A method and system for generating and outputting a real-fix tip (RFT) augmented with a pointer to additional content. The additional content may be relevant to any of a complaint, vehicle, cause of complaint, how the cause for complaint was discovered, and service-operation performed on the vehicle to resolve the complaint. The RFT may include a complaint, cause, and correction, and may be stored within a database containing repair orders that include complaints, causes, and corrections regarding various vehicles. A processor may generate the RFT after determining a threshold number of RO with a common complaint, vehicle, cause, and correction. A processor may search the database for the RFT based on a complaint and vehicle, display a list of RFT located during the search, display an RFT selected from the list, obtain additional content pointed to by a pointer in the RFT, and output the additional content to a display.
|
1. A method comprising:
connecting a first computing device to a data link connector in a vehicle, wherein the first computing device includes one or more processors, a non-transitory computer-readable medium, a display, and a first transceiver that is connectable to the data link connector in the vehicle in order to transmit a message to an electronic control unit (ecu) in the vehicle and a second transceiver configured to communicate with a second computing device;
storing, by the computer-readable medium, instructions executable by the one or more processors to perform multiple scan tool functions that include the first transceiver transmitting a message to the ecu in the vehicle via the data link connector, and a measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement;
receiving, by the one or more processors, an identifier of the vehicle and an identifier of a complaint pertaining to the vehicle;
transmitting, to the second computing device, a computer-readable request including the identifier of the vehicle and the identifier of the complaint pertaining to the vehicle;
receiving, by the first computing device in response to the request, a computer-readable real-fix tip file that includes: (i) computer-readable data representing a first pointer, and (ii) computer-readable data representing human-readable text indicative of a complaint, cause and correction pertaining to a different vehicle similar to the vehicle connected to the first computing device, wherein the first pointer points to a first automated function selector that is associated with the stored measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement;
displaying, on the display, the real-fix tip file, wherein displaying the real-fix tip file includes displaying on the display the first pointer and the human-readable text;
receiving, by the one or more processors, a selection of the first pointer while the first pointer is displayed on the display;
displaying, on the display in response to the selection of the first pointer, the first automated function selector that is associated with the measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement;
receiving, by the one or more processors, a selection of the displayed first automated function selector that is associated with the measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement; and
performing, by the one or more processors executing the measurement instruction executable by the one or more processors to perform a voltage, current or resistance measurement in response to the selection of the displayed first automated function selector, a voltage, current or resistance measurement of a circuit to which test leads are connected to the vehicle.
13. A first computing device configured to connect to a data link connector in a vehicle, the first computing device comprising:
a display;
one or more processors coupled to the display and configured to receive an identifier of the vehicle and an identifier of a complaint pertaining to the vehicle;
a first transceiver that is connectable to the data link connector in the vehicle in order to transmit a message to an electronic control unit (ecu) in the vehicle;
a second transceiver configured to communicate with a second computing device; and
a non-transitory computer-readable medium that stores first executable instructions and second executable instructions and a measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement, wherein the first executable instructions when executed by the one or more processors, cause the first computing device to perform multiple scan tool functions that include the first transceiver transmitting a message to the ecu in the vehicle via the data link connector, and wherein the second executable instructions, when executed by the one or more processors, cause the first computing device to perform additional functions comprising:
transmitting, to the second computing device, a computer-readable request including the identifier of the vehicle and the identifier of the complaint pertaining to the vehicle;
receiving, in response to the request, a computer-readable real-fix tip file that includes: (i) computer-readable data representing a first pointer, and (ii) computer-readable data representing human-readable text indicative of a complaint, cause and correction pertaining to a different vehicle similar to the vehicle connected to the first computing device, wherein the first pointer points to a first automated function selector associated with the stored measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement;
displaying, on the display, the real-fix tip file, wherein displaying the real-fix tip file includes displaying on the display the first pointer and the human-readable text;
receiving a selection of the first pointer while the first pointer is displayed on the display;
displaying, on the display in response to the selection of the first pointer, the first automated function selector that is associated with the measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement;
receiving a selection of the displayed first automated function selector that is associated with the measurement instruction executable by the one or more processors to perform a voltage, current, or resistance measurement; and
performing, by the one or more processors executing the measurement instruction executable by the one or more processors to perform a voltage, current or resistance measurement in response to the selection of the displayed first automated function selector, a voltage, current or resistance measurement of a circuit to which test leads are connected to the vehicle.
2. The method of
3. The method of
displaying, on the display, a value determined by performing the voltage, current or resistance measurement.
4. The method of
wherein the computer-readable real-fix tip further includes a second pointer,
wherein the second pointer points to a second automated function selector,
the method further comprising:
displaying, on the display, the second automated function selector in response to a selection of the second pointer;
receiving, by the one or more processors, an input selecting the second automated function selector;
requesting, by the one or more processors from the vehicle in response to receiving the input, data associated with a data parameter identifier;
receiving, by the one or more processors from the vehicle, the data associated with the data parameter identifier; and
displaying, on the display a value determined from the data associated with the data parameter identifier.
5. The method of
6. The method of
receiving, in response to transmitting the message to the ecu in the vehicle, diagnostic information from the vehicle; and
displaying, by the display, the diagnostic information.
7. The method of
transmitting, to the ecu in the vehicle, a message having a request for a diagnostic trouble code from the ecu.
8. The method of
transmitting, to the ecu in the vehicle, a request to clear a diagnostic trouble code at the ecu.
9. The method of
transmitting, to the ecu in the vehicle, a message to reprogram the ecu.
10. The method of
11. The method of
12. The method of
14. The first computing device of
15. The first computing device of
wherein the one or more processors are programmed to:
receive an input selecting the measurement selection for the first measurement;
perform the first measurement; and
output to the display a value determined by performing the voltage, current or resistance measurement.
16. The first computing device of
wherein the computer-readable real-fix tip further includes a second pointer,
wherein the second pointer points to a second automated function selector,
wherein the one or more processors are programmed to:
output, to the display, the second automated function selector in response to a selection of the second pointer;
receive an input selecting the second automated function selector;
request, from the vehicle in response to receiving the input, data associated with a data parameter identifier;
receive the data associated with the data parameter identifier; and
output, to the display, a value determined from the data associated with the data parameter identifier.
17. The first computing device of
18. The first computing device of
receiving, in response to transmitting the message to the ecu in the vehicle connected to the first computing device, diagnostic information from the vehicle connected to the first computing device; and
displaying, by the display, the diagnostic information.
19. The first computing device of
20. The first computing device of
21. The first computing device of
22. The first computing device of
23. The first computing device of
24. The first computing device of
|
Many products produced by manufacturers occasionally have to be repaired. As the complexity of products increases, the complexity of the data relied on by repair technicians to repair the products may also increase.
The repair technicians may be located in various locations, such that a first repair technician located at first location is not aware of a repair made by a second repair technician at second location. It may be beneficial, if the second repair technician could obtain information regarding the repair made by the first technician. It may be even more beneficial, if the second repair technician could receive the information, regarding the repair made by the first repair technician, knowing that a third party has confirmed that information regarding the repair is for a repair that successfully fixed a complaint or malfunction of the product worked on by the first repair technician. Searching for repair information desired by a repair technician may be very time consuming.
Example embodiments are described herein. Viewed from a first aspect, an example embodiment may take the form of a method comprising: (i) determining, by at least one processor for generating a real-fix tip pertaining to a complaint and a vehicle, first text describing at least one of a cause of the complaint and how the cause for the complaint was discovered, and second text describing a service-operation performed on the vehicle to resolve the complaint, (ii) determining, by the at least one processor, at least one of (a) first additional content relevant to the complaint, the vehicle, and a portion of the first text, and (b) second additional content relevant to the complaint, the vehicle, the cause, and a portion of the second text, (iii) generating, by the at least one processor, a first real-fix tip, wherein the first real-fix tip includes a first file comprising the first text, the second text, and a respective pointer to the at least one of the first additional content and the second additional content, (iv) storing, by the at least one processor, the first real-fix tip within a computer-readable medium, (v) receiving, by the at least one processor, a request for a real-fix tip pertaining to the complaint and the vehicle, and (vi) outputting, by the at least one processor in response to the request, the first file stored within the computer-readable medium.
Viewed from a second aspect, an example embodiment may take the form of a system comprising: a computer-readable medium, and at least one processor coupled to the computer-readable medium and programmed to (i) determine, for generating a real-fix tip pertaining to a complaint and a vehicle, first text describing at least one of a cause of the complaint and how the cause for the complaint was discovered, and second text describing a service-operation performed on the vehicle to resolve the complaint, (ii) determine at least one of (a) first additional content relevant to the complaint, the vehicle, and a portion of the first text, and (b) second additional content relevant to the complaint, the vehicle, the cause, and a portion of the second text, (iii) generate a first real-fix tip, wherein the first real-fix tip includes a first file comprising the first text, the second text, and a respective pointer to the at least one of the first additional content and the second additional content, (iv) store the first real-fix tip within the computer-readable medium, (v) receive a request for a real-fix tip pertaining to the complaint and the vehicle, and (vi) output, in response to the request, the first file stored within the computer-readable medium.
In some embodiments viewed from the first or second aspect, the respective pointer to the at least one of the first additional content and the second additional content includes a first pointer pointing to one of the first additional content and the second additional content. The method may further comprise: receiving, by the at least one processor after outputting the first file, a selection of the first pointer; obtaining, by the at least one processor in response to receiving the selection of the first pointer, the one of the first additional content and the second additional content pointed to by the first pointer; and outputting, by the at least one processor, the one of the first additional content and the second additional content pointed to by the first pointer.
In some embodiments viewed from the first or second aspect, the respective pointer to the at least one of the first additional content and the second additional content includes a second pointer pointing to one of the first additional content and the second additional content not pointed to by the first pointer. The method may further comprise: receiving, by the at least one processor after outputting the first file, a selection of the second pointer; obtaining, by the at least one processor in response to receiving the selection of the second pointer, the one of the first additional content and the second additional content pointed to by the second pointer but not by the first pointer; and outputting, by the at least one processor, the one of the first additional content and the second additional content pointed to by the second pointer but not by the first pointer.
In some embodiments viewed from the first or second aspect, each respective pointer includes a hyperlink within the first file. In some embodiments, wherein the vehicle indicates a particular vehicle year, make, and model, determining the first text and the second text includes determining, by the at least one processor, a quantity of repair orders that identify the cause and the service-operation for the complaint and the particular vehicle year, make, and model, and the quantity of repair orders equals or exceeds a threshold quantity of repair orders.
In some embodiments viewed from the first or second aspect, the at least one of the first additional content and the second additional content includes content selected from the group consisting of an image, a measurement instruction executable by a data processing machine to perform a measurement, a vehicle data request executable by the data processing machine to request data from the vehicle, and a textual test description.
Viewed from a third aspect, an example embodiment may take the form of a method comprising (i) outputting, by at least one processor, a request for a real-fix tip pertaining to a complaint and a vehicle, wherein the request includes an identifier of the complaint and an identifier of the vehicle, (ii) receiving, by the at least one processor after outputting the request, a first file of a first real-fix tip pertaining to the complaint and the vehicle, (iii) outputting, by the at least one processor to a display connected to the at least one processor, first text and second text of the first file, wherein the first text describes at least one of a cause of the complaint and how the cause of the complaint was discovered, wherein the second text describes a service-operation performed on the vehicle to resolve the complaint, wherein one of the first text and the second text includes a first pointer pointing to first additional content, wherein if the first text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, and a portion of the first text, and wherein if the second text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, the cause, and a portion of the second text, (iv) receiving, by the at least one processor, a selection of the first pointer while displayed by the display, and (v) outputting, by the at least one processor to the display, the first additional content pointed to by the first pointer.
Viewed from a fourth aspect, an example embodiment may take the form of a system comprising: a display, and at least one processor coupled to the display and programmed to: (i) output a request for a real-fix tip pertaining to a complaint and a vehicle, wherein the request includes an identifier of the complaint and an identifier of the vehicle, (ii) receive, after outputting the request, a first file of a first real-fix tip pertaining to the complaint and the vehicle, (iii) output, to the display, first text and second text of the first file, wherein the first text describes at least one of a cause of the complaint and how the cause of the complaint was discovered, wherein the second text describes a service-operation performed on the vehicle to resolve the complaint, wherein one of the first text and the second text includes a first pointer pointing to first additional content, wherein if the first text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, and a portion of the first text, and wherein if the second text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, the cause, and a portion of the second text, (iv) receive a selection of the first pointer while displayed by the display, and (v) output, to the display, the first additional content pointed to by the first pointer.
In some embodiments viewed from the third or fourth aspect, outputting the first additional content includes outputting the first additional content overlaid upon at least a portion of the first text and second text of the first file.
In some embodiments viewed from the third or fourth aspect, the first additional content output to the display includes a measurement selection for a first measurement the at least one processor may perform. The method may further comprise: receiving, by the at least one processor, an input selecting the measurement selection; performing, by the at least one processor, the first measurement; and outputting to the display a value determined by performing the first measurement.
In some embodiments viewed from the third or fourth aspect, the first additional content displayed by the display includes a parameter identifier associated with vehicle data the at least one processor may request. The method may further comprise: receiving, by the at least one processor, an input selecting the vehicle data parameter identifier; requesting, by the at least one processor, the vehicle data associated with the parameter identifier; receiving, by the at least one processor, the vehicle data requested by the at least one processor; and outputting to the display a value determined from the vehicle data received by the at least one processor.
In some embodiments viewed from the third or fourth aspect, outputting the value includes outputting a status of whether a diagnostic trouble code is active.
These as well as other aspects and advantages will become apparent to those of ordinary skill in the art by reading the following detailed description, with reference where appropriate to the accompanying drawings. Further, it should be understood that the embodiments described in this overview and elsewhere are intended to be examples only and do not necessarily limit the scope of the invention.
Example embodiments are described herein with reference to the drawings.
This description describes several example embodiments including example embodiments regarding repair orders (ROs) and real-fix tips (RFTs). A real-fix tip (RFT) may be generated by a data processing machine (DPM) or one or more processors of a DPM. An RFT may be based on data that is on or within one or more ROs. An RFT may be augmented with pointers that point to content within a content database. Selection of such a pointer may result in retrieval and displaying of the content. An RFT may be referred to by other terms, such as a “field-fix tip,” a “prior-service tip,” or by another term.
An RFT may be generated and associated with one or more RO. In one respect, a person using a coordinator DPM may access an RO and generate an RFT for subject matter which that person is considered to be an expert. In another respect, an RFT DPM may generate an RFT. After an RFT is generated for a given RO, other RO that pertain to the RFT may be classified as a duplicate RO of the given RO. An RFT may be stored in a database storing the RO and RFT or may be stored in a separate database storing RFT without the RO. Repair technicians may access the stored ROs and RFTs to assist them in diagnosing or repairing a repairable item, such as a vehicle. Hereafter, the example embodiments are described by referring to a vehicle. A person skilled in the art will understand that the example embodiments are applicable to other repairable items as well.
In this description, the articles “a,” “an” or “the” are used to introduce elements of the example embodiments. The intent of using those articles is that there is one or more of the elements. The intent of using the conjunction “or” within a described list of at least two terms is to indicate any of the listed terms or any combination of the listed terms. For example, in a list of terms recited as “A, B, or C,” the combinations indicated by that list of terms include “A and B,” “A and C,” “B, and C,” and “A, B, and C.” Each individual term A, B, and C in the list of terms may exist independently without any other term in the list. The use of ordinal numbers such as “first,” “second,” “third” and so on is to distinguish respective elements rather than to denote a particular order of those elements unless the context of using those terms explicitly indicates otherwise.
The following abbreviations or acronyms are used in the description.
CRPI—Computer-readable program instructions
DPM—Data Processing Machine
DTC—Diagnostic Trouble Code
e.g.,—for example
FIG.—Figure
GPS—Global Positioning System
GUI—Graphical User Interface
HVAC—heating, ventilation, and air conditioning
L—Liter
LAN—Local Area Network
LOC—Labor operation code
NA—non-applicable
NST—Non-standard Terms
OCR—Optical Character Recognition
OCR'd—Optical Character Recognized
PDF—portable document format
QC—Quality Control
RO—Repair Order
RFT—Real fix tip
SPL—Standard Phrase List
SQL—Structured Query Language
ST—Standard Terms
VIN—Vehicle Identification Number
XML—Extensible Markup Language
YMM—Year/Make/Model
YMME—Year/Make/Model/Engine
YMMES—Year/Make/Model/Engine/System
At least some of the example embodiments refer to a vehicle. A vehicle, such as a vehicle 19 shown in
As another example, while the display 33 is displaying the RFT 31, the display 33 may display a search box 51 to display the subject of a search. For instance, the subject of the search may include a DTC identifier or a customer complaint regarding a vehicle. As shown in
As another example, while the display 33 is displaying the RFT 31, the display 33 may display a set of tabs 53 and a current tab 55 indicating which tab is currently selected or being displayed. As shown in
As another example, while the display 33 is displaying the RFT 31, the display 33 may display a graph 57 pertaining to the subject search entered into the search box 51 and the vehicle type entered into the vehicle type box 49. As yet another example, while the display 33 is displaying the RFT 31, the display 33 may display a selector 59 to indicate a selector controllable by a user interface to select elements displayed on the display 33. As still yet another example, while the display 33 is displaying the RFT 31, the display 33 may display a title field 29 of the RFT 31. Although not shown in
Each of the ACV 61, 71, and 81 is shown as overlaying only a portion of an RFT. The size of an ACV may be altered (e.g., made smaller or made larger) by use of a user interface. Altering the size of the ACV may include altering the ACV to cover the entire RFT. In an alternative arrangement, upon selecting a pointer to additional content, the display 33 may cause an ACV to be displayed in place of the RFT that included the selected pointer. A DPM including the display 33 can track which RFT was displayed when the pointer was selected such that the display 33 can display the same RFT after closing the ACV displayed in place of the RFT.
When an ACV covers only a portion of an RFT, the portion of the RFT still visible may be altered (e.g., by changing a background color of the display) to provide contrast between the RFT and the ACV. In
Other automated function selectors may be included within an ACV. In general, the automated functions selectors may include selectors for functions performed by a typical vehicle scan tool, such as an OBD scan tool.
In
An ACV may include a pointer to additional content. For example, the words “Control A” in
The lower half of
The communication network 11 includes network links for communicatively coupling two or more devices to allow those devices to communicate with one another. The communication network 11 and one or more of the network links 150-159 may include a portion of the Internet, a portion of a local area network (LAN), a circuit-switched network, a packet-switched network, or a portion of some other network. One or more of the network links 150-159 may include or a system bus, such as a control bus, data bus, or address bus within a computing device, such as a DPM or a personal computer. One or more of the network links 150-159 may be configured to carry data between more than two network devices. One or more of the network links 150-159 may include a wireless link or a wired link.
The content database 13 may include a computer-readable medium storing additional content that is pointed to by a pointer in an RFT or an ACV. As an example, the additional content stored in the content database 13 may include original equipment manufacturer (OEM) content, such as content produced for or by an OEM of vehicles. As another example, the content stored in the content database 13 may include aftermarket content, such as content produced by or for an aftermarket vehicle service provider. As another example, the additional content may include any of the additional content described with respect to
The RFT DPM 15 may perform various functions with respect to RFTs. For example, the RFT DPM 15 may generate RFTs, receive a request for an RFT, search for an RFT within the RO/RFT database 106, receive an RFT from the RO/RFT database 106, or output an RFT to the communication network 11 for transmission to another DPM, such as the RFT display DPM 17. The RFT DPM 15 may include the content database 13 and may access the content database 13 to search for content to be pointed to by a pointer of an RFT. The RFT DPM 15 may receive additional content located during a search of the content database 13 and provide the received content to the RFT display DPM 17.
The RFT generator DPM 108 may generate an RFT (or at least a portion of an RFT) for a group of one or more RO (hereinafter, an “RO group”) and to provide the RFT to the RO/RFT database 106.
The RFT display DPM 17 may display a GUI to enter search parameters (e.g., a vehicle type identifier within the vehicle type box 49 and a complaint regarding a vehicle in the search box 51) and display an RFT that is returned in response to transmitting a request with the search parameters to the RFT DPM 15. The RFT display DPM 17 may display any RFT and any additional content viewer described in this description. The RFT display DPM 17 may display additional content received in response to selection of a pointer pointing to the additional content. The RFT display DPM 17 may include a transceiver connectable to the DLC of the vehicle 19 in order to carry out communications with the vehicle 19. As an example, the RFT display DPM 17 may transmit request for vehicle parameters or DTC from the vehicle 19. As another example, the RFT display 17 may receive vehicle parameters or DTC from the vehicle 19. The RFT display 17 may display data received from the vehicle 19. The RFT display DPM 17 may include CRPI executable by a processor to perform measurements on the vehicle 19. The processor may execute those CRPI to perform a measurement in response to selection of an automated function selector within an RFT displayed by the RFT display DPM 17.
The RO provider DPM 102 may generate repair orders and provide repair orders to the RO collector DPM 104. The RO provider DPM 102 may generate one or more types of RO including, but not limited to, RO printed on paper (hereinafter “paper RO”) and computer-readable (e.g., electronic) RO. Each RO may include information pertaining to service operation performed on a repairable item, such as a vehicle. Additionally or alternatively, each RO may include other information such as information pertaining to performing preventative maintenance on the repairable item. Prior to providing the RO to the RO collector DPM 104, the RO generated by the RO provider DPM 102 may be considered an unpublished RO.
The RO/RFT database 106 may include a computer-readable medium to store RO that the RO collector DPM 104 receives from the RO provider DPM 102 and RFT generated by the RFT generator DPM 108. The RO/RFT database 106 may include a CRM storing an RO database including RO but not any RFT. The RO/RFT database 106 may include a CRM storing an RFT database including RFT but not any RO. The RO stored in the RO/RFT database 106 may include an original RO, a portion of an original RO, a copy of an original RO, a copy of a portion of an original RO, or some other RO. Each RO and RFT stored in the RO/RFT database 106 may pertain to a vehicle or another type of repairable item. Each RO stored within the RO/RFT database 106 may include RO data pertaining to a service-operation performed to a repairable item such as a preventive maintenance service-operation, a cleaning service-operation, or an adjustment service-operation.
An RO stored within the RO/RFT database 106 may be classified as a published RO that a repair technician may access from the RO/RFT database 106 or a non-published RO that the repair technician cannot access from the RO/RFT database 106. An original RO provided by an RO provider DPM may be referred to as an unpublished RO. After the unpublished RO is reviewed by a person operating the RFT generator DPM 108 or by a person operating the coordinator DPM 110, the unpublished RO may be published for access to the RO display DPM 114. Upon publication, the unpublished RO becomes a published RO. For any of a variety of reasons, a published RO may be reclassified as an unpublished RO that cannot be accessed by the RO display DPM 114 and then subsequently re-published such that the RO can be accessed by the RO display DPM 114.
In one respect, the RO/RFT database 106 may include a processor to search the RO/RFT database 106 and to store data (e.g., RO or RFT) within the RO/RFT database 106. In another respect, a processor that searches the RO/RFT database 106 or causes data to be stored within the RO/RFT database 106 may be within a DPM distinct from the RO/RFT database 106. For example, in accordance with embodiments in which RO collector DPM 104 is distinct from the RO/RFT database 106, the processor may be a part of the RO collector DPM 104. The RO/RFT database 106 may store real-fix tips and data that associate each RFT with one or more RO stored in the RO/RFT database 106.
In the embodiments in which the RO provider DPM 102 provides paper RO, the RO collector DPM 104 may include a scanner to generate scanned images of the paper RO and optical character recognition (OCR) computer-readable program instructions (CRPI) to generate searchable text representations of the paper RO. The data obtained from executing the OCR CRPI may be referred to as an optical character recognized (OCR'd) copy of the RO or a computer-readable RO.
The coordinator DPM 110 may display an RFT and RO stored in the RO/RFT database 106. The coordinator DPM 110 may provide selectors to select whether an RFT and the RO associated with the RFT are published for presentation to the RO display DPM 114 or the RFT display DPM 17. The coordinator DPM 110 may provide selectors to select whether to return an RFT to the RFT generator DPM 108 for revising the RFT.
In accordance with one or more example embodiments, the system 100 may include one or more additional RFT generator DPM configured like the RFT generator DPM 108. In accordance with those same embodiments or other embodiments, system 100 may include one or more additional coordinator DPM configured like coordinator DPM 110. A person having ordinary skill in the art will understand that an RFT generator DPM and a coordinator DPM may be co-located or integrated such that a single DPM may carry out the functions of both the RFT generator DPM 108 and the coordinator DPM 110. The RFT generator DPM 108 or the coordinator DPM 110 may be configured as a server or client device. For instance, a server (not shown) in the system 100 may serve applications executable by a processor of the RFT generator DPM 108 or the coordinator DPM 110. In that regard, the RFT generator DPM 108 or the coordinator DPM 110, acting as a client, may execute those applications to carry out the functions described herein as being performed by the RFT generator DPM 108 or the coordinator DPM 110, respectively. As an example, the RO collector DPM 104 or the RO distributor DPM 112 may be configured as a server.
The RO display DPM 114 may request and receive RO from the RO distributor DPM 112. The RO display DPM 114 may display RO via a display of a user interface. The RO display DPM 114 may include a display and audio speaker such that presenting an RO and RFT may occur visually or audibly. The RO display DPM 114 and RO provider DPM 102 may be separate machines, co-located or located remote from one another. Alternatively, the RO display DPM 114 and RO provider DPM 102 may be a single machine.
The RO distributor DPM 112 may receive requests for RO from the RO display DPM 114, access the requested RO from the RO/RFT database 106, and provide the requested RO accessed from the RO/RFT database 106 to the RO display DPM 114. The RO distributor DPM 112 may include a data server, such as a data server operated by Snap-On Incorporated, Kenosha, Wis., that serves webpages including Ask-a-Tech data. In accordance with that or those embodiments, the RO display DPM 114 may include a computing device, such as a laptop computer, a desktop computer, a tablet (e.g., an IPad by Apple, Inc.), or a vehicle diagnostic tool having an interface to the Internet. The RO distributor DPM 112 may maintain user-account data to confirm that a technician using the RO display DPM 114 has authorization to access RO and RFTs stored in the RO/RFT database 106.
Next,
A processor such as the processor 202 or any other processor discussed in this description may include one or more processors. A processor may include a general purpose processor (e.g., an INTEL® single core microprocessor or an INTEL® multicore microprocessor), or a special purpose processor (e.g., a digital signal processor or graphics processor). Additionally or alternatively, a processor may include an application specific integrated circuit (ASIC). A processor may be configured to execute computer-readable program instructions (CRPI). For example, the processor 202 can execute CRPI 212 stored in the CRM 208. A processor may be configured to execute hard-coded functionality in addition to or as an alternative to software-coded functionality (e.g., via CRPI).
A network transceiver such as the network transceiver 204 or any other network transceiver discussed in this description may include one or more network transceivers. Each network transceiver may include one or more transmitters configured to transmit data onto a communication network, such as the communication network 11, or a communication link of the communication network. Each network transceiver may include one or more network receivers configured to receive data carried over a communication network, such as the communication network 11, or a communication link of the communication network. The data transmitted or received by a network transceiver may include any of the RO or RFT discussed in this description.
A transmitter may transmit radio waves carrying data and a receiver may receive radio waves carrying data. A transceiver with that transmitter and receiver may include one or more antennas and may be referred to as a “radio transceiver,” an “RF transceiver,” or a “wireless network transceiver.” The radio waves transmitted or received by a radio transceiver may be arranged in accordance with one or more wireless communication standards or protocols such as an Institute of Electrical and Electronics Engineers (IEEE) 802.15.1 standard for wireless personal area networks (PANs), a Bluetooth version 4.1 standard developed by the Bluetooth Special Interest Group (SIG) of Kirkland, Wash., or an IEEE 802.11 standard for wireless LANs (which is sometimes referred to as a Wi-Fi standard), or a cellular wireless communication standard such as a long term evolution (LTE) standard, a code division multiple access (CDMA) standard, an integrated digital enhanced network (IDEN) standard, a global system for mobile communications (GSM) standard, a general packet radio service (GPRS) standard, a universal mobile telecommunications system (UMTS) standard, an enhanced data rates for GSM evolution (EDGE) standard, or a multichannel multipoint distribution service (MMDS) standard.
Additionally or alternatively, a transmitter may transmit a signal (i.e., one or more signals or one or more electrical waves) carrying or representing data onto a cable (e.g., one or more cables or wires) and a receiver may receive from a cable a signal carrying or representing data over the cable. The cable may be part of a communication network, such as the communication network 11. The signal carried over a cable may be arranged in accordance with a wired communication standard such as a Transmission Control Protocol/Internet Protocol (TCP/IP), an IEEE 802.3 Ethernet communication standard for a LAN, a data over cable service interface specification (DOCSIS standard), such as DOCSIS 3.1, or some other wired communication standard. As an example, a cable may include a fiber optic cable, a coaxial cable, a twisted pair of cables, a CAT5, a CAT6 cable, or some other cable or wire.
The data transmitted by a transceiver may include a destination identifier or address of a DPM to which the data is to be transmitted. The data transmitted by a transceiver may include a source identifier or address of the DPM including the transceiver. The source identifier or address may be used to send a response to the DPM that includes the transceiver that sent the data.
The user interface 206 may include one or more user-input elements configured so that a user can input data to or for use by a processor or another component of the system including the user interface 206. As an example, the user-input elements may include a selector 216, such as a QWERTY keyboard, a computer mouse, or a touch screen. Additionally or alternatively, the user-input elements may include speech recognition circuitry and a microphone.
The user interface 206 may include one or more user-output elements by which data may be output (e.g., displayed) to one or more users. As an example, the user-output elements may include a display 214, a GUI, a touch screen display, an audible speaker, and electronic circuitry. The display 33 described with respect to
A computer-readable medium, such as the CRM 208 or any other computer-readable medium discussed in this description or included within a device, machine, database, or system described in this description, may include a non-transitory computer-readable medium, a transitory computer-readable medium, or both a non-transitory computer-readable medium and a transitory computer-readable medium. In one respect, a non-transitory computer-readable medium may be integrated in whole or in part with a processor. In another respect, a non-transitory computer-readable medium, or a portion thereof, may be separate and distinct from a processor.
A non-transitory computer-readable medium may include, for example, a volatile or non-volatile storage component, such as an optical, magnetic, organic or other memory or disc storage. Additionally or alternatively, a non-transitory computer-readable medium may include, for example, a random-access memory (RAM), a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a compact disk read-only memory (CD-ROM), or another memory device that is configured to provide data or CRPI to a processor.
A transitory computer-readable medium may include, for example, CRPI provided over a communication link, such as a communication link which is connected to or is part of the network 11. The communication link may include a digital or analog communication link. The communication link may include a wired communication link or a wireless communication link.
A computer-readable medium may be referred to by other terms such as a “computer-readable storage medium,” a “data storage device,” a “memory device,” a “memory,” or a “computer-readable database.” Any of those alternative terms may be preceded with the prefix “transitory” or “non-transitory.”
Next,
The search CRPI 302 may include program instructions that are executable to search the RO/RFT database 106 and to select and return, to a processor executing the search CRPI 302, an RO, an RO group, or an RFT (published or un-published) stored within the RO/RFT database 106. The search CRPI 302 may base the search on search criteria selected or entered using the user interface 206. For embodiments in which the repairable item is a vehicle, the search criteria may include vehicle information, such as YMM, YMME, or YMMES, where YMM is year/make/model, YMME is year/make/model/engine, and YMMES is year/make/model/engine/system. The year may indicate a model year or the year the vehicle was manufactured. The make may indicate the manufacturer that manufactured the vehicle. The model may indicate a type of vehicle manufactured by the manufacturer. The engine may indicate an engine version within the vehicle. The system may indicate a system within the vehicle to distinguish the vehicle from other vehicles having the same YMME. As an example, the system may indicate whether the vehicle has an automatic or manual transmission.
The GUI CRPI 304 may include program instructions that are executable to generate a GUI displayable on the display 214. The GUI 500, 600, 700, 800, 900, and 1200 described below, may be generated by executing the GUI CRPI 304. Those or other GUI generated by executing the GUI CRPI 304 may include one or more of the selectors or text entry areas as described herein. Execution of the GUI CRPI 304 may cause the display 214 to display a GUI (such as a filter selection interface 1200 shown in
The RO-selection CRPI 306 may include program instructions that are executable to select an RO from among the RO stored in the RO/RFT database 106. Selecting an RO may include selecting the RO from among an RO group comprising the RO. Selecting the RO may cause the RO to be displayed on the display 214. A user viewing that display may view the information entered onto or into the RO.
The RFT generation CRPI 308 may include program instructions that are executable to generate an RFT. In one respect, a processor of a DPM (e.g., the RFT DPM 15 or the RFT generator DPM 108) may execute the RFT generation CRPI 308 to automatically generate an RFT. Automatically generating an RFT may include the processor determining a threshold number of RO regarding vehicles with a common YMM, YMME, or YMMES have a common complaint, cause, and correction. Automatically generating an RFT may include the processor 202 selecting text for a complaint field, a cause field, and a correction field of the RFT. The processor 202 may enter the selected text into an RFT template including at least those fields. Automatically generating an RFT may include the processor 202 searching the content database 13 for content pertaining to text within one of the complaint, cause or correction sections and associating that text with a pointer to the content within the content database 13.
In another respect, a processor of a DPM (e.g., the RFT DPM 15 or the RFT generator DPM 108) may execute the RFT generation CRPI 308 to manually generate an RFT. Manually generating an RFT may include displaying GUI 600 and GUI 800 at which a user may enter a vehicle type, an RO number, standard text terms to be a part of the RFT, and a selection to submit the RFT for review at the coordinator DPM 110.
The RFT generation CRPI 308 may include an RFT template that includes the title field 39, the complaint field 35, the cause field 37, and the correction field 39. Execution of the RFT generation CRPI 308 to generate an RFT may include selecting phrases from phrase data 1916 using the automatic phrase selection as described in this description and inserting the selected phrases into the fields of the RFT template.
The RFT review CRPI 310 may include program instructions that are executable to review an RFT. Execution of the RFT review CRPI 310 may include selecting and receiving the RFT from the RO/RFT database 106, displaying the RFT using the display 214, receiving a selection to return the RFT for revision and coordinator notes indicating why the RFT is to be revised, and receiving a selection to submit the RFT for review prior to publication of the RFT. If the RFT is ready for publication after an initial submission for review, the selection to return the RFT may be skipped.
The publication CRPI 312 may include program instructions that are executable to cause an RFT to be stored in the RO/RFT database 106 as a published RFT. Storing the RFT in the RO/RFT database 106 as a published RFT may include storing the RFT in a portion of the RO/RFT database 106 designated for storing published RFTs and deleting the RFT from a portion of the RO/RFT database 106 for storing unpublished RFTs. Additionally or alternatively, storing the RFT in the RO/RFT database 106 as a published RFT may include storing data, associated with the RFT, that indicates the RFT is published.
The RO sorting CRPI 314 may include program instructions that are executable to identify repairable item information and to use the repairable item information to select an RO group in which a received RO should be included. If the RO group does not exist, the processor 202 may generate the RO group within the RO/RFT database 106. As an example, identifying the repairable item information may occur by the processor 202 reading text from a computer-readable RO. As another example, identifying the repairable item information may occur by receiving the information at the user interface 206. For embodiments in which the repairable item is a vehicle, the information may include YMM, YMME, or YMMES.
The DPM CRPI 316 may include program instructions that are executable to cause components of DPM 200 other than the processor 202 to carry out various functions. As an example, processor 202 may execute DPM CRPI 316 to (i) receive data transmitted to the network transceiver 204 via a network link, (ii) cause the network transceiver 204 to transmit data across a network link, (iii) store data into the CRM 208, (iv) logon to a website on the Internet to access an RO or an RFT from the RO/RFT database 106, (v) presenting data, such as an RO or RFT, via the user interface 206, and (vi) receiving data entered via the user interface 206.
The component or system mapping CRPI 318 may include program instructions that are executable to map a component of the vehicle or a symptom exhibited by the vehicle to an RFT. The component or system mapping CRPI 318 may be executed while an RFT is being generated. Generating the RFT may include populating the search criteria, used to locate an RO group for which the RFT is being generated, into the RFT. Executing the component or system mapping CRPI 318 may allow a component or symptom of the search criteria that was populated into the RFT to be changed. In that regard, a component or system populated into the RFT may be deleted from the RFT. A different component of system may be selected, e.g., from a list of components and symptoms, to replace the deleted component or symptom.
The RO mapping CRPI 320 may include program instructions that are executable to compare contents of an un-mapped RO to mapping terms, standard terms, context terms, or data record fields, and to generate a searchable database record associated with the RO or a mapped RO. In one respect, the RO mapping CRPI 320 may be executed for each RO as that RO is received or shortly (e.g., within one minute or within one hour) after that RO is received by the RO collector DPM 104 or the RO/RFT database 106. In another respect, the RO mapping CRPI 320 may be executed for a group of RO at a designated time per day, per week, per month, or per year. A processor may refer to a schedule to determine the designated time(s) and then execute the RO mapping CRPI 320 upon occurrence of the designated time(s).
The phrase selection CRPI 322 may include program instructions that are executable to search phrase data based on an RO term (e.g., one or more RO terms) pertaining to a service-operation described on a computer-readable RO and to select a phrase that is associated with the RO term. The phrase data may be arranged like phrase data 1916 stored in a CRM (see
For embodiments in which the RFT DPM 15, the RFT display DPM 17, the RO collector DPM 104, the RFT generator DPM 108, the coordinator DPM 110, or the RO distributor DPM 112 is configured as the DPM 200, the CRPI 212 in those DPM may include one or more of the CRPI of CRPI suite 300, but the CRPI 212 is not so limited as the CRPI 212 for any one or more of those DPM may include other CRPI as well. Table 1 illustrates CRPI usage for the RFT DPM 15, the RFT display DPM 17, the RO collector DPM 104, the RFT generator DPM 108, the coordinator DPM 110, and the RO distributor DPM 112. In Table 1, “Yes” indicates the CRPI is used in that DPM, whereas “No” indicates that the CRIP is not used in that DPM. Any one of the example DPM, or even the RO/RFT database 106, may include each CRPI of CRPI suite 300.
TABLE 1
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
CRPI
DPM
(302)
(304)
(306)
(308)
(310)
(312)
(314)
(316)
(318)
(320)
(322)
DPM (15)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
DPM (17)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
DPM
Yes
Yes
No
No
No
No
Yes
Yes
No
Yes
Yes
(104)
DPM
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
Yes
Yes
(108)
DPM
Yes
Yes
No
No
Yes
Yes
No
Yes
Yes
Yes
Yes
(110)
DPM
Yes
Yes
Yes
No
No
No
No
Yes
No
Yes
Yes
(112)
A processor within a DPM, such as the RFT DPM 15, the RFT display DPM 17, the RO display DPM 114, the RFT generator DPM 108, or the coordinator DPM 110, may execute the CRPI 212 to display a GUI on the display 214 to allow for selection of a vehicle and complaint. Those selections may be used when searching for an RO or an RFT.
As shown in
Selection of a window selector 1204, 1206, 1208 or 1210 may cause the filter-selection window 1202 to change from displaying first selectable filter criteria to displaying second selectable filter criteria. The remainder of this paragraph describes the selectable filter criteria that may be displayed upon selection of a window selector 1204, 1206, 1208 or 1210. Selection of the window selector 1204 may cause the filter-selection window 1202 to display the selectable model years selectors 1220. Selection of the window selector 1206 may cause the filter-selection window 1202 to display selectable vehicle make identifiers, such as Subaru, Toyota, Ford, Chevrolet, and Cadillac. Selection of the window selector 1208 may cause the filter-selection window 1202 to display selectable vehicle model identifiers, such as the selectable model identifiers 1226 shown in
The filter-selection window 402 may include filter-criteria category selectors 404, 406, 408, and 410. Selection of one of those selectors may cause category the selection-window 402 to display filter criteria selectable for searching the RO/RFT database 106. The filter criteria displayed using the category selection-widow 402 after selecting the category selector 404 may include vehicle systems within the selected vehicle, such as a vehicle braking system, a heating, ventilation and air conditioning (HVAC) system, an engine emissions system, a fuel system, a check engine light system or some other vehicle system. The filter criteria displayed using the category selection-widow 402 after selecting the category selector 406 may include diagnostic trouble code (DTC) numbers (such as P0149) with or without a description of the DTC numbers (such as Fuel Timing Error). The filter criteria displayed using the category selection-widow 402 after selecting the category selector 408 may include component identifiers of components located on, at, or within a selected vehicle. The filter criteria displayed using the category selection-widow 402 after selecting the category selector 410 may include symptom that may be exhibited in or by a selected vehicle. An example set of symptoms 412 that may be exhibited in or by the selected vehicle is shown in
The filter-selection window 402 may include a cancel selector 414 to close the filter-selection window 402 prior to submitting, using the filter-selection window 402, any filter criteria for searching the RO/RFT database 106, and a submit selector 416 to enter filter criteria, selected using the filter-selection window 402, for searching the RO/RFT database 106. Similar to the filter-selection window 1202, the filter-selection window 402 may include a multi-selector to select, using a single selection, all of the filter criteria currently selectable individually via the filter-selection window 402. Similar to the filter-selection window 1202, the filter-selection window 402 may include a de-selector 1214 to de-select, using a single selection, all filter criteria presently selected via the filter-selection window 1202.
Next,
The GUI 500 may display a number of RO discovered for each RO-group during a search of the RO/RFT database 106. In
The GUI 500 may display indication that a recommended usable RO or an existing RFT has been located, and may display a number of suggested duplicate RO. If no suggested duplicate RO, recommended usable RO, or existing RFT is located for an RO group, the displayed RO group may indicate quantities of those items as “zero” or “0.” The GUI 500 may also display a number of RO that have already been classified as duplicate RO. For instance, the GUI 500 indicates that five duplicate RO were located within the RO/RFT database 106 for the RO group 510.
The GUI 500 provides an interface to select an RO Group. In
Duplicate RO lines within an RO group may be linked to an existing RFT. Doing so may increase the value of information available to repair technicians that access RO from the RO/RFT database 106. Multiple repair scenarios for a set of symptoms entered to search the RO/RFT database 106 may be retrieved from the RO/RFT database 106 and presented to the RO display DPM 114 or the RFT display DPM 17. Each of the repair scenarios may be a confirmed repair scenario from a usable or duplicate RO. This may be beneficial to a technician since the technician may weigh possible outcomes and probabilities of multiple repair scenario for the symptoms the repairable item, the technician is working on, is experiencing.
Next,
The RFT may be associated with a subject RO. A subject RO may be stored within and retrieved from the RO/RFT database 106. For purposes of this description, a subject RO is an RO identified by the RO identifier 604 or the RO from which information is presented in the RO information area 608. In the latter, the information presented in the RO information area 608 may be service-operation information within a distinct section of the subject RO. To distinguish between multiple sections of subject ROs, each distinct section comprising service-operation regarding distinct service requests may be assigned a unique RO line number, or more simply a “line” or “line number.” The assigned line number may be displayed at the line identifier 605. A single RO may be assigned one or more RO line numbers.
The GUI 600 may include a line selector 630 to cause the display 214 to switch between the RO within an RO group or between lines on a single RO. By way of example, the line selector 630 indicates “1 of 12” where the “1” indicates a first RO line among a number of RO lines within an RO group, and the “12” indicates the number of RO lines within the RO group.
A DPM in the system 100 may rank the RO lines within an RO group based on likelihood of each RO line being most suitable for generating an RFT, and the DPM may position the RO lines within the RO group according to that ranking. In accordance with at least some embodiments, an RO line displayed by the GUI 600 when the line selector 630 displays a low first number, in comparison to an RO line displayed by the GUI 600 when the line selector 630 display a greater first number, is more likely to be suitable for generating an RFT.
The likelihood of generating an RFT from an RO line may be based on a number of characters describing “work requested” or “work performed.” A data record field, referred to below as “Field S,” may be compared to similar fields to determine the likelihood of generating an RFT. In alternative embodiments, some or all of the line numbers of an RO group are not ranked. The line selector 630 may be used to select a next RO within the RO group. Selection of the next RO may occur after a validation selection from the validation selection area 606 occurs.
The repairable item description 602 describes a vehicle, in particular, a 2009 Subaru Impreza WRX 2.5 L, wherein “2009” is a model year of the vehicle, “Subaru” is a manufacturer of the vehicle, “Impreza WRX” is a model identifier for the vehicle, and “2.5 L” is an engine identifier for the vehicle. The repairable item description 602 may describe repairable items other than a vehicle. Information, other than model year, manufacturer, model identifier, or engine identifier, may be used to describe the other types of repairable items.
The RO information area 608 may include information that was entered onto the subject RO. The information entered onto the subject RO may include “Work Requested” and “Work Performed.” As an example, a technician that worked on the repairable item or a service manager at a repair location may enter the information onto an RO. The RO information provided to the RO/RFT database 106 from the RO collector DPM 104 may indicate which information on the RO represents the “Work Performed” and which information represents the “Work Requested.” An RO may include multiple Work Requested and Work Performed sections. Each pair of Work Requested and Work Performed sections may be identified as distinct lines on the RO.
The RO information area 608 may be arranged in various configurations. In addition to displaying the “Work Requested” and the “Work Performed” described on the subject RO, the RO information area 608 may include a selector 628 “View Entire Repair Order” that is selectable to view the subject RO in its entirety. The selector 628 may be a hyperlink. Selecting the selector 628 may cause the processor 202 to retrieve and display the subject RO or the subject RO line. In one respect, the retrieved and displayed RO may be an original un-mapped RO. In another respect, the retrieved and displayed RO may be a mapped RO that includes one or more standard terms that replaced one or more non-standard terms of the original un-mapped RO.
Retrieving the subject RO may include retrieving an SQL file or XML file that embodies the subject RO. Alternatively, retrieving the subject RO may include retrieving an image of the subject RO from the RO/RFT database 106. The display 214 may display the subject RO or subject RO line retrieved from the RO/RFT database 106. Another selector (not shown), displayed with the subject RO or the subject RO line, may be selected to cause the display 214 to switch from displaying the subject RO or subject RO line to displaying the GUI 600.
The validation selection area 606 includes the following validation selections: a usable RO selection 612, a non-usable RO selection 614, and a duplicate RO selection 616. The GUI 600 may receive a validation selection for a subject RO. A validation selection, selected for the subject RO, may be provided to the processor 202 for storing in the RO/RFT database 106 as a validation selection associated with the subject RO. A data record field, such as Field S described below, may record the validation selection.
Selecting the usable RO selection 612 for the subject RO may cause the GUI 600 to transition from a mode for selecting a validation selection to a mode for entering text to generate an RFT for the subject RO. That transition may include the display 214 switching from displaying the GUI 600 to displaying a GUI 800 (shown in
Selecting the duplicate RO selection 616 for the subject RO may cause the GUI 600 to transition from the mode for selecting a validation selection to a mode for selecting a previously-generated RFT to associate with the subject RO. That transition may include the display 214 switching from displaying the GUI 600 to displaying the GUI 700 (shown in
Selecting the non-usable RO selection 614 for the subject RO may cause the processor 202 to store data that indicates the subject RO is not usable for the search criteria entered to locate the subject RO. Additionally, the processor 202 may cause the display 214 to transition from displaying the GUI 600 to displaying the GUI 1200 so that another subject RO may be selected for determining whether to classify the other subject RO as a usable RO, duplicate RO, or non-usable RO.
In accordance with at least some example embodiments, classifying the subject RO as a non-usable RO prevents the subject RO from being presented in search results of a search of the RO/RFT database 106 using the search criteria that were used to locate the subject RO, after the subject RO was classified as non-usable for those search criteria. However, if the subject RO includes multiple RO lines with distinct service-operation information, then selecting the non-usable RO selection 614 may cause the RO line with non-usable service-operation information to be classified as a non-usable RO line rather than classifying the entire RO as a non-usable RO. One or more other RO lines on that subject RO may include usable service-operation information.
The text entry area 610 may be arranged in any of a variety of configurations. In accordance with an example embodiment in which the subject RO pertains to a vehicle, the text entry area 610 may include a title text entry box 618 for entering a title for an RFT, a complaint text entry box 620 for entering text to identify a complaint for the RFT, a cause text entry box 622 for entering text to identify a cause for the RFT, a correction text entry box 624 for entering text to identify a correction for the RFT, and an attachment selector 626 for selecting to enter an attachment (e.g., a document saved in a portable document format (PDF)) for the RFT. Entering the complaint, cause and correction into the text entry area 610 may be referred to as entering real fix information as a 3C's real fix. A person skilled in the art will understand that the text entry area 610 may include one or more different text entry boxes for subject RO that pertain to repairable items other than vehicles. Text entered into a text entry box may be populated into a field of an RFT.
Next,
The RFT selection area 702 includes selectable RFTs 704 and 706. A portion of each of those RFTs may be displayed. Alternatively, no portion of the RFTs or the entire RFTs may be displayed within RFT selection area 702. Either of the RFTs 704 and 706 may be selected to view the entire RFT prior to one of those two RFTs being selected as an RFT to associate with the subject RO. The processor 202 may receive a selection of an RFT and cause the RO/RFT database 106 to associate the subject RO with the selected RFT. As an example, each RFT may include or be associated with an identifier, such as a numeric identifier. The RO/RFT database 106 may store the RFT identifier along with the subject RO in order to associate the subject RO with the selected RFT. As an example, the RFT identifier may be stored in Field I of a data record associated with the subject RO.
As shown in the RO information area 608, the Work Performed Area indicates that a thermostat was replaced. The RFT 704 states P1028, Replaced Thermostat. Therefore, the RFT 704 may be an appropriate RFT for the subject RO 100101. The RFT 704 may be selected for display by the display 214 prior to confirming that the entirety of RFT is appropriate for associating with the subject RO.
Next,
The GUI 800 includes an insert phrases selector 802 that, upon selection, causes the display to display an insert phrases area 804 (e.g., a pop-up window on or within the GUI 800). The insert phrases area 804 may include standard phrases that are selectable from a standard phrase list (SPL) to fill out various fields in the text entry area 610.
The insert phrases area 804 may include multiple standard phrase lists (SPLs). Those SPLs may include a diagnostic trouble codes (DTCs) SPL 806, a symptoms SPL 808, a components SPL 810, a complaints SPL 812, a causes SPL 814, and a corrections SPL 816. The insert phrases area 804 may include a search box 818 for faster navigation of an SPL, a slider bar 820 to scroll up or scroll down an SPL displayed by insert phrases area 804, and an SPL exit selector 822 to cause the processor 202 to stop displaying the insert phrases area 804. The SPLs of the insert phrase area 804 may be populated with phrases stored within phrase data 1916 (shown in
The DTCs SPL 806 may include standard DTC descriptions of DTCs settable by or within a repairable item. In
Selecting a standard phrase for placement into a text entry box of the text entry area 610 for each subject RO that pertains to common repairable items having a common complaint may be beneficial to users of the system 100. One such benefit is that an increased number of RO are associated with a common complaint. A search of the RO/RFT database 106 using the common complaint as search criteria may lead to finding more RO in the RO/RFT database 106 that match the search criteria.
Next,
The GUI 850 includes a system selector 852. The system selector 852 may present selectable systems using a pop-up window or using some other arrangement, such as a set of check boxes. A system selected using the system selector 852 may be used to classify an RFT entered via the GUI 850. The system classification may indicate a publication class of RFTs under which the RFT should be published.
The GUI 875 includes the system selector 852 and a pop-up window 854 presenting selectable systems. The selector 216 may trigger a selector bar 856 to move up or down within the pop-up window 854 to select a system. The GUI 875 also includes the repairable item description 602, the RO identifier 604, the line identifier 605, the validation selection area 606, the RO information area 608, the usable RO selection 612, the non-usable RO selection 614, the duplicate RO selection 616, the title text entry box 618, the complaint text entry box 620, the cause text entry box 622, the correction text entry box 624, and the selector 628. The GUI 875 may also include user navigation selectors, such as the “Home,” “About,” “Search,” and “Reporting” selectors shown in the upper-right corner of the GUI 875.
Returning to
The coordinator DPM 110 may display a cancel-submission selector on a GUI to allow a fix-generator to cancel submission of the RO group for review and publication. Use of the cancel-submission selector may be used if the fix-generator determines the need to revise a validation selection or the RFT for a submitted RO group. Canceling submission of a submitted RO group may cause that RO group to be returned to the RFT generator DPM 108 for revising by a fix-generator.
Next,
The QC GUI 900 may include one or more of the validation selections, such as the usable RO selection 612, the non-usable RO selection 614, and the duplicate RO selection 616. Selecting the usable RO selection 612 for an RFT displayed by the QC GUI 900 may cause the processor 202 to associate that RFT with the subject RO or a group of RO including the subject RO. In accordance with one or more example embodiments, an RFT that has been selected, using the QC GUI 900, as a usable RO may be classified as a published RFT. Published RFTs may include RFTs that are presentable to the RFT display DPM 17 or the RO display DPM 114.
In addition to publishing the RFT, the subject RO and any duplicate RO of the subject RO may be published along with the RFT. For instance, if an RFT is published for the RO group 510, the RFT and each RO of the RO group 510 may be published concurrently with the RFT.
Selecting the non-usable RO selection 614 for an RFT displayed by the QC GUI 900 may cause a reviewer comment area 904 to become active. The reviewer comment area 904 may be within a pop-up window overlaid over a portion of the QC GUI 900. The reviewer comment area 904 is shown to have selectable pre-authored reasons why the RFT should be returned for revising the RFT. Spontaneous reasons may be entered using an Add Comment area of the reviewer comment area 904. Reasons other than the reasons shown in
The RFT generator DPM 108 may generate, for display using the display 214, an RFT revision GUI (not shown) that identifies RFTs that have been returned from a coordinator using the QC GUI 900. The RFT revision GUI may display the reasons why the RFT was returned by a QC coordinator and text entry areas for revising the RFT. The RFT revision GUI may include a selector to re-submit the RFT for review using the QC GUI 900.
Selecting the duplicate RO selection 616 for an RFT displayed by the QC GUI 900 may cause the RFT to be flagged as an RFT to be compared to another RO associated with an RFT. In use, a coordinator (e.g., a reviewer) of the displayed RFT may suspect that an RFT has already been generated for another RO having data similar to the data in the text entry area 610 for the displayed RFT and a similar repairable item. The QC GUI 900 may include a search selector 906 to search for, among other things in the RO/RFT database 106, previously-entered RFTs. The search selector 906 may be referred to as a “Search Ask-a-Tech” selector, but is not so limited. In accordance with one or more of the example embodiments, the RFT generator DPM 108 may be configured to present a selector that allows a user to select the previously-generated RFT or the duplicate RFT as a tip to use for the subject RO and other RO duplicates of the subject RO.
The GUI 900 may include a publish selector 910 for entering a selection to publish the RFT. The publish selector 910 may cause the RFT to be stored in the RO/RFT database 106 as a published RFT, or data indicating the RFT is a published RFT.
Next,
The displayable pages 623 and 625 include a recall display 631 and a bulletin display 633. After entering a vehicle and symptom (e.g., DTC P0101) as search criterion in the vehicle search box 627 and the search box 629 respectively, the RFT display DPM 17 may transmit a search request based on the search criterion and in response receive a list of components that were previously serviced to resolve the symptom on the vehicle, a list or quantity of recall or campaign notices from an OEM of the vehicle and pertaining to the vehicle and symptom, and a list or quantify of technical service bulletin (TSB) from an OEM of the vehicle and pertaining to the vehicle and symptom. The quantity of recall or campaign notices may be displayed in the recall display 631. The quantity of TSB may be displayed in the bulletin display 633. The selector 59 may be used to select the recall display 631 and the processor 202 may update the displayable page 623 or 625 to display the list of recall or campaign notices. The selector 59 may be used to select the bulletin display 633 and the processor 202 may update the displayable page 623 or 625 to display the list of TSB.
In another respect, after entering a vehicle and component (e.g., coil) as search criterion in the vehicle search box 627 and the search box 629 respectively, the RFT display DPM 17 may transmit a search request based on the search criterion and in response receive a list of symptoms on vehicles that were previously serviced to resolve the symptom (e.g., by servicing the searched component), a list or quantity of recall or campaign notices from an OEM of the vehicle and pertaining to the vehicle and component, and a list or quantify of technical service bulletin (TSB) from an OEM of the vehicle and pertaining to the vehicle and component.
In yet another respect, after entering a vehicle and a symptom and component as search criterion in the vehicle search box 627 and the search box 629 respectively, the RFT display DPM 17 may transmit a search request based on the search criterion and in response receive a list of symptoms or components on vehicles that were previously serviced to resolve the symptom (e.g., by servicing the searched component), a list or quantity of recall or campaign notices from an OEM of the vehicle and pertaining to the vehicle, symptom, and component, and a list or quantify of technical service bulletin (TSB) from an OEM of the vehicle and pertaining to the vehicle, symptom, and component.
The displayable pages 623 and 625 include the set of tabs 53 and the current tab 55 indicating which tab is currently selected or being displayed. In
The displayable pages 623 and 625 may include one or more graphical representations pertaining to the search criteria. For example, the displayable pages 623 and 625 include a graph 637 showing quantities of various components 651 with respect to distances 649 vehicle have been driven when a service-operation was performed on those components. As an example, the distances may be miles or kilometers. As another example, the displayable page 623 includes a bar chart 641 showing various component names of components previously serviced on vehicles matching the searched vehicle. The bar chart 641 is shown unexpanded in
Mass Airflow Meter . . . 1000 Fixes—View Real Fixes
Fuel Filter . . . 0.33 Fixes—View Real Fixes
Intake Manifold Gasket . . . 25 Fixes—View Real Fixes,
where the underlined text is a pointer selectable by the selector 59 expand the list of RFT to display details of the RFT as shown in the following example text that may be displayed on the display 214.
Mass Airflow Meter . . . 1000 Fixes—View Real Fixes
Fuel Filter . . . 0.33 Fixes—View Real Fixes
Intake Manifold Gasket . . . 25 Fixes—View Real Fixes.
The selector 59 may select an RFT from the RFT list 643 to cause the RFT display device 17 to display the selected RFT. Displaying the RFT in response to selecting the RFT from the RFT list may include the RFT display DPM displaying the title, complaint, cause, and correction fields of the RFT. Displaying the RFT in response to selecting the RFT from the RFT list may include displaying an RFT augmented with pointers to additional content (as shown in
Block 251 includes determining, by at least one processor 202 for generating a RFT pertaining to a complaint and a vehicle, first text describing at least one of a cause of the complaint and how the cause for the complaint was discovered, and second text describing a service-operating performed on the vehicle to resolve the complaint. As an example, the processor 202 of the RFT DPM 15 may determine the complaint and the vehicle from a GUI, such as the GUI 1200. For this example, a user may enter the vehicle and complaint via the GUI 1200. As another example, the processor 202 of the RFT DPM 15 may determine the complaint and the vehicle from a group of RO, such as a group of mapped RO pertaining to a common vehicle type and a common complaint, and stored in the mapped RO 1902. For this example, the processor 202 may determine that the group of RO includes at least a threshold number of RO. Use of threshold provides a way ensure RFT are generated for vehicles and complaints that occur more often. As an example the threshold number of RO may be 100, 1000, 10,000 or some other number of RO.
The vehicle determined by the at least one processor 202 may be a vehicle indicated by a YMM, a YMME, or a YMMES. The YMM, YMME, or YMMES may be determined by a VIN entered into the GUI 1200. Additionally or alternatively, the YMM, YMME, or YMMES may be determined from the group of RO having a common complaint.
Block 252 includes determining, by the at least one processor 202, at least one of (i) first additional content relevant to the complaint, the vehicle, and a portion of the first text, and (ii) second additional content relevant to the complaint, the vehicle, the cause, and a portion of the second text.
The processor 202 may execute the search CRPI 302 to search the content database 13 based on at least the complaint, the vehicle, and the portion of the first text to determine whether the content database 13 includes additional content relevant to the complaint, the vehicle, and the portion of the first text. In a first case, a result of the search is that no additional content was located. In a second case, a result of the search is that additional content was located within the content database 13. The result in the second case may include a pointer to the additional content located during the search. The processor 202 may store the pointer for generation of a first RFT including the pointer. As an example, the content located during the search may include one or more of an image, a measurement instruction executable by a data processing machine to perform a measurement (e.g., a voltage, current or resistance measurement), a vehicle data request executable by the data processing machine to request data (e.g., PID values) from the vehicle, and a textual test description.
Block 253 includes generating, by the at least one processor 202, a first RFT, wherein the first RFT includes a first file comprising the first text, the second text, and a respective pointer to the at least one of the first additional content and the second additional content. Each pointer may include a hyperlink within the first file. The first file may be arranged as an extensible markup language (XML) file or as a different type of markup language file.
The first RFT may include other items in addition to the first file. For example, the first RFT may include metadata. The metadata may include information how to display the first RFT. Such information may be configured as a stylesheet or in another configuration. Furthermore, the file of any RFT including text for a cause and text for a correction may include one or more text describing a title of the RFT, text describing the complaint, and text describing the vehicle (e.g., the vehicle identifiers).
In a first case, the respective pointer to the at least one of the first additional content and the second additional content includes a first pointer pointing to one of the first additional content and the second additional content. In a second case, the respective pointer to the at least one of the first additional content and the second additional content includes a second pointer pointing to one of the first additional content and the second additional content not pointed to by the first pointer.
Block 254 includes storing, by the at least one processor 202, the first RFT within the computer-readable medium 208. The first RFT may be stored within the RO/RFT database 106, which may located at or within the RFT DPM 15 or separate from the RFT DPM 15. In particular, the first RFT may be stored within the RFT 1912.
Block 255 includes receiving, by the at least one processor 202, a request for a RFT pertaining to the complaint and the vehicle. The request may be generated at the RFT display DPM 17. The request may be transmitted over the communication network 11 by the network transceiver 204 of the RFT display DPM 17. The network transceiver 204 of the RFT DPM 15 may receive the request and provide the received request to one or more of the processor 202 and the CRM 208.
The RFT DPM 15 may search the RO/RFT database 106 based at least in part on the complaint and the vehicle to locate one or more RFT that pertain to the complaint and to the vehicle. As an example, the RFT DPM may locate the first RFT by searching the RO/RFT database 106. In a first case, the first RFT may be the only RFT discovered during the search. In a second case, the first RFT may include one of two or more RFT pertaining to the complaint and the vehicle discovered during the search.
Block 256 includes outputting, by the at least one processor 202 in response to the request, the first file stored within the CRM. As an example, outputting the first file may include the processor 202 providing the first file to the network transceiver 204. As another example, outputting the first file may include the processor 202 causing the network transceiver 204 to transmit the first file to the communication network 11. The communication network 11 may carry the first file to the RFT display DPM 17 for displaying on the display 214 of the RFT display DPM.
Outputting the first file may include outputting a network communication that includes the first file of the first RFT, a destination address of the RFT display DPM 17, and a source address of the RFT DPM 15. Outputting the first file may include outputting other items of the first RFT besides the first file, such as the metadata regarding the first RFT or the first file.
Additional functions can be performed in conjunction with one of more functions of the set 250. For example, the additional functions may include receiving, by the at least one processor 202 after outputting the first file, a selection of the first pointer (e.g., the pointer 41). Another function is obtaining, by the at least one processor 202 in response to receiving the selection of the first pointer, the one of the first additional content and the second additional content pointed to by the first pointer (e.g., the additional content shown in the ACV 61). The processor 202 may request that additional content from the content database 13. Thereafter, the at least one processor 202 may output the one of the first additional content and the second additional content pointed to by the first pointer. As an example, that additional content output by the RFT DPM 15 may be displayed on the display 214 (or the display 33 as shown in
As another example, the additional functions may include receiving, by the at least one processor 202 after outputting the first file, a selection of the second pointer (e.g., the pointer 43). Another function is obtaining, by the at least one processor 202 in response to receiving the selection of the second pointer, the one of the first additional content and the second additional content pointed to by the second pointer but not by the first pointer (e.g., the additional content shown in the ACV 71). The processor 202 may request that additional content from the content database 13. Thereafter, the at least one processor 202 may output the one of the first additional content and the second additional content pointed to by the second pointer but not by the first pointer.
Block 261 includes outputting, by at least one processor 202, a request for a real-fix tip pertaining to a complaint and a vehicle, wherein the request includes an identifier of the complaint and an identifier of the vehicle. The processor 202 for the set 260 may be the processor within the RFT display DPM 17. The processor 202 may receive selections of a complaint and vehicle from the user interface 206 while the display 214 of the RFT display DPM 17 is displaying a GUI, such as the GUI 1200. The request may include a destination address of the RFT DPM 15 or another DPM that is configured to search the RO/RFT database 106 for RFT. The request may include a source address of the RFT display DPM 17 so that the destination may provide responses to the RFT display DPM 17.
Block 262 includes receiving, by the at least one processor 202 after outputting the request, a first file of a first real-fix tip pertaining to the complaint and the vehicle. The at least one processor 202 may receive the first file from another component of the RFT display DPM 17, such as the network transceiver 204 or the CRM 208. The network transceiver 204 may receive the first file from the communication network 11 as transmitted by the RFT DPM 17 or another DPM that obtained the first file from the RO/RFT database 16. The at least one processor 202 may receive other parts of an RFT that includes the first file, such as metadata that identifies how to display the first file.
Block 263 includes outputting, by the at least one processor to a display connected to the at least one processor, first text and second text of the first file, wherein the first text describes at least one of a cause of the complaint and how the cause of the complaint was discovered, wherein the second text describes a service-operation performed on the vehicle to resolve the complaint, wherein one of the first text and the second text includes a first pointer (e.g., pointer 41 or pointer 45) pointing to first additional content (e.g., the additional content shown in the ACV 61 or 81), wherein if the first text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, and a portion of the first text, and wherein if the second text includes the first pointer, the first additional content includes content relevant to the complaint, the vehicle, the cause, and a portion of the second text.
Block 264 includes receiving, by the at least one processor 202, a selection of the first pointer while displayed by the display 214. The selector 216 may receive or detect the selection and provide the selection to the processor 202.
Block 265 includes outputting, by the at least one processor 202 to the display 214, the first additional content pointed to by the first pointer. Outputting the first additional content may include transmitting the first additional content over the connection mechanism 210 from the processor 202 to the display 214. The display 214 may receive and display the first additional content. Displaying the first additional content may include displaying the first additional content overlaid upon at least a portion of the first text and second text of the first file of the RFT.
Additional functions can be performed in conjunction with one of more functions of the set 260. The additional functions may be performed for a case in which the first additional content displayed by the display 214 includes a parameter identifier associated with vehicle data the at least one processor 202 may request. As an example, the additional functions may include receiving, by the at least one processor 202, an input selecting the vehicle data parameter identifier, requesting, by the at least one processor 202, the vehicle data associated with the parameter identifier, receiving, by the at least one processor 202, the vehicle data requested by the at least one processor 202, and outputting to the display a value determined from the vehicle data received by the at least one processor 202. In this example case, the network transceiver 204 may include a transmitter and receiver that are connectable to a vehicle communication link within the vehicle 19. A transmitter of the network transceiver 204 may transmit a request for the vehicle data over the vehicle communication link. A receiver of the network transceiver 204 may receive the vehicle data requested by the at least one processor 202. As an example, the displayed value may represent a signal level detected by a sensor within the vehicle 19 or a status of whether a DTC is active within the vehicle.
As another example, the additional functions may include the processor 202 receiving a selection of a closer viewer box (e.g., closer viewer box 65) or a selection of a portion of the display outside of an ACV and responsively remove the ACV from the display and return to displaying the RFT which includes the pointer selected to display the additional convent viewer. The processor 202 may receive selection of the same or another pointer displayed in the RFT, transmit a request for the additional content pointed to by the pointer, receive the additional content, and display the additional content within an ACV.
As another example, the additional functions may include the processor 202 receiving a selection from within the ACV. The selection from within the ACV may include a selection of a pointer to other additional content not currently displayed. In response to receiving that selection, the processor 202 may transmit a request for the additional content pointed to by the pointer selected from within the ACV, receive the additional content, and display the additional content within a different ACV.
As another example, the selection from within the ACV may include a measurement selection for a first measurement the at least one processor 202 may perform. In response to receiving that selection, the processor may receive an input selecting the measurement selection, perform the first measurement, and output to the display 214 a value determined by performing the first measurement. The display 214 may display the measurement value.
A DPM, such as the RFT generator DPM 108 or the RFT DPM 15, may perform one or more of the following functions pertaining to an RFT. Since the RFT generator DPM 108 and the RFT DPM 15 may be arranged like the DPM 200, elements of the DPM 200 are discussed with regard to the RFT generator DPM 108 or the RFT DPM 15 performing those functions.
The display 214 may display a logon GUI that allows a user to enter data for logging onto the RO/RFT database 106. The RO/RFT database 106 may include account data that may be compared to data entered using the RFT generator DPM 108 to ensure that the user has permission to access the RO/RFT database 106.
The processor 202 may search the additional content database 13 to identify additional content to be pointed to by a pointer within an RFT, select the identified additional content, and add a pointer to the additional content within an RFT, or generated an RFT with the pointer to the additional content. The additional content may remain stored in the additional content database. A copy of the additional content pointed to by a pointer may be stored in the RO/RFT database 106 or in another CRM. As an example, the additional content may include an image of a vehicle component, a schematic diagram of electrical circuitry, or some other image. The display 214 may display the RFT and a user may confirm that the additional content pointed to by the pointer is appropriate additional content for the RFT. The processor 202 may remove a pointer to additional content from an RFT if the additional content is determined to be inappropriate for the RFT or for some other reason.
The processor 202 may produce a hover view within a GUI to display an RFT.
A DPM, such as the coordinator DPM 110 may perform one or more of the following functions described in this section of the description. Since coordinator DPM 110 may be arranged like DPM 200, elements of DPM 200 are discussed with regard to coordinator DPM 110 performing those functions. The processor 202 executing the CRPI 212 may receive selections or other data input by a user of a DPM and carry out functions in response to receiving the selections or other data. The coordinator DPM 110 may be configured to perform any function that the RFT generator DPM 108 may perform.
The display 214 may display a logon GUI that allows a user to enter data for logging onto the RO/RFT database 106. The RO/RFT database 106 may include account data that may be compared to data entered using the coordinator DPM 110 to ensure that a user of the DPM coordinator DPM 110 has permission to access the RO/RFT database 106.
The coordinator DPM 110 may be used to navigate the RO/RFT database 106 to select RFT awaiting publication. That navigation may occur using the GUI 500.
The coordinator DPM 110 may display a list of RFT on the display 214, and receive a selection of an RFT being displayed. As an example, the coordinator DPM 110 may display the list of RFT using the GUI 600 or another GUI. The list may include a title of the RFT and a time stamp that indicates, a date and time that the RFT was submitted for publication or approved for publication. The RFTs in the list may be sorted by a vehicle name (most recent year first), then by symptom, and then by RFT tile. Other examples of criteria for sorting RFTs are also possible. As another example, the coordinator may enter the RFT selection using an input device, such as a mouse or touch screen, of the coordinator DPM 110. Selecting a displayed RFT may via the GUI 600 or another GUI.
The coordinator DPM 110 may receive a selection of an RFT from the GUI 600 or another GUI. The coordinator may enter that selection using the selector 216.
The coordinator DPM 110 may display the RFT, selected via the coordinator DPM 110, and text of an RO. The coordinator DPM 110 may present the QC GUI 900 to return an RFT to a user and to publish an RFT for presentation at the RFT display DPM 17. The QC GUI 900 may include a prompt to add notes and to receive notes entered by at the user interface 206 The QC GUI 900 may include a prompt to confirm submission of entered notes and a request to return the RFT to the fix-generator for editing. The QC GUI 900 may receive a selection to confirm submission of the entered notes and request to return the RFT. The QC GUI 900 may also receive a selection to cancel entering the notes or returning the RFT. The coordinator DPM 110 may further be arranged to present a GUI, such as the QC GUI 900, to create or edit an RFT.
One or more of the example embodiments described herein may include elements or functions pertaining to pre-mapping of RO. Pre-mapping an RO may include a processor executing RO mapping CRPI 320 to compare text or symbols of a computer-readable RO stored in the RO/RFT database 106 to mapping terms, standard terms, context terms, or data record fields and to generate a searchable database record associated with the RO. Pre-mapping an RO may include generating a mapped RO that includes standard terms or phrases in place of non-standard terms or phrases that are part of the un-mapped RO. After pre-mapping RO, data records generated during the pre-mapping may be searched to locate RO within the RO/RFT database 106 instead of searching the RO themselves.
The RO 180 includes a service provider identifier 181, a date of service identifier 182, a customer indicator 183 that indicates a customer seeking service of a given vehicle, vehicle information 184 that indicates the given vehicle, a service request 185 indicating the complaint or service requested by the customer, parts information 186 indicating parts obtained for servicing the given vehicle, and service-operation information 187, 188, and 189 carried out on the given vehicle.
The service provider identifier 181 may include information that indicates a name and geographic location of the service provider. The vehicle information 184 may include a vehicle identification number (VIN) associated with the given vehicle and a description of the given vehicle. The service-operation information 187, 188, and 189 may include information within distinct sections 190, 191, and 192, respectively, of the RO 180. The service-operation information within any one distinct section 190, 191, and 192 may be unrelated to the service-operation information with any other distinct section. Alternatively, two or more distinct sections including service-operation information may pertain to related service operations performed on the given vehicle.
Some RO stored within the RO/RFT database 106 may be arranged in a configuration that differs from the RO 180. Nevertheless, the RO arranged in another configuration typically includes at least one of the types of information described above as being a part of the RO 180.
The RO stored within the RO/RFT database 106 may include searchable text or symbols (e.g., text, symbols, or text and symbols). As an example, a symbol on an RO may include an empty check box or a checkbox and a checkmark inside the checkbox.
Multiple portions of text on a RO may be grouped as phrases. When comparing contents of an RO to various terms, such as mapping terms, standard terms, or context terms, words within a given proximity to one or more other words may be grouped as a phrase to be compared to the mapping, standard, or context terms. The given proximity may be within X words, where X equals 1, 2, 3, 4, 5, or some other number of words. As an example, service-operation information 187 states “Check starter/ignition system.” The words “Check” and “ignition system” are within 3 words of one another. In accordance with an embodiment in which the given proximity is greater than 1 word, the words “Check” and “ignition system” may be grouped as the phrase “Check ignition system” for comparison to mapping, standard, or context terms.
The RO 180 includes labor operation codes (LOC). The labor operation codes may conform to those defined by a vehicle manufacturer, a service provider that generates an RO, a service information provider, such as Mitchell Repair Information, LLC, Poway, Calif., or some other entity. For simplicity of
The un-mapped RO 1900 may include original computer-readable RO received from the RO provider DPM 102 or original computer-readable RO generated from a non-computer-readable RO received from the RO provider DPM 102. In accordance with one or more of the example embodiments, the RO provided to the RO display DPM 114, the RFT generator DPM 108 or the coordinator DPM 110 may be limited to RO from the un-mapped RO 1900. In accordance with one or more other example embodiments, the RO provided to the RO display DPM 114, the RFT generator DPM 108 or the coordinator DPM 110 may be limited to RO from the mapped RO 1902. In accordance with yet one or more other example embodiments, the RO provided to the RO display DPM 114, the RFT generator DPM 108 or the coordinator DPM 110 may be RO from the un-mapped RO 1900 and RO from the mapped RO 1902. A DPM shown in
The mapped RO 1902 includes RO generated from an un-mapped RO. A mapped RO may be arranged like an un-mapped RO, although any non-standard terms identified on the un-mapped RO are replaced with standard terms from within the standard terms 1906. Furthermore, if the un-mapped RO is incomplete in any respect, such as the un-mapped RO does not include the model year of the vehicle referred to on the RO, a processor may determine data to complete incomplete portions of the un-mapped RO. For example, if the RO 180 did not recite the model year 2012, the processor may determine the model year from the VIN recited on the RO 180.
In response to the RO distributor DPM 112 receiving, from the RO display DPM 114, a request for an RO, the RO distributor DPM 112 may retrieve from the RO/RFT database 106 and provide to the RO display DPM 114 a mapped RO with standard terms from the RO/RFT database 106. Alternatively, the RO distributor DPM 112 may retrieve from the RO/RFT database 106 and provide to the RO display DPM 114 an un-mapped RO from the RO/RFT database 106. The RO display DPM 114 may offer to a user a selection of whether to receive a mapped RO or an un-mapped RO.
The mapping terms 1904 may include terms that may be entered into a data record field. The mapping terms 1904 may include data that identifies which data record each mapping term may be entered. Additionally or alternatively, the arrangement of the mapping terms 1904 may define which data record each mapping term may be entered.
As an example, the mapping terms 1904 may include terms that may be entered into a model year field of a data record (e.g., Field C of
As another example, the mapping terms 1904 may include terms that may be entered into a location field of a data record (e.g., Field M of
A mapping term within a predefined set of mapping terms may be added as a result of that mapping term being on an RO. For example, an un-mapped RO may include data indicating city: Madison, state: Wisconsin, and zip code: 53562. While searching contents of that un-mapped RO, the RO collector DPM 104 may identify the city, state, and zip code data on the RO and determine that the mapping terms 1904 does not include the identified city, state, and zip code data on the RO and modify the mapping terms 1904 to include data, representing the identified city, state, or zip code, that may be entered into the location field of a data record. The RFT generator DPM 108 or the coordinator DPM 110 may be configured to approve modifying the mapping terms 1904 with new mapping terms.
At least some of the mapping terms 1904 may be identical to (e.g., match) filter criteria selectable via a GUI described herein. For example, the mapping terms 1904 may include model year terms for the years between and including 1990 to 2012. As shown in
The standard terms 1906 may include standard terms to use on a mapped RO instead of a non-standard term on an un-mapped RO. Table 2 includes example standard terms (ST) and non-standard terms (NST) associated with the standard terms. As shown in Table 2, a standard term may be (i) a diagnostic trouble code identifier, such as DTC P0117 or DTC P0101, (ii) a labor operation, such as check battery or remove and replace, and (iii) a component name, such as ignition switch, service engine soon light, coolant temperature sensor, and oxygen sensor. The other terms in each row of Table 2 including an ST are NST.
TABLE 2
ST
NST
NST
NST
NST
NST
DTC P0117
Code 117
Code 0117
DTC 117
DTC P117
P0117
Check battery
Test battery
Measure
Measure
Check
(C45)
battery
battery volts
battery acid
Remove and
R/R
R & R
R and R
Remove and
Swap
Replace
install
Ignition Switch
Starter Switch
Ign. Sw.
Ign. Switch
Starter Sw.
Start switch
Service Engine
SES Light
Check Engine
Emissions
SES Bulb
SES Lamp
Soon Light
Light
Light
Coolant
ECT sensor
Coolant
Coolant
Radiator
Eng.
Temperature
Sensor
Temp.
Temperature
Coolant
Sensor
Sensor
Sensor
Temp. Sen.
Oxygen Sensor
O2 sensor
O2 senser
02 sensor
Oxy. sensor
O2 sens.
DTC P0101
Code 101
Code 0101
DTC 101
DTC P101
P0101
MAF Sensor
Mass air flow
Air flow
MAF
Vane meter
VAF sensor
sensor
sensor
sensor
Although Table 2 shows five NST for each ST, the standard terms 1906 may include another number of NST for each ST. The standard terms 1906 do not need to have the same number of NST for each ST. The standard terms 1906 may include ST and NST for other information on an RO, such as customer complaints, vehicle make information, vehicle model information, or other information on the RO. A NST may include a misspelled word such as “O2 sensor.” A NST may include terms with a typographical error such as “O2 sensor” where “O2 sensor” was the intended term.
The RO provided to the RO display DPM 114 may be original un-mapped RO that include non-standard terms. Additionally or alternatively, the RO provide to the RO display DPM 114 may include mapped RO in which a non-standard term on an RO provided to the RO display DPM 114 was replaced with a standard term. The system 100 may be used configured to allow a given RO display DPM to change a standard term for RO provided to the given RO receiver. Changing the standard term for the given RO receiver allows for use of different terms based on, e.g., geographical location or language.
As an example, users of an RO display DPM 114 in Boston, Mass. may refer to a switch that allows for starting a vehicle as a starter switch, whereas users of an RO display DPM 114 in San Jose, Calif. may refer to that same switch as an ignition switch. As another example, users of an RO display DPM 114 in Detroit, Mich. may want to use English-language standard terms, whereas users of an RO display DPM 114 in San Antonio, Tex. may want to use Spanish-language standard terms, and users in Montreal, Quebec may want to use French-language standard terms. The RO/RFT database 106 may include versions of un-mapped RO or mapped RO and other content, such as standard terms, in multiple languages so that the RO provided to an RO receiver may be in a language desired by users of that RO receiver.
The context terms 1908 may include context terms to associate with an RO line based on contents of that RO line on the original RO. A context term associated with an RO line may be stored within field H of a data record for that RO line. The processor 202 of a DPM may execute CRPI to compare the content of the RO line to context hints within the context terms 1908. If the processor finds a match between the contents of the RO line and a context hint, the processor may associate the context term associated with that context hint as a context term for the RO line. Table 3 includes example context terms and context hints. Other examples of the context terms and context hints are also possible. A context term may also be a context hint for that context term.
TABLE 3
Context Term
Context Hint
Context Hint
Context Hint
Context Hint
Electrical
Open Circuit
Shorted
Grounded
Wire
Circuit
Circuit
Mechanical
Stuck
Rotate
Movement
Turn
Hydraulic
Fluid
Leak
Oil pressure
Dripping
As described above, an RO line may be displayed on the display 214 of a DPM, such as the RFT generator DPM 108. While an RO line associated with a context term is being displayed by the display 214, the display 214 may display a prompt to confirm that the context term associated with the RO line is appropriate for the RO line. The RFT generator DPM 108 may be configured to prevent submitting the RO comprising the RO line associated with the context term until the context term is confirmed to be appropriate. Accordingly, the RFT generator DPM 108 may be arranged to include entering a selection of whether the context term is appropriate or is not appropriate. If a selection of context term is not appropriate is selected, the RFT generator DPM 108 may provide a selector to change or remove the context term associated with the RO line. For example, if the RO line 187 pertains to a mechanical problem with an ignition switch, but the context associated with the RO line 187 is electrical, the RFT generator DPM 108 may change the context term from electrical to mechanical. If, while an RO line is being reviewed at the RFT generator DPM 108, it is determined that no context term is appropriate for the RO line, the RFT generator DPM 108 may un-associate the context term associated with RO line.
The RO data records 1910 may include data for a plurality of data record fields. The data within those fields map an RO or a line for a distinct service-operation identified on an RO. The RO data records 1910 may be searched to identify RO or a line on an RO that matches filter criteria selected using a DPM. Searching the RO data records 1910 to identify RO within the RO/RFT database 106 that match the selected filter criteria may be carried out more quickly than searching the un-mapped RO 1900 or the mapped RO 1902 directly.
The RO group data 1914 may include data for one or more RO groups stored within the RO/RFT database 106. For each RO group, the RO group data 1914 may include identifier of the RO or RO lines numbers belonging to that RO group. For each RO group, the RO group data 1914 may include an identifier of an RFT that is associated with the RO and RO lines numbers of that RO group.
The phrase data 1916 may include complete phrases or incomplete phrases for use in generating real fix tips. The processor 202 may select a phrase from the phrase data 1916, based on RO terms on an RO, and include the selected phrase within an RFT being generated for the RO. The processor 202 may complete incomplete phrases while generating the RFT.
The letters A through N above the field names 211 are provided for reference to individual field contents within a data record. For example, field A of the data record 213 is 100200. One or more fields within a data record may have a null value when no other data is available or when no other data has been written into that field. As an example, fields I and J of the data record 213 are shown as including a null value. A null value within a data field may be changed to a non-null value. For instance, upon an RFT being assigned to the data record 213, field I of the data record 213 may be changed from a null value to an RFT identifier.
Field A is for RO identifiers. Field B is for line numbers assigned to lines of an RO. Field C is for a model year (or more simply, year) of a vehicle referred to on an RO. Field D is for the make (e.g., the manufacturer) of the vehicle referred to on an RO. Field E is for the model name of the vehicle referred to on an RO. Field F is for engine identifiers of an engine within the vehicle referred to on an RO. Field G is for system identifiers of a system within the vehicle referred to on an RO. Field H is for context identifiers. Field I is for RFT identifiers. Field J is for diagnostic trouble code (DTC) identifiers. Field K is for component identifiers. Field L is for service date identifiers. Field M is for location identifiers, such as a location identifier that identifies where the vehicle referenced on the RO was serviced. Although
One or more of the data fields shown in
For example, a data record may include a Field O for recording data that identifies a technician that performed service operations described on an RO. The technician identifier may be a pseudonym for the technician. The data for recording within a technician identifier field may be identified while contents of an RO are searched. The RO display DPM 114 may submit a query based at least in part on a particular technician identifier if a person operating the RO display DPM 114 perceives that comments on an RO performed by the particular technician are more reliable or helpful than comments from another technician.
As another example, a data record may include a Field P for recording data that indicates whether or not the RO associated with the data record is a duplicate RO.
As another example, a data record may include a Field Q for recording data that indicates whether the RO has been classified to be within an RO group. Field Q may include data that identifies the RO group(s) to which the RO belongs.
As another example, a data record may include a Field R for recording data that indicates a quantity of characters or words for a line on the RO to which the data record is associated. For a group of RO being considered for writing an RFT, the RO line having the greatest quantity of characters or words may be ranked as being most appropriate for generating the RFT.
As another example, a data record may include a Field S for recording data that indicates a validation selection selected for a line on the RO to which the data record is associated. If no validation selection has been selected for the line, Field S may be a null value. Otherwise, Field S may indicate (i) “Useable” if the usable RO selection 612 was selected for the line, (ii) “Not Usable” if non-usable RO selection 614 was selected for the line, or (iii) “Duplicate” if the duplication RO selection 616 was selected for the line.
As another example, a data record may include a Field T for recording data that indicates whether or not the RO, to which the data record is associated, is published for presentation to RO display DPM 114. The data recorded in Field T may be changed when the status of the RO changes from published to un-published or from un-published to published.
The processor 202 of a DPM, such as the RFT generator DPM 108 or the RFT DPM 15, may execute the CRPI 212 to select phrases for RFT.
Table 2300 includes columns A through E and rows 0 through 8. Row 0 identifies types of data within columns A through E, namely RO terms in columns A, B, and C, phrases in column D, and RFT applicability in column E. RO terms in column A are DTC. RO terms in column B are component names of components within a vehicle. RO terms in column C are customer complaints. The identifier in row 1 of column C is “RO Term N,” where N represents an integer. In that regard, more than 3 RO terms may be associated with a single phrase within the phrase data 1916. Furthermore, more than 3 types of RO terms may be included within the phrase data 1916. For example, another type of RO term may be labor operation codes.
As discussed with respect to
The RO terms and RFT applicability of Table 2300 may be used to select a phrase for inserting into an RFT regarding a service-operation on an RO. The processor 202 may execute phrase selection CRPI 322 to identify the RO terms within the service-operation described on the RO and find matching terms within the phrase data 1916 to locate a phrase for populating into a field within an RFT for the RO.
One or more phrases may include a phrase portion that is based on RO terms listed on an RO and a phrase portion that is based on assumptions regarding the RO. The phrase in row 3 may include a phrase portion (e.g., “the car runs rough”) that is based on an assumption. That assumption may be based on past experience of system users defining the phrase data 1916 or from other ROs. As an example, when a vehicle has P0300 set to a current state such that a customer would complain the check engine light is on, an assumption may be made that the vehicle (e.g., a car) runs rough. An RFT field may be populated with a phrase having a phrase portion based on an assumption. That RFT may be reviewed during a QC review of the RFT. If desired, the portion of the phrase based on assumption may be modified during the QC review.
Block 222 includes receiving, at a processor (e.g., the processor 202), a first repair order (RO) term pertaining to a service procedure (i.e., a service-operation) described on a computer-readable RO. The processor that receives the first RO term may be a processor within a DPM that generates RFT. For example, the processor that receives the first RO may be the processor 202 within the RFT DPM 15, the RO collector DPM 104, the RFT generator DPM 108, the coordinator DPM 110 or the RO distributor DPM 112.
The first RO term may include one or more RO terms pertaining to the service procedure described on the RO. Moreover, the first RO term may include a standard term or a non-standard term. A standard term of the first RO term may be defined within the standard terms 1906. A non-standard term of the first RO term may be associated with a standard term defined within the standard terms 1906 and may be used to select the standard term associated with the non-standard term.
As an example, receiving the first RO term may include the processor 202 receiving the RO term “DTC P0101,” a standard term identified in Table 2. As another example, receiving the first RO term may include the processor 202 receiving a non-standard RO term, such as “Code 101,” “Code 0101,” “DTC 101,” “DTC P101,” or “P0101,” and the processor 202 executing the CRPI 212 to select and receive from the standard terms 1906 a standard term such as “DTC P0101.” For purposes of this description, the standard term received at the processor 202 may be referred to as a first RO term and the non-standard term received at the processor 202 may be referred to as a second RO term, although the standard and non-standard terms are no so limited.
Receiving the first RO term may include receiving sufficient RO terms so that the processor 202 may select a phrase pertaining to the service procedure on the RO. As an example, receiving the first RO term may include the processor 202 receiving the RO terms “DTC P0101” and “MAF Sensor” so that the processor 202 may select a phrase for inserting into the title field 29, the complaint field 35, the cause field 37, or the correction field 39 from Table 2300.
Next, block 224 includes selecting, using the processor 202 based on the first RO term, a first phrase for including within an RFT pertaining to the service procedure described on the computer-readable RO. The processor 202 may execute the phrase selection CRPI 322 to select the first phrase (e.g., one or more phrases).
Continuing with the example in which the received RO terms include “DTC P0101” and “MAF Sensor,” the processor 202 may be arranged to select (i) the phrase of row 1 or row 2 for inserting into the title field 29 of an RFT, (ii) the phrase of row 4 for inserting into the complaint field 35 of the RFT, (iii) the phrase of row 5 for inserting into the cause field 37 of the RFT, and (iv) the phrase of row 6 for inserting into the correction field 39 of the RFT, as those selected phrases are associated with the RO terms “DTC P0101” and “MAF Sensor.”
Next, block 226 includes generating, using the processor 202, the RFT pertaining to the service procedure described on the computer-readable RO, wherein the RFT includes the first phrase selected based on the first RO term. The processor 202 may execute the RFT generation CRPI 308 to generate the RFT. Generating the RFT may include selecting a phrase from the phrase data 1916 for each field of the RFT. Alternatively, generating the RFT may include generating only a portion of the RFT by selecting a phrase from the phrase data 1916 for one or more, but not all, fields of the RFT. The RFT DPM 15, the RFT generator DPM 108, or the coordinator DPM 110 may be used to populate any fields of the RFT that are not populated with a phrase from the phrase data 1916.
In accordance with one or more example embodiments in which an incomplete phrase of the phrase data 1916 is selected for populating a field of the RFT, generating the RFT may include completing the incomplete phrase. For example, if the phrase of Table 2300, row 1, is selected, the RO term in column A, row 1 (that is, DTC P0101), may be inserted into the incomplete phrase to identify a DTC between % DTC % in the incomplete phrase, and the RO term in column B, row 1 (that is, MAF Sensor), may be inserted into the incomplete phrase to identify a component name between % component name % in the incomplete phrase.
Next, block 228 includes transmitting the RFT including the first phrase selected based on the first RO term. The processor 202 may execute the CRPI 212 to cause the network transceiver 204 to transmit the RFT. As an example, transmitting the RFT may include transmitting the RFT from a DPM that generates the RFT to the RO/RFT database 106 for storing within the RFT 1912. As another example, transmitting the RFT may include transmitting the RFT from the RO/RFT database 106 to the RFT DPM 15 or from the RFT DPM 15 to the RFT display DPM 17. As yet another example, transmitting the RFT may include transmitting the RFT from the RO/RFT database 106 to the RFT generator DPM 108 or the coordinator DPM 110.
Various events may trigger transmitting the RFT. As an example, the triggering event may be generating the RFT at block 226. As another example, the triggering event may be the processor 202 of the RFT DPM 15 receiving a selection of the RFT or receiving a selection of the RO for which the RFT was generated. Those selections may come from any of a variety of devices, such as the RFT display DPM 17, the RO display DPM 114, the RO distributor DPM 112, the RFT generator DPM 108 or the coordinator DPM. A device that receives the RFT, such as the RFT display DPM 17 or the RO display DPM 114, may display the RFT transmitted to that DPM on the display 214.
Example embodiments have been described above. Those skilled in the art will understand that changes and modifications may be made to the described embodiments without departing from the true scope and spirit of the present invention, which is defined by the claims.
Merg, Patrick S., Covington, Joshua C., Foreman, Jacob G.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5058044, | Mar 30 1989 | Auto I.D. Inc. | Automated maintenance checking system |
5778381, | May 18 1992 | Wells Fargo Bank, National Association, As Agent | Computer aided maintenance and repair information system for equipment subject to regulatory compliance |
5913215, | Apr 09 1996 | HANGER SOLUTIONS, LLC | Browse by prompted keyword phrases with an improved method for obtaining an initial document set |
5950169, | May 19 1993 | CCC INFORMATION SERVICES INC | System and method for managing insurance claim processing |
6263322, | Jul 07 1998 | VTX ACQUISITION CORP ; Vetronix Corporation | Integrated automotive service system and method |
6308120, | Jun 29 2000 | U-HAUL INTERNATIONAL, INC | Vehicle service status tracking system and method |
6311162, | Jul 25 1998 | REICHWEIN - WHITE ENTERPRISES, INC | Interactive symptomatic recording system and methods |
6381587, | Apr 02 1997 | CITIBANK, N A | Method and system for standardizing and reconciling invoices from vendors |
6487479, | Jan 07 2000 | General Electric Co. | Methods and systems for aviation component repair services |
6609050, | Jan 20 2000 | FCA US LLC | Vehicle warranty and repair computer-networked system |
6768935, | Apr 07 2003 | GM Global Technology Operations LLC | Vehicle diagnostic record mapping |
6785582, | Feb 25 2002 | United Technologies Corporation | Integrated tracking system |
6804589, | Jan 14 2003 | Honeywell International, Inc. | System and method for efficiently capturing and reporting maintenance, repair, and overhaul data |
6845307, | Oct 28 1997 | Snap-On Incorporated | System for dynamic diagnosis of apparatus operating conditions |
6941514, | Apr 30 2001 | Bellsouth Intellectual Property Corporation | System and method for priority-based work order scheduling |
7092937, | Apr 07 2003 | GM Global Technology Operations, Inc | Vehicle diagnostic knowledge delivery |
7171372, | Aug 07 2000 | GE GLOBAL SOURCING LLC | Computerized method and system for guiding service personnel to select a preferred work site for servicing transportation equipment |
7209817, | Oct 28 1999 | GE GLOBAL SOURCING LLC | Diagnosis and repair system and method |
7373225, | Jul 25 2005 | Snap-On Incorporated | Method and system for optimizing vehicle diagnostic trees using similar templates |
7373226, | Jul 25 2005 | Snap-On Incorporated | System and method for optimizing vehicle diagnostic tress using similar templates |
7444216, | Jan 14 2005 | GOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL AGENT; ALTER DOMUS US LLC, AS COLLATERAL AGENT | User interface for display of task specific information |
7551993, | Jul 25 2005 | Snap-On Incorporated | Diagnostic tree substitution system and method |
7613627, | Feb 02 2004 | Ford Motor Company | Computer-implemented method and system for collecting and communicating inspection information for a mechanism |
8140411, | Jun 26 2006 | Dynamic linking of part items to repair data | |
8290833, | Jun 14 2002 | E2OPEN, LLC; ZYME SOLUTIONS, INC ; STEELWEDGE SOFTWARE, INC ; INTTRA INC | Multi-stage supply chain management system with dynamic order placement |
8600610, | Mar 31 2010 | SERVICE SOLUTIONS U S LLC | Method and apparatus for identifying related fix information and parts number |
8977423, | May 23 2012 | Snap-On Incorporated | Methods and systems for providing vehicle repair information |
20010032114, | |||
20020007237, | |||
20020007289, | |||
20020128874, | |||
20020138185, | |||
20030004624, | |||
20030050830, | |||
20030130966, | |||
20030195681, | |||
20040176885, | |||
20040199542, | |||
20050027694, | |||
20050049912, | |||
20050065678, | |||
20050085964, | |||
20050154749, | |||
20050187834, | |||
20060095230, | |||
20060106797, | |||
20060142907, | |||
20060161313, | |||
20070043487, | |||
20070293997, | |||
20080004764, | |||
20080183351, | |||
20080208609, | |||
20090006476, | |||
20090062977, | |||
20090169092, | |||
20090216493, | |||
20090295559, | |||
20090307027, | |||
20100005010, | |||
20100057290, | |||
20100063668, | |||
20100138242, | |||
20100138701, | |||
20100174446, | |||
20110010656, | |||
20110118905, | |||
20110172874, | |||
20110238258, | |||
20110289055, | |||
20120136802, | |||
20120245791, | |||
20120265707, | |||
20120303205, | |||
20130124032, | |||
20130304306, | |||
20130325541, | |||
20140032422, | |||
20140074343, | |||
20140207515, | |||
20140207771, | |||
20160104123, | |||
WO2004092918, | |||
WO2013063232, | |||
WO2014001799, | |||
WO2101555, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 02 2015 | Snap-On Incorporated | (assignment on the face of the patent) | / | |||
Oct 02 2015 | MERG, PATRICK S | Snap-On Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036722 | /0812 | |
Oct 02 2015 | FOREMAN, JACOB G | Snap-On Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036722 | /0812 | |
Oct 02 2015 | COVINGTON, JOSHUA C | Snap-On Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036722 | /0812 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Oct 12 2024 | 4 years fee payment window open |
Apr 12 2025 | 6 months grace period start (w surcharge) |
Oct 12 2025 | patent expiry (for year 4) |
Oct 12 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 12 2028 | 8 years fee payment window open |
Apr 12 2029 | 6 months grace period start (w surcharge) |
Oct 12 2029 | patent expiry (for year 8) |
Oct 12 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 12 2032 | 12 years fee payment window open |
Apr 12 2033 | 6 months grace period start (w surcharge) |
Oct 12 2033 | patent expiry (for year 12) |
Oct 12 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |