internet of Things (TOT) device such as a smart refrigerator, baby monitor, etc., or other devices). Such functions can include face recognition, voice recognition, identification of types of objects in images, large-scale data analysis, etc.).
Some embodiments train the multi-layer network in such a way as to arrive at a set of discrete values for the weights. Specifically, during training, some embodiments add a continuously-differentiable term to the loss function for the multi-layer network that biases training of the weights toward a set of discrete values. Rather than simply training the network and then rounding the weights to the nearest discrete value in a pre-defined set, augmenting the loss function with the additional continuously-differentiable term forces the training of the weights towards the discrete values while also increasing the likelihood of arriving at the optimal discrete value for each weight. Some embodiments use either a standard Lagrangian term or an augmented Lagrangian as the additional term in the loss function.
To train the multi-layer network, some embodiments first propagate a set of inputs through the network, with each input generating a set of outputs. Some embodiments perform training with a large number of different inputs, as this can help train the weight values for an average input. Each input (e.g., an image, a voice snippet, etc.) propagates through the network, with each layer of nodes receiving their one or more inputs and generating an output to pass to the next layer of nodes. In the final output layer, one or more nodes receives the outputs from the previous layer and generates the outputs. The standard loss function measures the difference between the output for a particular input and a predefined expected, or optimal, output for that input.
In typical training, the gradient of the loss function is back propagated through the network in a process that determines, for each weight, the rate of change of the loss function with respect to a change of the weight at the current value of the loss function. The backpropagation process uses the chain rule for partial derivatives to isolate the partial derivative of the loss function with respect to each individual weight used in the multi-layer network, and assign a value to this partial derivative for the current value of the loss function. Thus, this process identifies the relative effect on the loss function of changes to the many different weights used to generate the outputs of the network. These gradients are used to update the weight values by moving the weight values in the direction opposite the gradient (to attempt to reduce the loss function value) by a particular amount, with a larger gradient for a particular weight resulting in a greater change to that weight.
As mentioned, to bias the training towards a set of discrete values for each weight (i.e., so that the resultant weight will be one of the set of discrete values), some embodiments add an additional term to the loss function. In some embodiments, this additional term is actually an amalgamation (e.g., a summation) of terms for each weight used in the multi-layer network. The additional term for a particular weight, in some embodiments, uses a function that evaluates to zero when the weight is one of the set of discrete values desired for that weight. For instance, if the set of discrete values for a particular weight are 1, 0, and −1, some embodiments use the weight multiplied by 1 minus the absolute value of the weight as this function. The full term introduced as an addition to the loss function, in some embodiments, is this function multiplied by a variable Lagrange multiplier (i.e., making the sum of the loss function and the additional term a Lagrangian function). Some embodiments, either additionally or alternatively, use an augmented Lagrangian term that is a quadratic of the original function. In this case, the first (standard Lagrangian) term provides for faster convergence to one of the desired discrete values, while the second (augmented Lagrangian) term provides for a better guarantee of convergence to one of these discrete values.
Some embodiments use multiple sets of training inputs, or repeat the same training set for each training iteration through the network. In addition, some embodiments, after either each training set or after several training sets, gradually increase the effect of the additional biasing term on the overall loss function. Specifically, some embodiments modify the Lagrangian term after each set of several training sets, either linearly or according to a formula (e.g., based on how far away from the desired discrete values the weights are).
As mentioned, some embodiments use the ternary options of 1, 0, and −1 as the set of discrete values for each weight used in the multi-layer network. Other embodiments use only a binary approach of 0 and 1, while still other embodiments use a larger number of discrete candidate values (i.e., four or more discrete candidates for at least some of the weights). Some embodiments use the same set of discrete values for each weight within a particular layer, but with the sets of discrete values varying between layers. For instance, some embodiments assign a value to each layer (e.g., a number between 0 and 1, or any positive number), with the set of discrete values for each particular layer being 0, the value assigned to the particular layer, and the negative of the value assigned to the particular layer. In this case, some embodiments normalize the candidate values to 1, 0, and −1 during training, while adjusting the function used by each node at the layer to account for this normalization (e.g., by dividing the non-linear component by the value assigned to the particular layer).
By using a set of discrete values, the use of expensive floating-point values (i.e., that use a large number of bits) for the weights in the multi-layer network as embedded into a physical device (e.g., on a processor) can be avoided. Instead, 1 or 2 bit values (if the options are 1, 0, and −1) may be used, which saves large amounts of memory in the aggregate, especially for networks that may have millions or even billions of weights. For example, ten million 32-bit values may be too large to store on a processing unit (e.g., of a smart phone, an IOT device, etc.) and would thus need to be stored in a separate memory and imported onto the processor at runtime, which uses input/output (I/O) bandwidth and thus power. If 1 and 2 bit values are used, however, this enables the data to be stored on the processor in some embodiments, thereby providing major power savings. To provide additional reduction in the overall data size, some embodiments use an additional constraint that requires that at least a particular percentage (e.g., 60%, 70%, etc.) of the weight values for a network be 0 (rather than −1 or 1).
Furthermore, when using floating-point or even variable-size weight values, the linear component of a node multiplies each input by its corresponding weight value. If all of the weight values are 1, 0, or −1, then this multiplication can be avoided and addition/subtraction used instead. Even if the positive/negative weight value for each layer of nodes is a value between 0 and 1 (or greater than 1), then this addition/subtraction technique can be used with one multiplication operation performed at the end. Because addition and subtraction is computationally easier than multiplication, this provides additional savings in processor resource consumption (and therefore power consumption).
The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, Detailed Description and the Drawings is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, Detailed Description and the Drawings, but rather are to be defined by the appended claims, because the claimed subject matters can be embodied in other specific forms without departing from the spirit of the subject matters.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
Some embodiments of the invention provide a novel method for training a multi-layer node network that results in weights used by the nodes being assigned only a discrete set of values. The multi-layer network of some embodiments includes a layer of one or more input nodes, a layer of one or more output nodes, and one or more layers of hidden nodes. Each node in the multi-layer network produces an output value based on one or more input values. Specifically, each hidden node and output node, in some embodiments, bases the output value on the output values of a set of other nodes (e.g., the set of nodes of the previous layer). In some embodiments, each node includes (i) a linear component that uses a set of weight values to linearly combine the input values of the node to produce an intermediate result and (ii) a non-linear component that applies a non-linear function to the intermediate result to calculate the output value for the node.
During training of the network, the weight values are adjusted to arrive at a trained network that produces optimal outputs for any input value. The multi-layer network may be designed to perform a specific function when embedded in a device (e.g., a mobile device such as a smart phone, an Internet of Things (TOT) device such as a smart refrigerator, baby monitor, etc., or other devices). Such functions can include face recognition, voice recognition, identification of types of objects in images, large-scale data analysis, etc.).
As shown, the process 100 receives (at 105) a multi-layer network for training with initialized floating-point weights. As mentioned, the multi-layer network of some embodiments is made up of numerous nodes that produce output values based on one or more input values. Each of the hidden and output nodes includes a linear component that uses a set of weight values to linearly combine the input values of the node, as well as a non-linear component that uses the output of the node's linear component to compute the output value for the node.
The process then trains (at 110) the network while biasing the weights towards sets of discrete values. Specifically, some embodiments add a continuously-differentiable term to the loss function for the network that biases training of each weight toward a set of discrete values. The loss function (also referred to as the error function) of a multi-layer network is a function that measures the difference of the actual output of the network for a particular input and a pre-defined expected output. Rather than simply training the network and then rounding the weights to the nearest discrete value in a pre-defined set, augmenting the loss function with the additional continuously-differentiable term forces the training of the weights towards the discrete values while also increasing the likelihood of arriving at the optimal discrete value for each weight. Some embodiments use either a standard Lagrangian term or an augmented Lagrangian as the additional term in the loss function. The training process is described in further detail below by reference to
Next, the process 100 identifies (at 115) the discrete values for the weights. These are the result of the training process. The process then defines (at 120) a network for a specific purpose using the identified discrete weights. As mentioned, these purposes may include face recognition or other image analysis, voice recognition or other audio analysis, large-scale data analysis (e.g., for climate data), etc. The multi-layer network may be designed to operate on a smart phone, IOT device, etc. By using a set of discrete values, large floating-point values for the weights are avoided. Instead, 1 or 2 bit values (e.g., if all of the weight values are 1, 0, and −1) may be used, which saves large amounts of memory in the aggregate, especially for networks that may have millions or even billions of weights. For example, ten million 32-bit values may be too large to store on a processing unit (e.g., of a smart phone, an TOT device, etc.) and would thus need to be stored in a separate memory and imported onto the processor at runtime, which uses input/output (I/O) bandwidth and thus power. If 1 and 2 bit values are used, however, this enables the data to be stored on the processor (e.g., in the memory closest to the processor) in some embodiments, thereby providing major power savings.
As shown in
The notation of
The constant value ci is a value to which all the weight values are normalized. In some embodiments, the constant value ci is 1. The symbol * is an element-wise product, while the symbol ⋅ is the dot product. The weight coefficients W(l) are parameters that can be adjusted during the network's training in order to configure this network to solve a particular problem.
The output y(l+1) of the nonlinear component 215 of a neuron in layer l+1 is a function of the neuron's linear component, and can be expressed as by Equation (B) below.
yi(l+1)=ƒ(zi(l+1)) (B)
In this equation, ƒ is the nonlinear activation function for node i. Examples of such activation functions include a sigmoid function 220 (ƒ(x)=1/(1+e−x)), a tan h function 225, a ReLU (rectified linear unit) function 230 or a leaky ReLU function 235, as shown.
Traditionally, the sigmoid function and the tan h function have been the activation functions of choice. More recently, the ReLU function (ƒ(x)=max(0, x)) has been proposed for the activation function in order to make it easier to compute the activation function. See Nair, Vinod and Hinton, Geoffrey E., “Rectified linear units improve restricted Boltzmann machines,” ICML, pp. 807-814, 2010. Even more recently, the leaky ReLU has been proposed in order to simplify the training of the processing nodes by replacing the flat section (i.e., x<0) of the ReLU function with a section that has a slight slope. See He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” arXiv preprint arXiv:1502.01852, 2015. In some embodiments, the activation functions can be other types of functions, like cup functions and periodic functions.
Equation (B) can be expressed in the following expanded format of Equation (C).
In this equation, wik are weight values associated with the inputs yk of the neuron i in layer l+1.
Before a multi-layer network can be used to solve a particular problem, the network has to be put through a supervised training process that adjusts the network's configurable parameters (e.g., the weight coefficients of its linear components). The training process iteratively selects different input value sets with known output value sets. For each selected input value set, the training process typically (1) forward propagates the input value set through the network's nodes to produce a computed output value set, and then (2) back propagates a gradient (rate of change) of a loss function (output error) that quantifies the difference between the input set's known output value set and the input set's computed output value set, in order to adjust the network's configurable parameters (e.g., the weight coefficients). As mentioned, some embodiments introduce an additional term that biases the training of the weight coefficients towards a discrete set of values (e.g., −1, 0, and 1).
As shown, the system 300 includes an input generator 305, an error calculator 310, an error propagator 315, a constraint generator 320, and a weight modifier 325. In some embodiments, all of these modules execute on a single device, such as a server, a desktop or laptop computer, a mobile device (e.g., a smartphone, tablet, etc.), a virtual machine, etc. In other embodiments, these modules may execute across multiple interconnected devices (or virtual machines), or separate instances may execute on multiple devices (or virtual machines) for additional computing power).
The weight values 335 are used to parametrize the network, and are trained by the system 300 for the network to perform a particular task. In some embodiments, these weights are initialized using a probabilistic distribution for each layer. That is, in some embodiments, the weights within each layer are selected randomly from a Gaussian distribution, the width of which may depend on the range of possible discrete values for that layer.
As described in more detail below, in some embodiments the possible candidate weight values for each weight in the network are −1, 0, and 1. In other embodiments, the candidate values are different for each layer of the network, with the candidate set being {−αk, 0, +αk} for each layer k. In this case, however, the weights can be normalized to the scale of {−1, 0, +1}. During the process, continuous weight values from −1 to 1 are used, with these values treated as a probabilistic combination of the adjacent discrete candidate weights. Thus, a negative weight value is a probabilistic combination of −1 and 0, while a positive weight value is a probabilistic combination of 0 and 1.
In some embodiments, during forward propagation, each weight is randomly rounded to one of its neighboring discrete candidate values, such that the expectation value of the weight is its continuous value. For instance, the value 0.3 would be randomly rounded to either 0 or 1, with a 70% chance of being rounded to 0 and a 30% chance of being rounded to 1.
For the inputs, some embodiments perform training with a large number of different inputs, as this can help train the weight values for an average input. Each input in an input set may be an image, a voice snippet, etc. that is to be propagated through the network, depending on the specific purpose for which the network is being trained. For example, if a network is being trained to identify whether an image includes a face or not, the set of inputs will include numerous images, some of which have faces and some of which do not, probably including various types of edge cases (e.g., images where the face is distorted, where objects partially appear in front of the face, etc.). Each input also has a corresponding output that is what the network should generate as its output when presented with that input.
The input generator 305 selects a set of inputs (and corresponding outputs) from the sets of inputs and outputs 340. In addition, in some embodiments, the input generator 305 breaks up the inputs into constituent values to be fed into the input layer of the network 330. For instance, for a network being trained for face recognition, the input generator might simply divide the pixels into several sections, or might perform computations based on the pixel values and feed these to the input layer (e.g., the percentage of red pixels in the image, the average red value of each pixel, or other statistics). That is, based on the input (e.g., an image), the input generator 305 might perform a set of computations in order to generate the inputs for the input layer of the network 330.
Next, the network 330 processes (at 410) the set of inputs through the network to obtain predicted outputs (i.e., outputs predicted according to the current state of the network 330). Each input propagates through the processing nodes of the network 330, with each layer of nodes receiving their one or more inputs and generating an output to pass to the next layer of nodes. In the final output layer, one or more nodes receives the outputs from the previous layer and generates the outputs of the network. In some embodiments, this processing entails, for each node, the linear component first computing a weighted sum of its input values (according to the current weight values 335), and then the non-linear activation function computing an output based on this weighted sum.
The error calculator 310 then computes (at 415) the error for the input set. In some embodiments, the error calculator 310 computes the error for each individual input as the network 330 generates its output. The error calculator 310 receives both the predicted output from the input generator 305 and the output of the network 330, and uses a loss function that quantifies the difference between the predicted output and the actual output for each input. Some embodiments compute this as a simple difference, or absolute value of the difference, between the two values; other embodiments compute the square of the differences, or other such measure. In addition, some embodiments sum or average the loss function value for each input in a set of inputs. This calculated error is passed to the error propagator 315 in some embodiments.
The process 400 (e.g., the error propagator 315) adds (at 420) a continuously-differentiable constraint term to the computed error. This constraint term penalizes (i.e., adds to the loss function computation) for weight values that do not belong to their set of discrete values; in some embodiments, the further from one of the discrete values the current weight is, the greater the penalty. In some embodiments, this additional term is actually an amalgamation (e.g., a summation) of terms for each weight used in the multi-layer network. The additional term for a particular weight, in some embodiments, uses a function that evaluates to zero when the weight is one of the set of discrete values desired for that weight. For instance, if the set of discrete values for a particular weight wik are 1, 0, and −1, some embodiments use h(wik)=wik*(1−|wik|) as this function. The full term introduced as an addition to the loss function, in some embodiments, is this penalty function (whether the previous example or a different function) multiplied by a variable Lagrangian multiplier (i.e., making the additional function a Lagrangian function), λikh(wik). Some embodiments, either additionally or alternatively, use an augmented Lagrangian term that is a quadratic of the original function (e.g., h(wik)2). The full augmented loss function used in some embodiments is the following:
In these equations, l is the standard loss function without any constraints, and ck is a quadratic penalty coefficient for all weights wik in the layer k. In this case, the first (standard Lagrangian) term provides for faster convergence to one of the desired discrete values, while the second (augmented Lagrangian) term provides for a better guarantee of convergence to one of these discrete values.
The constraint generator 320 uses the discrete weight value candidates 345 (e.g., the candidates for each layer) and training parameters 350 (e.g., the value to use for each λik in the Lagrangian term), any constants for use in the Lagrangian terms, and generates the continuously-differentiable constraint terms for use by the error propagator 315. The error propagator 315, as mentioned, adds these terms to the standard loss function.
Next, the error propagator 315 back propagates (at 425) the error (including the constraints) to determine the rate of change of the error with respect to a change of each weight value. In typical training (i.e., without the additional penalty functions), the loss function is back propagated through the network in a process that determines, for each weight, the rate of change of the loss function with respect to a change in the weight at the current value of the loss function. The backpropagation process uses the chain rule for partial derivatives to isolate the partial derivative of the loss function with respect to each individual weight used in the multi-layer network, and assign a value to this partial derivative for the current value of the loss function. Thus, this process identifies the relative effect on the loss function of changes to the many different weights used to generate the outputs of the network.
Specifically, if L is the combined loss function (including the penalty terms), then the backpropagation computes, for each weight wik, the partial derivative
Because the weights are isolated in a node's output computation as well as in the easily-differentiable Lagrangian constraint terms, computing these partial derivatives is not difficult via application of the chain rule. In this sense, the loss function (with or without the Lagrangian terms) is a function in many-dimensional space (i.e., with the various weight coefficient values being the many dimensions), and the nature of the function means that the effect of each weight value can be easily isolated for a given loss function value.
Returning to the process 400, the weight modifier 325 adjusts (at 430) the weight values based on the relative rates of change and a training rate factor. That is, the error propagator 315 provides, for each weight value wik, the partial derivative of the loss function with respect to that wik. These partial derivatives are used to update the weight values by moving the weight values in the direction opposite the gradient (to attempt to reduce the loss function value) by a particular amount, with a larger partial derivative for a particular weight (i.e., a component of the gradient) resulting in a greater change to that weight. The weight modifier 325 uses a training rate factor from the training parameters 350 to determine how much to change the weight values based on the instantaneous gradient components. That is, the gradient component for a particular weight provides an amount to move (in the direction opposite to the gradient component, as the goal is to minimize the loss function) that weight value relative to the other weight values, while the training rate specifies the distance of that move. Specifically, for each weight value wik, with a learning rate r, the weight modifier updates this weight value using the following equation.
After updating the weights, the process 400 determines (at 435) whether to perform more training. Some embodiments use a minimization process (e.g., a stochastic gradient descent minimizer) to determine when to stop training the network. In some embodiments, the system 300 only stops training the network once (i) all of the weights are within a particular threshold of one of their discrete candidate values (e.g., 1%) and (ii) the weights have changed by less than a threshold for a particular number of training iterations. In some embodiments, the input generator determines whether to perform more training; in other embodiments, a different module (e.g., a module not shown in
If more training is required, the process 400 determines (at 440) whether to adjust the size of the constraint term. If needed, the process modifies (at 445) the size of the constraint term in the loss function computation (e.g., to increase the effect of this term) and returns to 410 to process a set of inputs (e.g., the same set of inputs or a different set of inputs). Some embodiments perform one or more training iterations with a particular constraint term, then gradually enlarge this term, so as to more forcefully push the weights to one of their candidate discrete values. That is, some embodiments update the Lagrangian term after each set of several training sets, either linearly or according to a formula (e.g., based on how far away from the desired discrete values the weights are).
Specifically, some embodiments perform the training in a sequence of iterations, during each of which the current augmented loss function shown in equation D is minimized over the weight values (and any other trained parameters that affect the network) with the Lagrangian multipliers and penalty coefficients held constant. At the end of the nth iteration, the Lagrangian multiplier and quadratic penalty coefficients for the various weights wik are updated based on the extent to which the weight is in violation of its constraint:
λik(n+1)=λik(n)+ck(n)h(wik(n)) (F)
In addition, if the constraint functions are not converging fast enough (e.g., as measured by the norm of the vector of constraint violations, ∥h∥), some embodiments also update the quadratic-penalty coefficient using the formula (with γ>1):
ck(n+1)=γck(n) (G)
Once the system 300 determines that no more training is required, the process 400 of some embodiments snaps (at 450) each weight value to its nearest candidate discrete weight value. By using the increasing Lagrangian penalty term, the trained floating-point weights should already be very close to, if not equal to, one of their candidate discrete values.
As mentioned, some embodiments use the ternary options of 1, 0, and −1 as the set of discrete values for each weight used in the multi-layer network. Other embodiments use only a binary approach of 0 and 1. Some embodiments use the same set of discrete values for each weight within a particular layer, but with the sets of discrete values varying between layers. For instance, some embodiments assign a value αk to each layer (e.g., a number between 0 and 1, or any positive number), with the set of discrete values for each particular layer being 0, αk, and −αk. In this case, some embodiments still treat the values as 1, 0, and −1, while adjusting the function used by each node at the layer to account for this scaling (e.g., by dividing the non-linear component by the value assigned to the particular layer). To determine αk for a particular layer, some embodiments use the maximum of the initial weights wik for that layer.
In the example network 500, all three of the nodes A, B, and C use the exponential linear unit (ELU) function for their non-linear activation functions:
For the use in backpropagation calculations, this activation function has the derivative:
For the loss function of the network 500, the example simply uses the output of node C (i.e., the optimal output of the network is 0). This simplifies the backpropagation calculations, as
The constraint function used for each weight wik is that given above, h(wik)=wik*(1−|wik|), making the full loss function with the Lagrangian term:
=l+Σikλik(wik*(1−1−|wik|)) (J)
The following provides an example with specific values of wAI=0.3, wBJ=−0.6, wCA=−0.2, and wCB=0.9 prior to the first training iteration. The input values are input 1 (I)=0.5, input 2 (J)=0.7, and the Lagrangian multipliers are λAI=1, λBJ=−1, λCA=−1, and λCB=0.2. The training rate parameter r (for modifying the weight values) is 0.2 in this example.
For forward propagation in this example, the weight value wAI is rounded to 1.0. As this value (0.3) is located between 0 and 1, it can be randomly rounded to either of these values. In order to have an expectation value of 0.3, 70% of the time it should be rounded to 0 and 30% of the time it should be rounded to 1. In some embodiments, the weight values are rounded once for an entire training iteration (i.e., the all of the inputs are run through the network with the weight value at the same rounded value). As training typically involves many (e.g., thousands) such iterations, the weight will be rounded both up and down regularly over the course of the training. With the rounded weight value, the output of node A is 0.5. This is the rounded weight value wAI=1.0 multiplied by input I=0.5. For positive values of x, the ELU simply outputs x.
The weight value wBJ=−0.6 is rounded to −1.0 in this example. In addition, the output node weight values wCA=−0.2 and wCB=0.9 are rounded to 0.0 and 1.0, respectively. The output of node B (rounded to two decimal places) is −0.5. The rounded weight value wBJ=−1.0, and this is multiplied by input J=0.7, to output −0.7. The ELU function gives exp(−0.7)−1=−0.50. Using these two outputs of A and B, as well as the two rounded weight values wCA=0.0 and wCB=1.0, the output of C's linear operator (again rounded to two decimal places) is −0.50. The ELU function for node C (i.e., the output of the network 500 for this example) provides exp(−0.50)−1=−0.40, which is also the value of the non-augmented loss function.
Next, backpropagation is performed to adjust the weight values of the network 500. The partial derivative
as noted above. These partial derivatives for backpropagation also use the rounded weight values, in some embodiments (as opposed to the continuous weight values prior to rounding). Proceeding backwards through the network (in this notation, dotprodX is the output of node X's linear operator), the partial derivatives (without yet considering the Lagrangian terms) are:
The partial derivatives of the combined loss function with respect to the weights are then calculated. In some embodiments, the Lagrangian terms use the continuous weights rather than the rounded weights (as the rounded weights should result in zeroing out the Lagrangian terms). These partial derivatives, when including the Lagrangian terms, are:
These four terms represent the rate of change of the loss function (including the Lagrangian term) with respect to the variable parameters of the network 500, and thus indicate how these parameters should be updated. The updates to these parameters are also calculated using the continuous values, rather than the rounded values (as the continuous values are those that are actually being trained). After this round of training, the updates to the weight values are as follows:
In this case, each of the weights are moved closer to whichever member of the set {−1, 0, 1} the particular weight started out nearest, owing in part to the Lagrangian term. However, depending on the nature of the network, in some cases even with the Lagrangian term included the weights may move away from the nearest member of their discrete candidate set, in order to reach a more optimal solution.
By using a set of discrete values, the use of large floating-point values for the weights in the multi-layer network as embedded into a physical device can be avoided. Instead, 1 or 2 bit values (if the options are 1, 0, and −1) may be used, which saves large amounts of memory in the aggregate, especially for networks that may have millions or even billions of weights. For example, ten million 32-bit values may be too large to store on a processing unit (e.g., of a smart phone, an IOT device, etc.) and would thus need to be stored in a separate memory and imported onto the processor at runtime, which uses input/output (I/O) bandwidth and thus power. If 1 and 2 bit values are used, however, this enables the data to be stored on the processor in some embodiments, thereby providing major power savings. To provide additional reduction in the overall data size, some embodiments use an additional constraint that requires that at least a particular percentage (e.g., 60%, 70%, etc.) of the weight values for a network be 0 (rather than −1 or 1).
Furthermore, when using floating-point or even variable-size weight values, the linear component of a node multiplies each input by its corresponding weight value. If all of the weight values are 1, 0, or −1, then this multiplication can be avoided and addition/subtraction used instead. Even if the positive/negative weight value for each layer of nodes is a value between 0 and 1, then this addition/subtraction technique can be used with one multiplication operation performed at the end. Because addition and subtraction is computationally easier than multiplication, this provides additional savings in processor resource consumption (and therefore power consumption).
The peripherals interface 615 is coupled to various sensors and subsystems, including a camera subsystem 620, an audio subsystem 630, an I/O subsystem 635, and other sensors 645 (e.g., motion sensors), etc. The peripherals interface 615 enables communication between the processing units 605 and various peripherals. For example, an orientation sensor (e.g., a gyroscope) and an acceleration sensor (e.g., an accelerometer) can be coupled to the peripherals interface 615 to facilitate orientation and acceleration functions. The camera subsystem 620 is coupled to one or more optical sensors 640 (e.g., a charged coupled device (CCD) optical sensor, a complementary metal-oxide-semiconductor (CMOS) optical sensor, etc.). The camera subsystem 620 and the optical sensors 640 facilitate camera functions, such as image and/or video data capturing.
The audio subsystem 630 couples with a speaker to output audio (e.g., to output voice navigation instructions). Additionally, the audio subsystem 630 is coupled to a microphone to facilitate voice-enabled functions, such as voice recognition (e.g., for searching), digital recording, etc. The I/O subsystem 635 involves the transfer between input/output peripheral devices, such as a display, a touch screen, etc., and the data bus of the processing units 605 through the peripherals interface 615. The I/O subsystem 635 includes a touch-screen controller 655 and other input controllers 660 to facilitate the transfer between input/output peripheral devices and the data bus of the processing units 605. The touch-screen controller couples with a touch screen (not shown) to detect contact and movement on the touch screen using any of multiple touch sensitivity technologies. The other input controllers 660 are coupled to other input/control devices, such as one or more buttons.
In some embodiments, the device includes wireless communication subsystem (not shown in
The memory interface 610 is coupled to memory 670. In some embodiments, the memory 670 includes volatile memory (e.g., high-speed random access memory), non-volatile memory (e.g., flash memory), a combination of volatile and non-volatile memory, and/or any other type of memory. As illustrated in
The memory 670 also stores various sets of instructions, including (1) graphical user interface instructions 674 to facilitate graphic user interface processing; (2) image processing instructions 676 to facilitate image-related processing and functions; (3) input processing instructions 678 to facilitate input-related (e.g., touch input) processes and functions; and (4) camera instructions 684 to facilitate camera-related processes and functions. The processing units 610 execute the instructions stored in the memory 670 in some embodiments.
In addition, the memory 670 stores generic neural network instructions 682, for implementing a machine-trained network of some embodiments of the invention. The memory also stores multiple sets of sub-network parameters 680, including at least a set of weight values for an audio-processing network and a set of weight values for an image-processing network. These multiple sets of weights may be used by the processing units 610 when executing the neural network instructions 682 to perform a specific purpose (e.g., audio processing, image processing, etc.). If a larger number of the weight values for each network are 0, this simplifies the processing for each sub-network, as many of the edges (and possibly entire nodes) will effectively drop out.
The memory 670 further stores communication instructions to facilitate communicating with one or more additional devices. The instructions described above are merely exemplary and the memory 670 includes additional and/or other instructions in some embodiments. For instance, the memory for a smartphone may include phone instructions to facilitate phone-related processes and functions. The above-identified instructions need not be implemented as separate software programs or modules. Various functions of the mobile computing device can be implemented in hardware and/or in software, including in one or more signal processing and/or application specific integrated circuits.
The memory 670 may represent multiple different storages available on the device 600. For example, in some embodiments, the memory 670 includes processor registers, multiple levels of processor caches (e.g., the L0 micro-operations cache, L1 instruction cache, L1 at a cache, etc.), main memory (e.g., RAM), disk storage, etc. In some embodiments, the use of a discrete set of 1-bit and 2-bit weight values enables the storage of multiple sets of sub-network parameters in a limited-storage device, and in some cases in the memory closest to the processing units 605 in order to optimize the neural network processing. For instance, some embodiments store one or more sets of weight parameters 680 in one of the levels of processor caches, so that the data is quickly accessible and does not need to be loaded onto the processor to evaluate an input.
While the components illustrated in
In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.
The bus 705 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the electronic system 700. For instance, the bus 705 communicatively connects the processing unit(s) 710 with the read-only memory 730, the system memory 725, and the permanent storage device 735.
From these various memory units, the processing unit(s) 710 retrieves instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments.
The read-only-memory (ROM) 730 stores static data and instructions that are needed by the processing unit(s) 710 and other modules of the electronic system. The permanent storage device 735, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the electronic system 700 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 735.
Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 735, the system memory 725 is a read-and-write memory device. However, unlike storage device 735, the system memory is a volatile read-and-write memory, such a random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 725, the permanent storage device 735, and/or the read-only memory 730. From these various memory units, the processing unit(s) 710 retrieves instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 705 also connects to the input and output devices 740 and 745. The input devices enable the user to communicate information and select commands to the electronic system. The input devices 740 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 745 display images generated by the electronic system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a touchscreen that function as both input and output devices.
Finally, as shown in
Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.
As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms display or displaying means displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral signals.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. In addition, a number of the figures (including
Teig, Steven L., Sather, Eric A.
Patent | Priority | Assignee | Title |
11429861, | May 01 2017 | AMAZON COM SERVICES LLC | Device storing multiple sets of parameters for machine-trained network |
11521142, | Sep 13 2018 | International Business Machines Corporation | Predictive asset maintenance |
11812589, | May 12 2021 | Nvidia Corporation | Intelligent refrigerant distribution unit for datacenter cooling systems |
Patent | Priority | Assignee | Title |
10740434, | Apr 20 2018 | Amazon Technologies, Inc | Reduced dot product computation circuit |
4918618, | Apr 11 1988 | Analog Intelligence Corporation | Discrete weight neural network |
5255347, | Apr 25 1990 | Hitachi, Ltd.; Hitachi Keiyo Engineering Co., Ltd. | Neural network with learning function |
5477225, | Nov 16 1993 | L-3 COMMUNICATIONS AVIONICS SYSTEMS, INC | Method and apparatus for associating target replies with target signatures |
5956703, | Jul 28 1995 | Delphi Technologies, Inc | Configurable neural network integrated circuit |
6571225, | Feb 11 2000 | GOOGLE LLC | Text categorizers based on regularizing adaptations of the problem of computing linear separators |
9633282, | Jul 30 2015 | Xerox Corporation | Cross-trained convolutional neural networks using multimodal images |
9904874, | Nov 05 2015 | Microsoft Technology Licensing, LLC | Hardware-efficient deep convolutional neural networks |
20040078403, | |||
20150161995, | |||
20160174902, | |||
20170161640, | |||
20180025268, | |||
20180114113, | |||
20180246855, | |||
20180293691, | |||
20180373975, | |||
20190114499, | |||
WO2012024329, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 16 2017 | PERCEIVE CORPORATION | (assignment on the face of the patent) | / | |||
Mar 19 2018 | SATHER, ERIC A | Xcelsis Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045539 | /0976 | |
Mar 23 2018 | TEIG, STEVEN L | Xcelsis Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045539 | /0976 | |
Nov 29 2018 | Xcelsis Corporation | PERCEIVE CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047657 | /0614 | |
Oct 02 2024 | PERCEIVE CORPORATION | AMAZON COM SERVICES LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 069288 | /0731 | |
Oct 11 2024 | AMAZON COM SERVICES LLC | Amazon Technologies, Inc | BILL OF SALE | 069288 | /0490 |
Date | Maintenance Fee Events |
Nov 16 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Sep 07 2024 | 4 years fee payment window open |
Mar 07 2025 | 6 months grace period start (w surcharge) |
Sep 07 2025 | patent expiry (for year 4) |
Sep 07 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 07 2028 | 8 years fee payment window open |
Mar 07 2029 | 6 months grace period start (w surcharge) |
Sep 07 2029 | patent expiry (for year 8) |
Sep 07 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 07 2032 | 12 years fee payment window open |
Mar 07 2033 | 6 months grace period start (w surcharge) |
Sep 07 2033 | patent expiry (for year 12) |
Sep 07 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |