An adapter assembly includes an elongated body, a circuit assembly, and an annular member. The elongated body includes a proximal portion configured to couple to a handle assembly, and a distal portion configured to couple to a surgical loading unit. The circuit assembly is disposed within the distal portion of the elongated body and configured to be in communication with a handle assembly. The annular member is rotatably disposed within the distal portion of the elongated body and includes an electrical contact. The annular member is rotatable between a first orientation, in which the electrical contact of the annular member is electrically isolated from the circuit assembly, and a second orientation, in which the electrical contact of the annular member is electrically connected to the circuit assembly.
|
14. A surgical instrument, comprising:
an elongated body including a distal portion configured to couple to a proximal end of a surgical loading unit; and
an annular member rotatably supported by the distal portion of the elongated body, the annular member configured to rotate relative to the elongated body between a first orientation representative of an unlocked state between a surgical loading unit and the surgical instrument, and a second orientation, representative of a locked state between a surgical loading unit and the surgical instrument.
7. A surgical instrument, comprising:
a handle assembly including a processor;
an elongated body including a proximal portion configured to couple to the handle assembly, and a distal portion configured to couple to a proximal end of a surgical loading unit; and
an annular member rotatably disposed within the distal portion of the elongated body, the annular member configured to rotate between a first orientation representative of an unlocked state between a surgical loading unit and the surgical instrument, and a second orientation, representative of a locked state between a surgical loading unit and the surgical instrument.
1. A surgical instrument, comprising:
an elongated body including a distal portion configured to couple to a surgical loading unit;
a circuit assembly disposed within the distal portion of the elongated body; and
an annular member rotatably disposed within the distal portion of the elongated body and including at least one electrical contact, the annular member being rotatable between a first orientation, in which the at least one electrical contact of the annular member is electrically isolated from the circuit assembly, and a second orientation, in which the at least one electrical contact of the annular member is electrically connected with the circuit assembly.
2. The surgical instrument according to
3. The surgical instrument according to
4. The surgical instrument according to
5. The surgical instrument according to
6. The surgical instrument according to
8. The surgical instrument according to
9. The surgical instrument according to
10. The surgical instrument according to
11. The surgical instrument according to
12. The surgical instrument according to
13. The surgical instrument according to
15. The surgical instrument according to
16. The surgical instrument according to
17. The surgical instrument according to
18. The surgical instrument according to
19. The surgical instrument according to
20. The surgical instrument according to
|
This application is a Continuation Application of U.S. patent application Ser. No. 15/378,859, filed on Dec. 14, 2016, now U.S. Pat. No. 10,314,579, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/275,820 filed Jan. 7, 2016, the entire disclosure of each of which is incorporated by reference herein.
The present disclosure relates to adapter assemblies for use with an electromechanical surgical system and their methods of use. More specifically, the present disclosure relates to electromechanical surgical instruments configured to determine whether a loading unit is properly connected to an adapter assembly.
Linear clamping, cutting, and stapling surgical devices may be employed in surgical procedures to resect tissue. Conventional linear clamping, cutting, and stapling devices include a handle assembly, an adapter assembly extending from the handle assembly, and a surgical loading unit detachably coupled to the adapter assembly. The surgical loading unit includes a pair of opposing gripping jaw members, which clamp about the tissue. In this device, one or both of the two gripping members, such as the anvil portion, moves or pivots relative to the overall structure. The actuation of the surgical device may be controlled by a grip trigger maintained in the handle assembly.
In addition to the gripping members, the surgical loading unit may also include a stapling mechanism. One of the gripping members of the surgical loading unit includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end. The gripping members may be integrally formed with the adapter assembly or may be detachable such that various gripping and stapling elements may be interchangeable.
A need exists for various types of adapter assemblies capable of determining whether a surgical loading unit is properly connected thereto.
The present disclosure relates to adapter assemblies for interconnecting handle assemblies and surgical loading units. The present disclosure also relates to electromechanical features for communicating to a handle assembly that a surgical loading unit is properly connected to an adapter assembly.
According to an aspect of the present disclosure, an adapter assembly is provided. The adapter assembly includes an elongated body, a circuit assembly, and an annular member. The elongated body includes a proximal portion configured to couple to a handle assembly, and a distal portion configured to couple to a surgical loading unit. The circuit assembly is disposed within the distal portion of the elongated body and configured to be in communication with a handle assembly. The annular member is rotatably disposed within the distal portion of the elongated body and includes an electrical contact. The annular member is rotatable between a first orientation and a second orientation. In the first orientation, the electrical contact of the annular member is electrically isolated from the circuit assembly. In the second orientation, the electrical contact of the annular member is electrically connected to the circuit assembly.
In some embodiments, the annular member may include a surface feature configured to interface with a surgical loading unit, such that the annular member is rotatable by a surgical loading unit.
It is contemplated that the electrical contact may be gold plated or other suitable biocompatible electrically conductive materials may be used. The circuit assembly may include a trace etched into a portion of the elongated body. The portion of the elongated body may be fabricated from PEEK or other suitable biocompatible may be used.
It is envisioned that the adapter assembly may include a locking link disposed within the distal portion of the elongated body. The locking link may be resiliently biased toward a locking configuration to secure a surgical loading unit to a distal portion of the elongated body. A distal end of the locking link may include an extension configured for locking engagement with a lug of a surgical loading unit upon insertion and rotation of a surgical loading unit into the elongated body.
In another aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a handle assembly including a processor, a surgical loading unit having an end effector disposed at a distal end thereof, and an adapter assembly. The adapter assembly includes an elongated body, a circuit assembly, and an annular member. The elongated body includes a proximal portion configured to couple to the handle assembly, and a distal portion configured to couple to a proximal end of the surgical loading unit. The circuit assembly is disposed within the distal portion of the elongated body and configured to be in communication with the processor of the handle assembly. The annular member is rotatably disposed within the distal portion of the elongated body and includes an electrical contact. Upon coupling the proximal end of the surgical loading unit to the distal portion of the elongate body of the adapter assembly, rotation of the surgical loading unit rotates the annular member from a first orientation to a second orientation. In the first orientation, the electrical contact of the annular member is electrically isolated from the circuit assembly. In the second orientation, the electrical contact of the annular member is electrically connected to the circuit assembly such that the circuit assembly communicates to the processor that the surgical loading unit is coupled to the adapter assembly.
In some embodiments, the annular member may include a surface feature configured to interface with the surgical loading unit, such that the annular member is rotatable by the surgical loading unit when the surgical loading unit is connected to the surface feature of the annular member. It is contemplated that the surgical loading unit may include a lug disposed at a proximal end thereof. The lug may be configured for detachable engagement with the surface feature of the annular member.
It is contemplated that the surgical loading unit may further include a memory configured to store a parameter relating to the surgical loading unit. The memory is configured to communicate to the processor of the handle assembly a presence of the surgical loading unit and the parameter of the surgical loading unit upon engagement of the surgical loading unit with the adapter assembly.
Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular.
Embodiments of the presently disclosed surgical instruments including handle assemblies, adapter assemblies, and surgical loading units thereof, are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal” refers to that portion of the surgical instrument, adapter assembly, handle assembly, loading unit, or component thereof, farther from the user, while the term “proximal” refers to that portion of the surgical instrument, adapter assembly, handle assembly, loading unit or component thereof, closer to the user.
The present disclosure provides a surgical instrument that includes a handle assembly, a surgical loading unit, and an adapter assembly that interconnects the surgical loading unit with the handle assembly. The adapter assembly includes an electromechanical feature that communicates to the handle assembly or to a clinician whether a surgical loading unit is properly connected to the adapter assembly.
With reference to
Reference may be made to International Publication No. WO 2009/039506 and U.S. Patent Application Publication No. 2011/0121049, the entire contents of all of which are incorporated herein by reference, for a detailed description of the construction and operation of an exemplary electromechanical, hand-held, powered surgical instrument.
Loading unit 300 of surgical instrument 10 has a proximal portion 302a configured for engagement with a distal end 206b of an elongated body 204 of adapter assembly 200. Loading unit 300 includes a distal portion 302b having end effector 304 extending therefrom. End effector 304 is pivotally attached to distal portion 302b. End effector 304 includes an anvil assembly 306 and a cartridge assembly 308. Cartridge assembly 308 is pivotable in relation to anvil assembly 306 and is movable between an open or unclamped position and a closed or clamped position for insertion through a cannula of a trocar.
Reference may be made to U.S. Pat. No. 7,819,896, filed on Aug. 31, 2009, entitled “TOOL ASSEMBLY FOR A SURGICAL STAPLING DEVICE”, the entire content of which is incorporated herein by reference, for a detailed discussion of the construction and operation of an exemplary end effector.
Handle assembly 100 includes one or more controllers (not shown), a power source (not shown), a processor 104, and a drive mechanism having one or more motors 106, gear selector boxes (not shown), gearing mechanisms (not shown), and the like. Processor 104 is configured to control motors 106 and to detect a presence of a loading unit, for example, loading unit 300, and/or determine one or more parameters of loading unit 300. Handle assembly 100 further includes a control assembly 108. Control assembly 108 may include one or more finger-actuated control buttons, rocker devices, joystick or other controls, whose input is transferred to the drive mechanism to actuate adapter assembly 200 and loading unit 300.
In particular, the drive mechanism of handle assembly 100 is configured to actuate drive shafts, gear components, and/or other mechanical linkages in order to selectively move an end effector 304 of loading unit 300 to rotate end effector 304 about a longitudinal axis “X” defined by surgical instrument 10 relative to handle assembly 100, to move a cartridge assembly 308 relative to an anvil assembly 306 of end effector 304, and/or to fire a stapling and cutting cartridge within cartridge assembly 308 of end effector 304.
Handle assembly 100 defines a nose or connecting portion 110 configured to accept a corresponding drive coupling assembly 210 of adapter assembly 200. Connecting portion 110 of handle assembly 100 has a cylindrical recess (not shown) that receives drive coupling assembly 210 of adapter assembly 200 when adapter assembly 200 is mated to handle assembly 100. Connecting portion 110 houses one or more rotatable drive connectors (not shown) that interface with corresponding rotatable connector sleeves of adapter assembly 200.
When adapter assembly 200 is mated to handle assembly 100, each of the rotatable drive connectors (not shown) of handle assembly 100 couples with a corresponding rotatable connector sleeve of adapter assembly 200. In this regard, the interface between a plurality of connectors of handle assembly 100 and a plurality of corresponding connector sleeves of adapter assembly 200 are keyed such that rotation of each of the drive connectors of handle assembly 100 causes rotation of the corresponding connector sleeves of adapter assembly 200.
The mating of the drive connectors of handle assembly 100 with the connector sleeves of adapter assembly 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors of handle assembly 100 are configured to be independently rotated by the drive mechanism of handle assembly 100.
Since each of the drive connectors of handle assembly 100 has a keyed and/or substantially non-rotatable interface with the respective connector sleeves of adapter assembly 200, when adapter assembly 200 is coupled to handle assembly 100, rotational force(s) are selectively transferred from the drive mechanism of handle assembly 100 to adapter assembly 200.
The selective rotation of drive connector(s) of handle assembly 100 allows surgical instrument 10 to selectively actuate different functions of end effector 304. Selective and independent rotation of a first drive connector of handle assembly 100 corresponds to the selective and independent opening and closing of end effector 304, and driving of a stapling/cutting component of end effector 304. Selective and independent rotation of a second drive connector of handle assembly 100 corresponds to the selective and independent articulation of end effector 304 about an articulation axis that is transverse to longitudinal axis “X.” In particular, end effector 304 defines a second or respective longitudinal axis and is movable from a first position in which the second or respective longitudinal axis is substantially aligned with longitudinal axis “X” to at least a second position in which the second longitudinal axis is disposed at a non-zero angle with respect to longitudinal axis “X.” Additionally, the selective and independent rotation of a third drive connector of handle assembly 100 corresponds to the selective and independent rotation of loading unit 300 about longitudinal axis “X” relative to handle assembly 100 of surgical instrument 10.
With continued reference to
With reference to
Lead 224 may be a conductive trace etched into a portion of an internal surface 227 of elongated body 204. Lead 224 establishes an electric pathway between PCB 222 and annular member 260 when surgical loading unit 300 is properly connected with adapter assembly 200. Upon establishing the electrical connection between PCB 222 and annular member 260, PCB 222 communicates to processor 104 of handle assembly 100 that loading unit 300 is properly secured or connected to adapter assembly 200. PCB 222 communicates to processor 104 of handle assembly 100 that loading unit 300 is disengaged from distal portion 206b of elongated body 204 in response to the determination of there being no electrical connection present between PCB 222 and annular member 260. In embodiments, lead 224 may be an electric wire or any other suitable conductive path. It is contemplated that internal surface 227 of elongated body 204 having trace 224 etched therein may be fabricated from polyetheretherketone (“PEEK”) or any other suitable material.
With continued reference to
Annular member 266 includes an electrical contact 272 supported on longitudinal bar 266. Electrical contact 272 selectively engages distal end 224b of lead 224 of circuit assembly 220 depending on the radial orientation of annular member 260 within elongated body 204 of adapter assembly 200. Once established, the connection between electrical contact 272 of annular member 260 and distal end 224b of lead 224 of circuit assembly 220 allows for communication between loading unit 300 and processor 104 of handle assembly 100. In particular, the communication may include a status identifier that loading unit 300 is lockingly engaged to adapter assembly 200. Electrical contact 272 of annular member 260 may be gold plated. In embodiments, electrical contact 272 may be fabricated from any suitable metal or conductor. It is contemplated that a portion or portions of annular member 260 may be ring-shaped or that all of annular member 260 may be ring-shaped.
Annular member 260 is rotatable between a first orientation and a second orientation. In the first orientation, electrical contact 272 of annular member 260 is electrically isolated (i.e., not electrically connected) from distal end 224b of lead 224 of circuit assembly 220. When annular member 260 is in the second orientation, as shown in
With specific reference to
With reference to
Extension 282 of locking link 280 is also configured for receipt in cavity 278 (
In operation, with reference to
With loading unit 300 in this initial insertion position within adapter assembly 200, loading unit 300 is not yet lockingly engaged with adapter assembly 200 and annular member 260 remains in the first orientation, in which electrical contact 272 (
The rotation of loading unit 300 also moves lug 303 of loading unit 300 into an inner groove 208a defined in distal cap 208 of elongated body 206 and out of engagement with extension 282 of locking link 280. The resilient bias of locking link 280 drives an axial translation of locking link 280, in a direction indicated by arrow “C” in
To selectively release loading unit 300 from adapter assembly 200, a clinician translates or pulls locking link 280 in a proximal direction indicated by arrow “A,” such that extension 282 of locking link 280 is no longer blocking lug 303 of loading unit 300 and loading unit 300 can be rotated. Alternately, a rotation of loading unit 300 in the direction indicated by arrow “D” may cause tab 276 of annular member 260 to ride along a tapered portion 282b of extension 282 of locking link 280 to drive locking link 280 in a proximal direction. With locking link 280 in the non-locking configuration or proximal position, loading unit 300 is rotated, in a direction indicated by arrow “D” in
To fully disengage loading unit 300 from adapter assembly 200, loading unit 300 is axially translated, in a distal direction, through distal cap 208, and out of elongated body 204 of adapter assembly 200. It is contemplated that upon handle assembly 100 detecting that loading unit 300 is not lockingly engaged to adapter assembly 200, power may be cut off from handle assembly 100, an alarm (e.g., audio and/or visual indication) may be issued, or combinations thereof.
Loading unit 300 further includes a memory 307. Memory 307 includes a memory chip (e.g., an EEPROM, EPROM, or any non-transitory storage chip) configured to store one or more parameters relating to surgical loading unit 300. The parameter may include at least one of a serial number of a loading unit, a type of loading unit, a size of loading unit, a staple size, information identifying whether loading unit has been fired, a length of a loading unit, maximum number of uses of a loading unit, and combinations thereof. The memory chip is configured to communicate to handle assembly 100 a presence of loading unit 300 and one or more of the parameters of loading unit 300 described herein, upon engagement of loading unit 300 with adapter assembly 200.
While an electrical interface between loading unit 300 and handle assembly 100 is shown and described, it is contemplated that upon forming the proper mechanical connection of loading unit 300 to adapter assembly 200, any other form of communication is within the scope of the present disclosure, for transmitting any or all of the operating parameters and/or the life-cycle information from loading unit 300 to handle assembly 200, such as, for example, wireless communication, including various radio frequency protocols such as near field communication, radio frequency identification “RFID,” BLUETOOTH®, etc.
It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
Chowaniec, Matthew, Chowaniec, David
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10314579, | Jan 07 2016 | Covidien LP | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
2777340, | |||
2957353, | |||
3111328, | |||
3695058, | |||
3734515, | |||
3759336, | |||
4162399, | Sep 16 1977 | BEI Electronics, Inc. | Optical encoder with fiber optics |
4606343, | Aug 18 1980 | United States Surgical Corporation | Self-powered surgical fastening instrument |
4705038, | Jan 23 1985 | Smith & Nephew, Inc | Surgical system for powered instruments |
4722685, | May 30 1985 | Tool for adapting a portable lathe to treat the back molar teeth of horses | |
4823807, | Feb 11 1988 | Board of Regents, Univ. of Texas System | Device for non-invasive diagnosis and monitoring of articular and periarticular pathology |
4874181, | May 31 1988 | Coupling member for securing a drilling head to the rotatable rod of a pneumatic tool body | |
5129118, | Jul 29 1991 | Accessory tool apparatus for use on power drills | |
5129570, | Nov 30 1990 | Ethicon, Inc. | Surgical stapler |
5152744, | Feb 07 1990 | Smith & Nephew, Inc | Surgical instrument |
5301061, | Jul 27 1989 | OLYMPUS OPTICAL CO , LTD | Endoscope system |
5312023, | Oct 18 1991 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
5326013, | Oct 18 1991 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
5350355, | Feb 14 1992 | Automated Medical Instruments, Inc.; AUTOMATED MEDICAL INSTURMENTS, INC | Automated surgical instrument |
5383874, | Nov 08 1991 | EP Technologies, Inc | Systems for identifying catheters and monitoring their use |
5383880, | Jan 17 1992 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
5389098, | May 19 1992 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
5395033, | May 24 1993 | Ethicon, Inc. | Endoscopic surgical instrument with electromagnetic sensor |
5400267, | Dec 08 1992 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
5411508, | Oct 29 1991 | TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE | Gastrointestinal approximating and tissue attaching device |
5413267, | May 14 1991 | United States Surgical Corporation | Surgical stapler with spent cartridge sensing and lockout means |
5427087, | Nov 26 1990 | Asahi Kogaku Kogyo Kabushiki Kaisha | Structure of the distal end portion of an endoscope |
5467911, | Apr 27 1993 | Olympus Optical Co., Ltd. | Surgical device for stapling and fastening body tissues |
5476379, | Nov 04 1993 | Illumination system and connector assembly for a dental handpiece | |
5487499, | Oct 08 1993 | United States Surgical Corporation | Surgical apparatus for applying surgical fasteners including a counter |
5518163, | Jan 17 1992 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
5518164, | Jan 17 1992 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
5526822, | Mar 24 1994 | DEVICOR MEDICAL PRODUCTS, INC | Method and apparatus for automated biopsy and collection of soft tissue |
5529235, | Apr 28 1994 | Ethicon Endo-Surgery | Identification device for surgical instrument |
5535934, | Apr 28 1994 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
5535937, | Apr 28 1994 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
5540375, | Apr 20 1993 | United States Surgical Corporation | Endoscopic stapler |
5540706, | Jan 25 1993 | ZIMMER SPINE, INC | Surgical instrument |
5542594, | Oct 06 1993 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
5549637, | Nov 10 1994 | Design Standards Corporation | Articulated medical instrument |
5553675, | Jun 10 1994 | Linvatec Corporation | Orthopedic surgical device |
5562239, | Apr 28 1994 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
5564615, | Jun 10 1994 | Ethicon, Inc. | Surgical instrument |
5609560, | Aug 19 1992 | Olympus Optical Co., Ltd. | Medical operation device control system for controlling a operation devices accessed respectively by ID codes |
5632432, | Dec 19 1994 | Ethicon Endo-Surgery | Surgical instrument |
5647526, | Oct 18 1991 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
5653374, | Aug 05 1994 | United States Surgical Corporation | Self-contained powered surgical apparatus |
5658300, | Jun 04 1992 | Olympus Optical Co., Ltd. | Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues |
5662662, | Oct 09 1992 | Ethicon Endo-Surgery, Inc. | Surgical instrument and method |
5667517, | Jan 17 1992 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
5693042, | Apr 28 1994 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
5704534, | Dec 19 1994 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
5713505, | May 13 1996 | Ethicon Endo-Surgery, Inc. | Articulation transmission mechanism for surgical instruments |
5762603, | Sep 15 1995 | PINOTAGE L L C ; THOMPSON, ROBERT LEE | Endoscope having elevation and azimuth control of camera assembly |
5779130, | Aug 05 1994 | United States Surgical Corporation | Self-contained powered surgical apparatus |
5782396, | Aug 28 1995 | Tyco Healthcare Group LP | Surgical stapler |
5782397, | Jan 04 1994 | Alpha Surgical Technologies, Inc. | Stapling device |
5797536, | Oct 09 1992 | Ethicon, Inc. | Endoscopic surgical instrument with pivotable and rotatable staple cartridge |
5820009, | Feb 20 1996 | Covidien LP | Articulated surgical instrument with improved jaw closure mechanism |
5863159, | Dec 12 1997 | Drill angle attachment coupling | |
5908427, | Jun 17 1996 | United States Surgical Corporation | Surgical stapling apparatus and method |
5954259, | Aug 05 1994 | United States Surgical Corporation | Self-contained powered surgical apparatus for applying surgical fasteners |
5964774, | Jun 17 1996 | United States Surgical Corporation | Surgical stapling apparatus and method with surgical fabric |
5993454, | Sep 29 1998 | Stryker Corporation | Drill attachment for a surgical drill |
6010054, | Feb 20 1996 | Conmed Corporation | Linear stapling instrument with improved staple cartridge |
6017354, | Aug 15 1996 | Stryker Corporation | Integrated system for powered surgical tools |
6032849, | Aug 28 1995 | Tyco Healthcare Group LP | Surgical stapler |
6045560, | Oct 06 1993 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
6090122, | Oct 31 1995 | Smith & Nephew, Inc. | Surgical instrument handpiece and system |
6090123, | Feb 12 1999 | Stryker Corporation | Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly |
6126651, | Aug 11 1997 | Motorized motion-canceling suture tool holder | |
6129547, | May 06 1997 | CITIBANK, N A | Oral care system |
6165169, | Mar 04 1994 | EP Technologies, Inc. | Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays |
6239732, | Apr 13 1998 | Maxim Integrated Products, Inc | One-wire device with A-to-D converter |
6241139, | Sep 23 1997 | Surgical stapling apparatus | |
6264086, | Dec 07 1994 | Surgical apparatus and method | |
6264087, | Jul 12 1999 | Covidien LP | Expanding parallel jaw device for use with an electromechanical driver device |
6302311, | Jun 14 1996 | Boston Scientific Corporation | Endoscopic stapler |
6315184, | Jun 02 1999 | Covidien LP | Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
6321855, | Dec 29 1994 | Anti-vibration adaptor | |
6329778, | Aug 15 1996 | Stryker Corporation | Integrated system for powered surgical tools |
6343731, | Oct 25 2000 | SciMed Life Systems, Inc. | Method and device for full thickness resectioning of an organ |
6348061, | Feb 22 2000 | Covidien LP | Vessel and lumen expander attachment for use with an electromechanical driver device |
6368324, | Sep 24 1999 | XOMED SURGICAL PRODUCTS, INC ; Medtronic Xomed, Inc; MEDTRONIC XOMED SURGICAL PRODUCTS, INC | Powered surgical handpiece assemblies and handpiece adapter assemblies |
6371909, | Feb 19 1998 | California Institute of Technology | Apparatus and method for providing spherical viewing during endoscopic procedures |
6434507, | Sep 05 1997 | Medtronic Navigation, Inc | Medical instrument and method for use with computer-assisted image guided surgery |
6443973, | Jun 02 1999 | Covidien LP | Electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
6461372, | Jun 07 1995 | SRI International | System and method for releasably holding a surgical instrument |
6488197, | Feb 22 2000 | Covidien LP | Fluid delivery device for use with anastomosing resecting and stapling instruments |
6491201, | Feb 22 2000 | Covidien LP | Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments |
6533157, | Feb 22 2000 | Covidien LP | Tissue stapling attachment for use with an electromechanical driver device |
6537280, | Sep 24 1999 | Medtronic Xomed, Inc. | Osteotome and handpiece adapter assembly and powered surgical handpiece assembly including an osteotome |
6610066, | Sep 24 1999 | Medtronic Xomed, Inc. | Suction rasp and handpiece adapter assembly and powered surgical handpiece assembly including a suction rasp |
6611793, | Sep 07 1999 | Boston Scientific Scimed, Inc | Systems and methods to identify and disable re-use single use devices based on detecting environmental changes |
6645218, | Aug 05 2002 | ZIMMER BIOMET SPINE, INC | Surgical instrument |
6654999, | Sep 25 1998 | INTEGRA LIFESCIENCES IRELAND LTD | Method of manufacturing an ultrasonic tool |
6698643, | Jul 12 1999 | Covidien LP | Expanding parallel jaw device for use with an electromechanical driver device |
6699177, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive surgical procedures |
6716233, | Jun 02 1999 | Covidien LP | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
6743240, | Jun 25 2001 | Ethicon Endo-Surgery, Inc | Flexible surgical device having a rotatable end effector assembly |
6783533, | Nov 21 2001 | Synthes USA, LLC | Attachable/detachable reaming head for surgical reamer |
6792390, | Sep 07 1999 | Boston Scientific Scimed, Inc | Systems and methods to identify and disable re-used devices based on detecting environmental changes |
6793652, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
6817508, | Oct 13 2000 | Covidien LP | Surgical stapling device |
6830174, | Aug 30 2000 | RICHARD A HILLSTEAD, INC | Medical instrument |
6846308, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
6846309, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
6849071, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
6899538, | Jul 19 2001 | J MORITA MANUFACTURING CORPORATION | Identification type instrument assembly, identification type adapter, identification type tube, and medical apparatus using them |
6905057, | Sep 29 2003 | Cilag GmbH International | Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission |
6959852, | Sep 29 2003 | Cilag GmbH International | Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism |
6964363, | Jul 09 2003 | Cilag GmbH International | Surgical stapling instrument having articulation joint support plates for supporting a firing bar |
6981628, | Jul 09 2003 | Cilag GmbH International | Surgical instrument with a lateral-moving articulation control |
6981941, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
6986451, | Aug 28 1995 | Covidien LP | Surgical stapler |
6988649, | May 20 2003 | Cilag GmbH International | Surgical stapling instrument having a spent cartridge lockout |
7032798, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
7055731, | Jul 09 2003 | Cilag GmbH International | Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint |
7059508, | Jun 30 2004 | Cilag GmbH International | Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission |
7077856, | Jun 02 1999 | Covidien LP | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
7111769, | Jul 09 2003 | Cilag GmbH International | Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis |
7122029, | Jul 29 1999 | CoolTouch Incorporated | Thermal quenching of tissue |
7140528, | May 20 2003 | Cilag GmbH International | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
7143923, | May 20 2003 | Cilag GmbH International | Surgical stapling instrument having a firing lockout for an unclosed anvil |
7143925, | Jul 28 2004 | Cilag GmbH International | Surgical instrument incorporating EAP blocking lockout mechanism |
7143926, | Feb 07 2005 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system |
7147138, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
7172104, | Feb 17 2004 | Covidien LP | Surgical stapling apparatus |
7225964, | Aug 28 1995 | Tyco Healthcare Group LP | Surgical stapler |
7238021, | Dec 03 1998 | Powered cutting surface with protective guard for equine teeth | |
7246734, | Dec 05 2005 | Ethicon Endo-Surgery, Inc. | Rotary hydraulic pump actuated multi-stroke surgical instrument |
7328828, | Nov 04 2005 | Ethicon Endo-Surgery, Inc,; Ethicon Endo-Surgery, Inc | Lockout mechanisms and surgical instruments including same |
7364061, | Sep 29 2003 | Cilag GmbH International | Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism |
7380695, | May 20 2003 | Cilag GmbH International | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
7380696, | May 20 2003 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
7404508, | Jul 26 2005 | Cilag GmbH International | Surgical stapling and cutting device |
7407078, | Sep 21 2005 | Ethicon Endo-Surgery, Inc | Surgical stapling instrument having force controlled spacing end effector |
7416101, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with loading force feedback |
7419080, | Jul 26 2005 | Cilag GmbH International | Surgical stapling and cutting device with dual actuating control knob |
7422139, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting fastening instrument with tactile position feedback |
7431189, | Aug 02 2006 | Ethicon Endo-Surgery, Inc | Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion |
7441684, | Aug 02 2006 | Ethicon Endo-Surgery, Inc | Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features |
7448525, | Aug 02 2006 | Ethicon Endo-Surgery, Inc | Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus |
7464846, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Surgical instrument having a removable battery |
7464847, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
7464849, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Electro-mechanical surgical instrument with closure system and anvil alignment components |
7481347, | Oct 04 2002 | Covidien LP | Pneumatic powered surgical stapling device |
7481824, | Dec 30 2005 | Ethicon Endo-Surgery, Inc. | Surgical instrument with bending articulation controlled articulation pivot joint |
7487899, | Jul 28 2004 | Cilag GmbH International | Surgical instrument incorporating EAP complete firing system lockout mechanism |
7549564, | Jun 22 2007 | Cilag GmbH International | Surgical stapling instrument with an articulating end effector |
7565993, | Sep 23 1997 | United States Surgical Corporation | Surgical stapling apparatus |
7568603, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
7575144, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Surgical fastener and cutter with single cable actuator |
7588175, | Jun 18 2007 | Cilag GmbH International | Surgical stapling and cutting instrument with improved firing system |
7588176, | Jun 18 2007 | Cilag GmbH International | Surgical cutting instrument with improved closure system |
7637409, | Mar 15 2007 | Covidien LP | Powered surgical stapling device |
7641093, | May 20 2003 | Cilag GmbH International | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
7644848, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Electronic lockouts and surgical instrument including same |
7670334, | Jan 10 2006 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
7673780, | Nov 09 2005 | Ethicon Endo-Surgery, Inc | Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument |
7699835, | Feb 15 2001 | AURIS HEALTH, INC | Robotically controlled surgical instruments |
7721931, | Jan 10 2007 | Cilag GmbH International | Prevention of cartridge reuse in a surgical instrument |
7738971, | Jan 10 2007 | Cilag GmbH International | Post-sterilization programming of surgical instruments |
7740159, | Aug 02 2006 | Cilag GmbH International | Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist |
7743960, | Jun 14 2002 | Covidien LP | Surgical device |
7758613, | Jun 02 1999 | Covidien LP | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
7766210, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with user feedback system |
7770773, | Jul 27 2005 | Covidien LP | Surgical device |
7770775, | Jan 31 2006 | Ethicon Endo-Surgery, Inc | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
7793812, | Feb 14 2008 | Cilag GmbH International | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
7799039, | Nov 09 2005 | Ethicon Endo-Surgery, Inc | Surgical instrument having a hydraulically actuated end effector |
7802712, | Jun 20 2003 | Covidien LP | Surgical stapling device |
7803151, | Dec 04 2001 | Covidien LP | System and method for calibrating a surgical instrument |
7822458, | May 19 2005 | Johns Hopkins University, The; CALIFORNIA, UNIVERSITY THE | Distal bevel-tip needle control device and algorithm |
7845534, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
7845537, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having recording capabilities |
7857185, | Feb 14 2008 | Cilag GmbH International | Disposable loading unit for surgical stapling apparatus |
7870989, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
7887559, | Aug 08 2002 | Stryker Corporation | Surgical cutting accessory with encapsulated RFID chip |
7905897, | Mar 14 2001 | Covidien LP | Trocar device |
7918230, | Sep 21 2007 | Covidien LP | Surgical device having a rotatable jaw portion |
7922061, | May 21 2008 | Cilag GmbH International | Surgical instrument with automatically reconfigurable articulating end effector |
7922063, | Oct 31 2007 | Covidien LP | Powered surgical instrument |
7922719, | Oct 06 2004 | FIRST COMMERCE BANK | Adjustable angle pawl handle for surgical instruments |
7947034, | Jul 30 2004 | Covidien LP | Flexible shaft extender and method of using same |
7951071, | Jun 02 1999 | Covidien LP | Moisture-detecting shaft for use with an electro-mechanical surgical device |
7954682, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with elements to communicate between control unit and end effector |
7959051, | Feb 15 2008 | Cilag GmbH International | Closure systems for a surgical cutting and stapling instrument |
7963433, | Sep 21 2007 | Covidien LP | Surgical device having multiple drivers |
7967178, | Oct 06 2006 | Covidien LP | Grasping jaw mechanism |
7967179, | Mar 31 2009 | Covidien LP | Center cinch and release of buttress material |
7992758, | Sep 21 2007 | Covidien LP | Surgical device having a rotatable jaw portion |
8016178, | Mar 31 2009 | Covidien LP | Surgical stapling apparatus |
8016855, | Jan 08 2002 | Covidien LP | Surgical device |
8020743, | Oct 15 2008 | Cilag GmbH International | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
8025199, | Feb 23 2004 | Covidien LP | Surgical cutting and stapling device |
8035487, | Aug 08 2001 | Stryker Corporation | Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components |
8052024, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
8114118, | Dec 06 2003 | Richard Wolf GmbH | Medical instrument |
8132705, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
8152516, | Nov 22 2003 | Flexi-Float, LLC | Equine dental grinding apparatus |
8157150, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
8157151, | Oct 15 2009 | Covidien LP | Staple line reinforcement for anvil and cartridge |
8182494, | Jul 31 2002 | Aesculap AG | Minimally-invasive surgical system |
8186555, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
8186587, | Nov 24 2006 | BLUECHIIP LIMITED | Tagging methods and apparatus |
8220367, | Feb 01 2008 | Mobiletron Electronics Co., Ltd. | Transmission extension adapter for power hand tool |
8235273, | Mar 31 2009 | Covidien LP | Center cinch and release of buttress material |
8241322, | Jul 27 2005 | Covidien LP | Surgical device |
8272554, | Sep 21 2007 | Covidien LP | Surgical device having multiple drivers |
8292150, | Nov 02 2010 | Covidien LP | Adapter for powered surgical devices |
8292888, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
8342379, | Sep 21 2007 | Covidien LP | Surgical device having multiple drivers |
8348855, | Aug 29 2005 | Boston Scientific Scimed, Inc | Multiple sensor device for measuring tissue temperature during thermal treatment |
8353440, | Sep 21 2007 | Covidien LP | Surgical device having a rotatable jaw portion |
8357144, | Jun 02 1999 | Covidien LP | Electro-mechanical surgical device |
8365633, | May 21 2003 | Johns Hopkins University | Devices, systems and methods for minimally invasive surgery of the throat and other portions of mammalian body |
8365972, | Mar 31 2009 | Covidien LP | Surgical stapling apparatus |
8371492, | Mar 06 2007 | Covidien LP | Surgical stapling apparatus |
8372057, | Oct 10 2008 | COEUR, INC | Luer lock adapter |
8391957, | Mar 26 2007 | AURIS HEALTH, INC | Robotic catheter systems and methods |
8424739, | Oct 17 2003 | Covidien LP | Surgical stapling device with independent tip rotation |
8454585, | Jul 30 2004 | Covidien LP | Flexible shaft extender and method of using same |
8505802, | Jun 03 2005 | Covidien LP | Surgical stapler with timer and feedback display |
8517241, | Apr 16 2010 | Covidien LP | Hand-held surgical devices |
8551076, | Jun 13 2006 | Intuitive Surgical Operations, Inc | Retrograde instrument |
8561871, | Dec 31 2009 | Covidien LP | Indicators for surgical staplers |
8623000, | Apr 20 2007 | DOHENY EYE INSTITUTE | Independent surgical center |
8632463, | Jun 29 2001 | PHILOMETRON, INC | Gateway platform for biological monitoring and delivery of therapeutic compounds |
8647258, | Jan 10 2008 | Covidien LP | Apparatus for endoscopic procedures |
8657174, | Feb 14 2008 | Cilag GmbH International | Motorized surgical cutting and fastening instrument having handle based power source |
8657177, | Oct 25 2011 | Covidien LP | Surgical apparatus and method for endoscopic surgery |
8672206, | Oct 25 2011 | Covidien LP | Apparatus for endoscopic procedures |
8696552, | Sep 30 2002 | Covidien LP | Self-contained sterilizable surgical system |
8708213, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having a feedback system |
8758391, | Feb 14 2008 | Cilag GmbH International | Interchangeable tools for surgical instruments |
8806973, | Dec 02 2009 | Covidien LP | Adapters for use between surgical handle assembly and surgical end effector |
8851355, | Oct 25 2011 | Covidien LP | Apparatus for endoscopic procedures |
8858571, | Nov 09 2005 | Cilag GmbH International | Hydraulically and electrically actuated articulation joints for surgical instruments |
8875972, | Feb 15 2008 | Cilag GmbH International | End effector coupling arrangements for a surgical cutting and stapling instrument |
8888762, | Jul 30 2004 | Covidien LP | Flexible shaft extender and method of using same |
8893946, | Mar 28 2007 | Cilag GmbH International | Laparoscopic tissue thickness and clamp load measuring devices |
8899462, | Oct 25 2011 | Covidien LP | Apparatus for endoscopic procedures |
8939344, | Mar 31 2009 | Covidien LP | Surgical stapling apparatus |
8960519, | Jun 02 1999 | Covidien LP | Shaft, e.g., for an electro-mechanical surgical device |
8961396, | Nov 29 2007 | SurgiQuest, Inc. | Surgical instruments with improved dexterity for use in minimally invasive surgical procedures |
8968276, | Sep 21 2007 | Covidien LP | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
8968337, | Jul 28 2010 | Covidien LP | Articulating clip applier |
8992422, | Mar 23 2006 | Cilag GmbH International | Robotically-controlled endoscopic accessory channel |
9064653, | Jul 27 2009 | Apple Inc. | Accessory controller for electronic devices |
9113875, | Jun 19 2009 | Covidien LP | Flexible surgical stapler with motor in the head |
9216013, | Feb 18 2013 | Covidien LP | Apparatus for endoscopic procedures |
9282961, | Sep 21 2007 | Covidien LP | Surgical device having multiple drivers |
9282963, | Nov 02 2010 | Covidien LP | Adapter for powered surgical devices |
9295522, | Nov 08 2013 | Covidien LP | Medical device adapter with wrist mechanism |
9307986, | Mar 01 2013 | Cilag GmbH International | Surgical instrument soft stop |
20010031975, | |||
20020049454, | |||
20020165541, | |||
20030038938, | |||
20030165794, | |||
20040111012, | |||
20040133189, | |||
20040176751, | |||
20040193146, | |||
20050131442, | |||
20060142656, | |||
20060142740, | |||
20060142744, | |||
20060259073, | |||
20070023476, | |||
20070023477, | |||
20070029363, | |||
20070084897, | |||
20070102472, | |||
20070152014, | |||
20070175947, | |||
20070175949, | |||
20070175950, | |||
20070175951, | |||
20070175955, | |||
20070175961, | |||
20080029570, | |||
20080029573, | |||
20080029574, | |||
20080029575, | |||
20080058801, | |||
20080109012, | |||
20080110958, | |||
20080167736, | |||
20080185419, | |||
20080188841, | |||
20080197167, | |||
20080208195, | |||
20080237296, | |||
20080251561, | |||
20080255413, | |||
20080255607, | |||
20080262654, | |||
20080308603, | |||
20090090763, | |||
20090099876, | |||
20090138006, | |||
20090171147, | |||
20090182193, | |||
20090209990, | |||
20090254094, | |||
20100023022, | |||
20100069942, | |||
20100193568, | |||
20100211053, | |||
20100225073, | |||
20100320252, | |||
20110071508, | |||
20110077673, | |||
20110121049, | |||
20110125138, | |||
20110139851, | |||
20110155783, | |||
20110155786, | |||
20110172648, | |||
20110174099, | |||
20110204119, | |||
20110218522, | |||
20110276057, | |||
20110290854, | |||
20110295242, | |||
20110295269, | |||
20120000962, | |||
20120074199, | |||
20120089131, | |||
20120104071, | |||
20120116368, | |||
20120143002, | |||
20120172924, | |||
20120191091, | |||
20120223121, | |||
20120245428, | |||
20120253329, | |||
20120310220, | |||
20120323226, | |||
20120330285, | |||
20130018361, | |||
20130093149, | |||
20130181035, | |||
20130184704, | |||
20130214025, | |||
20130274722, | |||
20130282052, | |||
20130292451, | |||
20130313304, | |||
20130317486, | |||
20130319706, | |||
20130324978, | |||
20130324979, | |||
20130334281, | |||
20140012236, | |||
20140012237, | |||
20140012289, | |||
20140025046, | |||
20140110455, | |||
20140207125, | |||
20140207182, | |||
20140207185, | |||
20140236173, | |||
20140236174, | |||
20140276932, | |||
20140299647, | |||
20140303668, | |||
20140358129, | |||
20140361068, | |||
20140373652, | |||
20150048144, | |||
20150076205, | |||
20150080912, | |||
20150157321, | |||
20150164502, | |||
20150272577, | |||
20150297199, | |||
20150303996, | |||
20150320420, | |||
20150327850, | |||
20150342601, | |||
20150342603, | |||
20150374366, | |||
20150374370, | |||
20150374371, | |||
20150374372, | |||
20150374449, | |||
20150380187, | |||
20160095585, | |||
20160095596, | |||
20160106406, | |||
20160113648, | |||
20160113649, | |||
AU2008229795, | |||
CA2451558, | |||
CN102247182, | |||
CN107019532, | |||
DE102008053842, | |||
EP634144, | |||
EP648476, | |||
EP686374, | |||
EP705571, | |||
EP1690502, | |||
EP1723913, | |||
EP1736112, | |||
EP1769754, | |||
EP1772105, | |||
EP1813199, | |||
EP1813203, | |||
EP1813211, | |||
EP1943954, | |||
EP1943956, | |||
EP1943958, | |||
EP1943976, | |||
EP2005898, | |||
EP2027819, | |||
EP2044890, | |||
EP2055243, | |||
EP2098170, | |||
EP2100561, | |||
EP2100562, | |||
EP2165664, | |||
EP2236098, | |||
EP2263568, | |||
EP2272443, | |||
EP2316345, | |||
EP2324776, | |||
EP2329773, | |||
EP2333509, | |||
EP2462878, | |||
EP2462880, | |||
EP2491872, | |||
EP2586382, | |||
EP2606834, | |||
EP2668910, | |||
EP2676615, | |||
EP2839787, | |||
EP3165179, | |||
ES2333509, | |||
JP2005125075, | |||
JP8038488, | |||
KR20120022521, | |||
RE34556, | Feb 17 1989 | Smith & Nephew, Inc | Surgical system for powered instruments |
RE39152, | Jan 25 1993 | ZIMMER SPINE, INC | Surgical instrument |
WO72760, | |||
WO72765, | |||
WO3000138, | |||
WO3026511, | |||
WO3030743, | |||
WO3065916, | |||
WO3077769, | |||
WO3090630, | |||
WO2004107989, | |||
WO2006042210, | |||
WO2007014355, | |||
WO2007016290, | |||
WO2007026354, | |||
WO2007137304, | |||
WO2008131362, | |||
WO2008133956, | |||
WO2009039506, | |||
WO2009132359, | |||
WO2009143092, | |||
WO2009149234, | |||
WO2011108840, | |||
WO2012040984, | |||
WO9915086, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 01 2016 | CHOWANIEC, MATTHEW | Covidien LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049300 | /0378 | |
Dec 01 2016 | CHOWANIEC, DAVID | Covidien LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049300 | /0378 | |
May 29 2019 | Covidien LP | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 29 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 18 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 28 2024 | 4 years fee payment window open |
Mar 28 2025 | 6 months grace period start (w surcharge) |
Sep 28 2025 | patent expiry (for year 4) |
Sep 28 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 28 2028 | 8 years fee payment window open |
Mar 28 2029 | 6 months grace period start (w surcharge) |
Sep 28 2029 | patent expiry (for year 8) |
Sep 28 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 28 2032 | 12 years fee payment window open |
Mar 28 2033 | 6 months grace period start (w surcharge) |
Sep 28 2033 | patent expiry (for year 12) |
Sep 28 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |