A bodily fluid collection system includes a reduced pressure treatment unit for providing reduced pressure to a fluid collection system through a canister having a container with an inlet adapted to be fluidly coupled to the fluid collection system, an outlet adapted to be connected to a source of reduced pressure, and an absorptive lamination disposed within the container. The absorptive lamination may be formed from a plurality of absorptive layers and wicking layers interleaved between the absorptive layers that collectively manifold bodily fluids from a tissue site into and throughout the absorptive lamination to trap and collect the bodily fluids. The container expands as the absorptive lamination swells with the bodily fluid being collected.

Patent
   11191887
Priority
Mar 13 2013
Filed
Aug 21 2018
Issued
Dec 07 2021
Expiry
Feb 28 2036
Extension
766 days
Assg.orig
Entity
Large
1
168
window open
20. A fluid collection system for collecting bodily fluids from a tissue site using reduced pressure, the fluid collection device comprising:
a container for receiving and collecting bodily fluids from the tissue site, the container configured to be volumetrically expandable and substantially impervious to fluid;
layers of absorptive material within the container; and
layers of wicking material positioned proximate the layers of absorptive material within the container, wherein the layers of wicking material have flow channels for supporting fluid flow across a surface of the layers of absorptive material.
16. A method for volumetrically expanding a bodily fluid canister, the method comprising:
introducing bodily fluid into a canister, said canister comprising a container, said container containing a plurality of layers of absorptive material within said canister adapted to retain bodily fluid and a plurality of layers of wicking material within said canister adapted to distribute bodily fluid along said plurality of layers of absorptive material,
volumetrically expanding said canister wherein said container is adapted to expand to accommodate changes in dimensions of said plurality of layers of absorptive material and of said plurality of layers of manifold material.
1. A fluid collection system for collecting bodily fluids from a tissue site using reduced pressure, the fluid collection device comprising:
a canister comprising an inlet, an outlet, and a container, said inlet adapted to be in fluid communication with a wound dressing in a tissue site, said outlet adapted to be in fluid communication with a reduced pressure source, and said container configured to be volumetrically expandable, substantially impervious to fluid, and in fluid communication with said inlet and said outlet; and
a plurality of layers of wicking material positioned proximate to a plurality of layers of absorptive material, said plurality of layers of wicking material and said plurality of layers of absorptive material disposed within said container.
17. A bodily fluid collection system comprising:
a canister comprising an inlet, an outlet, and a container, said container comprising a first surface, a second surface, and a connecting member, said first and said second surface configured in an essentially parallel orientation, said connecting member fixed along perimeters of said first surface and said second surface, said container configured to be volumetrically expandable and substantially impervious to fluid, said inlet adapted to be in fluid communication with a wound dressing in a tissue site, said inlet located on a top portion of said first surface of said container, said outlet adapted to be in fluid communication with a reduced pressure source, said outlet located on the top portion of said second surface of said container;
a plurality of layers of wicking material and a plurality of layers of absorptive material, said plurality of wicking material layers and said plurality of absorptive material layers oriented within said container essentially parallel to said first surface, said plurality of wicking material layers and said plurality of absorptive material layers positioned wherein each layer of said absorptive material is proximate to at least one layer of said manifold material; and
a tube situated within said container, said tube in fluid communication with said inlet, in fluid communication with said container, and oriented essentially perpendicular to said plurality of layers of manifold material.
2. The system as in claim 1, said container further comprising a first wall, a second wall, and a connecting member, said first wall and said second wall oriented essentially parallel to said plurality of layers of manifold material, and said connecting member sealingly fixed to said first wall and to said second wall whereby said first wall, said second wall, and said connecting member define a chamber.
3. The system as in claim 1, further comprising a tube situated within said container, said tube in fluid communication with said inlet and in fluid communication with said chamber, and oriented essentially perpendicular to said plurality of layers of manifold material.
4. The system as in claim 1, wherein said container is a thermoplastic.
5. The system as in claim 2, wherein said first wall is adapted to translate away from said second wall.
6. The system as in claim 1, further comprising a first textured layer contained within said container and proximate to said first wall, said first textured layer having at least one textured side wherein said at least one textured side is oriented towards said plurality of layers of manifold material.
7. The system as in claim 6, further comprising a second textured layer contained within said container and proximate to said second wall, said second textured layer having at least one textured side wherein said at least one textured side is oriented towards said plurality of layers of manifold material.
8. The system as in claim 1, wherein said antimicrobial agent is distributed within at least one of said plurality of layers of manifold material.
9. The system as in claim 1, wherein said antimicrobial agent is distributed within at least one of said plurality of layers of absorptive material.
10. The system as in claim 8, wherein said antimicrobial agent exhibits a log reduction for microorganisms of at least about 1.
11. The system as in claim 8, wherein said antimicrobial agent exhibits a log reduction for microorganisms of at least about 3.
12. The system as in claim 1, wherein said container is adapted to be permeable to vapor.
13. The system as in claim 12, wherein said container comprises a polyurethane material having a cross-sectional thickness less than about 50 μm and greater than about 15 μm.
14. The system as in claim 12, wherein said container comprises thermoplastic material having a cross-sectional thickness greater than about 50 μm and said container further comprises a plurality of regions wherein said plurality of regions comprise between about 5% and about 95% of the container surface area and said plurality of regions have a cross-sectional thickness less than about 50 μm and greater than about 5 μm.
15. The system as in claim 12, said container further comprising a positive pressure port adapted to be in fluid communication with a positive pressure source.
18. The system as in claim 9, wherein said antimicrobial agent exhibits a log reduction for microorganisms of at least about 1.
19. The system as in claim 9, wherein said antimicrobial agent exhibits a log reduction for microorganisms of at least about 3.

The present invention is a Divisional of U.S. patent application Ser. No. 14/162,432, entitled “EXPANDABLE FLUID COLLECTION CANISTER,” filed Jan. 23, 2014, which claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/780,143, entitled “EXPANDABLE FLUID COLLECTION CANISTER,” filed Mar. 13, 2013, which is incorporated herein by reference for all purposes.

The present invention relates generally to tissue treatment systems and in particular to systems and methods for collecting bodily fluid.

Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifold device. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The porous pad often is incorporated into a dressing having other components that facilitate treatment.

Wound fluids or exudates are generally collected in a canister for disposal or analysis. Wound fluid primarily comprises plasma in addition to red and white blood cells, platelets, bacteria, and a variety of proteinaceous material. Plasma consists primarily of saline. In clinical practice, canisters should be sized appropriately to obviate the need for frequent replacement even when used in the treatment of patients with wounds generating a high volume of exudate. Conversely, canisters should not be bulky so as to fill care facilities' storage spaces or consume unnecessary resources for hazardous waste disposal of canisters filled with potentially infectious bodily fluid.

In one illustrative embodiment, a bodily fluid canister comprises an inlet, an outlet, a container, and a plurality of layers of absorptive material and a plurality of layers of wicking material contained within the container. The plurality of layers of wicking material may be situated proximate to the plurality of layers of absorptive material. The plurality of layers of wicking material may be oriented in an alternating pattern with the plurality of layers of absorptive material such that each layer of absorptive material is proximate to at least one layer of manifold material. The plurality of layers of wicking material and the plurality of layers of absorptive material may be oriented essentially vertically with the container.

In another illustrative embodiment, a bodily fluid canister is provided for use with a reduced pressure treatment system. The bodily fluid canister comprises an inlet, an outlet, liquid impervious container, and a plurality of layers of absorptive material and a plurality of layers of wicking material contained within the container. The inlet may be disposed in the container, the inlet adapted to be fluidly connected to a tissue site. The reduced pressure treatment system may include a porous pad positioned proximate to a tissue site. An outlet may be disposed in the container and is adapted to be fluidly connected to a reduced pressure source. A plurality of layers of wicking material and a plurality of layers of absorptive material may be positioned within the container. The plurality of layers of wicking material and the plurality of layers of absorptive material may be positioned proximate to one another and each of the plurality of layers of absorptive material may be positioned proximate to at least one of the plurality of layers of manifold material. The plurality of layer of wicking material and the plurality of layers of absorptive material may be oriented essentially vertically within the container. The container may be configured to be volumetrically expandable.

In still another embodiment, a method for volumetrically expanding a bodily fluid canister is provided. The method comprises introducing bodily fluid into a canister, the canister comprising a container containing a plurality of layers of absorptive material within the canister adapted to attract and retain bodily fluid and a plurality of layers of wicking material within the canister adapted to distribute bodily fluid along the plurality of layers of absorptive material. The method further comprises volumetrically expanding the canister, the canister configured to expand upon bodily fluid distribution to the plurality of layers of wicking material and the plurality of layers of absorptive material.

In yet another embodiment, a canister for collecting bodily fluids from a fluid collection system for delivering reduced pressure to a tissue site from a source of reduced pressure is disclosed. The canister may comprise a container having a chamber being expandable to receive and collect bodily fluids from the tissue site in response to the application of the reduced pressure, an inlet fluidly coupled to the chamber of the container and configured to be in fluid communication with the fluid collection system for delivering the bodily fluids into the chamber of the container, and an outlet fluidly coupled to the chamber of the container and configured to be in fluid communication with the source of reduced pressure for providing reduced pressure through the chamber of the container to the fluid collection system. The canister may further comprise an absorptive lamination disposed within the container and adapted to trap and collect a liquid portion of the bodily fluids separated from the gaseous portion of the bodily fluids flowing from the inlet to the outlet within the container, wherein the container expands as the absorptive lamination swells to absorb the liquid portion of the bodily fluids. The absorptive lamination may comprise a plurality of absorptive layers and a plurality of wicking layers interleaved between the absorptive layers.

Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.

FIG. 1 shows a perspective view of a bodily fluid collection system comprising a reduced pressure treatment unit for providing reduced pressure to a fluid collection system through a first embodiment of a canister including a container having absorptive layers with interleaving wicking layers disposed in the container according to an illustrative embodiment;

FIG. 2 shows an exploded, cross-sectional view of the canister and a partially schematic cross-sectional view of the reduced pressure treatment unit comprising components of the bodily fluid collection system of FIG. 1;

FIG. 2A shows the canister of FIG. 2 with the container partially filled with bodily fluids drawn from the fluid collection system;

FIG. 2B shows the canister of FIG. 2 with the container completely filled with bodily fluids drawn from the fluid collection system; and

FIG. 3 shows a perspective view of a second embodiment of a container for collecting bodily fluids in the bodily fluid collection system of FIG. 1.

In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.

The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.

The term “tissue site” as used herein refers to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.

Referring to FIGS. 1 and 2, a reduced pressure treatment system 10 comprises a fluid collection system 100 for applying reduced pressure therapy to a patient, a reduced pressure treatment unit 101 for providing the reduced pressure, and a canister 102 fluidly coupled between the fluid collection system 100 and the reduced pressure treatment unit 101 for collecting fluids from a patient according to one illustrative embodiment. The canister 102 comprises a container 103 having a chamber, an inlet 104 being a coupling for providing fluid communication into the chamber of the container 103, and an outlet 105 being a coupling for providing fluid communication out from the chamber of the container 103. The inlet 104 is adapted to be fluidly coupled to the fluid collection system 100 for providing reduced pressure to the fluid collection system 100 and receiving bodily fluids from the patient. The outlet 105 is adapted to be connected to a reduced pressure port 107 of the reduced pressure treatment unit 101 to provide reduced pressure to the fluid collection system 100 from a reduced pressure source 108 that may be contained within the reduced pressure treatment unit 101. The inlet 104 and the outlet 105 are preferably disposed at one end of the container 103 so that both may be positioned at a higher elevation relative to the other end of the container 103 when the canister 102 is utilized in operation. The canister 102 may further comprise a support member such as, for example, a carrier ring 109 that may be releasably connected to the reduced pressure treatment unit 101 to hold the container 103 in place during operation of the reduced pressure treatment unit 101.

The fluid collection system 100 is adapted to be positioned proximate a tissue site 110 of a patient for delivering reduced pressure to the tissue site 110 and collecting bodily fluids from the tissue site 110. The fluid collection system 100 comprises a manifold 112 in fluid communication with the tissue site 110 and a drape 114 adapted to cover the manifold 112 for providing a substantially airtight seal over the tissue site 110. The fluid collection system 100 may further comprise a connector 116 fluidly coupled to the manifold 112 through the drape 114 and a conduit or tube 118 containing at least one lumen for the transmission of fluids, both gaseous and liquid. The tube 118 is adapted to be fluidly coupled between the connector 116 and the inlet 104 of the canister 102 for transmitting fluids between the canister 102 and the tissue site 110.

The manifold 112 may be a bioabsorbable or bioinert material capable of distributing reduced pressure at various desired levels. The drape 114 may include an adhesive seal (not shown) that not only maintains the reduced pressure at various levels, but also holds the fluid collection system 100 in place over the tissue site 110. The manifold 112 may be a bioabsorbable or bioinert material capable of distributing reduced pressure to the tissue site 110. In one embodiment, the manifold 112 may be an open cell, reticulated foam comprising, for example, a polyurethane material. The wound dressing 112 delivers reduced pressure to the tissue site 110 to provide therapeutic treatment to the tissue site 110 and allows exudates and bodily fluids to flow from the tissue site 110 to the canister 102 where the exudates and bodily fluids are collected.

The reduced pressure treatment unit 101 may comprise the reduced pressure source 108 as described above. The reduced pressure source 108 may be, for example, a vacuum pump driven by a motor. In another embodiment, reduced pressure may be provided by a manually-actuated pump such as a compressible bellows pump. In still another embodiment, the reduced pressure may be provided by a wall suction port either with or without a separate pressure regulator. The reduced pressure treatment unit 101 may also comprise a processing unit (not shown) for controlling various features of the reduced pressure treatment unit 101 such as, for example, the level and timing of the reduced pressure being applied to the tissue site 110. The reduced pressure treatment unit 101 may further comprise other equipment such as, for example, a source of positive pressure.

The container 103 may be constructed of a liquid impervious material such as, for example, a thermoplastic material such as polyurethane to contain the exudates and bodily fluids collected from the tissue site 110. The chamber of the container 103 may have a volume that is preferably variable to accommodate the collection of exudates and bodily fluids from the tissue site 110 expanding from an empty state to a full state after collecting such fluids. In one embodiment, the container 103 may comprise a flexible bag having walls that are elastic and expandable as needed to accommodate the collection of exudates and bodily fluids. In another embodiment, the flexible bag may have walls that are less elastic or inelastic but nonetheless collapsible in the empty state and expandable to the full state as needed to accommodate the collection of exudates and bodily fluids. In one embodiment, the container 103 may comprise a flexible bag formed from a single tubular sheet of film sealed at both ends. In another embodiment, the container 103 may comprise a flexible bag formed from two sheets of film sealed around the edges and shown more specifically in FIG. 1 which shows the chamber having an oval shape. The chamber of the container 103 may have a circular or rectangular shape (e.g., see the chamber of container 303 in FIG. 3) as necessary to accommodate the structure and fluidics of the system.

In yet another embodiment, the container 103 may comprise two walls joined around the edges by a connecting member that provides expandability of the chamber of the container 103. Referring more specifically to FIG. 2, the container 103 may comprise a first wall 120, a second wall 122, and a connecting member 124, wherein the perimeters of the first wall 120 and the second wall 122 are joined together by the connecting member 124. The first wall 120, the second wall 122, and the connecting member 124 define the chamber of the container 103 that may accommodate the exudates and bodily fluids as they are collected from the tissue site 110. In one embodiment, the connecting member 124 may comprise one or more pleats 126 that allow the chamber of the container 103 to expand from the empty state to the filled state. In another embodiment, the connecting member 124 may comprise a material with elastic characteristics. In yet another embodiment, the connecting member 124 may be configured as a Z-fold to permit expansion of the chamber of the container 103. Other configurations of the container 103 may provide similar volumetric expandability of the chamber.

As indicated above, the inlet 104 and the outlet 105 are preferably disposed at one end of the container 103 so that both may be positioned at a higher elevation relative to the other end of the container 103 when the canister 102 is utilized in operation. Thus, the container 103 may be oriented more vertically with the inlet 104 and the outlet 105 being elevated to utilize gravity to facilitate filling the chamber of the container 103 with the exudates and bodily fluids being collected. In one embodiment, the container 103 may contain an absorptive material such as a foam, hydrogel, or a water-swelling polymer for collecting and treating the exudates and bodily fluids being collected from the tissue site 110. In such embodiments, it is also desirable that the exudates and bodily fluids enter the chamber of the container 103 on the distal side of the container 103 adjacent the first wall 120 allowing the absorptive material to trap and collect the liquid fluids while the gaseous fluids exit the chamber of the container 103 on the proximal side of the container 103 adjacent the second wall 122. Thus, the inlet 104 and the outlet 105 may be disposed on opposing walls of the container 103. In another embodiment as more specifically shown in the figures, the inlet 104 and the outlet 105 may both be disposed on the proximal side of the container 103 through the second wall 122 wherein the inlet 104 is in fluid communication with a tube 127 having a distal end 128 extending within the chamber to the distal side of the container 103 adjacent the first wall 120 so that the absorptive material better traps and collects the liquid fluids while the gaseous fluids exit the chamber of the container 103 through the outlet 105 as illustrated by arrows 129 representing the flow of the fluids.

When the container 103 is filled with an absorptive material in bulk volume, the absorbent material often failed to expand or inflate the container 103 to completely fill the chamber of the container 103 with the exudates and bodily fluids being collected from the tissue site 110. Moreover, the absorptive material tended to saturate in localized areas without absorbing the fluids throughout the entire volume of the absorptive material. Even when the container 103 and the absorptive material within the container 103 were oriented vertically, the vertical orientation exacerbated the localized saturation condition. It is desirable to overcome these problems so that the container 103 would be completely filled to reduce the expense associated with utilizing additional containers and reduce the maintenance required by the patient or a caregiver.

These problems are overcome by disposing individual layers of absorptive material within the container 103 wherein the absorptive layers are spaced apart from one another that may form an absorptive lamination to enhance the collection and flow of fluids throughout the entire volume of the absorptive lamination. These problems are further overcome by interleaving layers of wicking material within the space between the absorptive layers to further enhance the flow of fluids between the absorptive layers and throughout the entire volume of the absorptive lamination. Using such an absorptive lamination including wicking layers interleaved between the absorptive layers within the container 103 greatly enhances the ability of the container 103 to expand and completely fill to overcome these problems and do so regardless of orientation. When the container 103 contains an absorptive lamination as just described, the absorptive capabilities of the container 103 are still enhanced when the container is oriented in a horizontal position as opposed to a vertical position.

Referring more specifically to FIG. 2, one exemplary embodiment of an absorptive lamination 130 is shown and comprises a plurality of absorptive layers 132 of absorptive material that are spaced apart from each other as described above. The absorptive layers 132 may be spaced apart from each other by spacers (not shown) or any other means to maintain the spaced apart relationship between the absorptive layers 132 when subjected to a reduced pressure during operation of the reduced pressure treatment unit 101. The absorptive lamination 130 contains a plurality of wicking layers 134 of wicking material disposed between the absorptive layers 132. In one embodiment, one wicking layer 134 may be disposed or interleaved between each absorptive layer 132 as described above but not shown. In another embodiment, one wicking layer 134 may be disposed proximate each side of one of the absorptive layers 132 such that a pair of wicking layers 134 may be associated with each absorptive layer 132 as shown. In this embodiment, the absorptive lamination 130 may further comprise spacers 135 disposed between each pair of wicking layers 134 to provide further spacing between the absorptive layers 132. The absorptive lamination 130 may be oriented within the chamber of the container 103 so that the absorptive layers 132 and the wicking layers 134 are substantially parallel to the first wall 120 and the second wall 122 of the container 103. These embodiments enhance the distribution of bodily fluids to the absorptive layers 132 throughout the entire chamber of the container 103 to enhance the fluid storage capability of the absorptive lamination 130.

The wicking layers 134 may comprise a wicking material having flow channels that support the flow of fluids at least through the width of each wicking layer 134, i.e., generally perpendicular to the length or longitudinal axis of the wicking layer 134. The flow channels of the wicking material are capable of supporting the flow of fluids even when under reduced pressure being applied within the container 103. The wicking material may be a non-woven material such as, for example, Libeltex TDL2 available from LIBELTEX bvba located in Belgium, or a reticulated open-cell polyurethane foam. The absorptive layers 132 may comprise, for example, a textile substrate (e.g., woven or knit fabrics), a foam, a hydrogel, a hydrocolloid, a superabsorbent polymer (e.g., Texsus CCBSL 130LL available from Texsus Spa located in Italy), a silica gel, a water swelling polymer, a polysaccharide (e.g., chitosan, carboxymethylcellulose, hydroxylmethylcellulose, hyaluronic acid, alginate, pectin, etc.), a proteinaceous material (glycoprotein, gelatin, etc.), and combinations thereof.

The wicking layers 134 and the absorptive layers 132 of may each further comprise an antimicrobial agent and thus be adapted to have antimicrobial properties to effect a bioburden log reduction of greater than one or, more preferably, greater than three. By way of a non-limiting example, this antimicrobial property may be accomplished by adding ionic silver to the wicking material of the wicking layers 134 or the absorptive material of the absorptive layers 132. The wicking layers 134 and the absorptive layers 132 of may each further comprise other chemicals or agents to facilitate the collection and storage of exudates and bodily fluids from the tissue site 110.

The canister 102 may further comprise a first textured layer 136 contained within the container 103 adjacent to the first wall 120 and a second textured layer 137 contained within the container 103 adjacent to the second wall 122. The first textured layer 136 and the second textured layer 137 may be constructed from a fluid impermeable material. The first textured layer 136 and the second textured layer 137 may each be a sheet of material having a textured side that is corrugated or comprises a plurality of protrusions or projections extending into the chamber of the container 103 and facing the absorptive lamination 130. The textured sides of the first textured layer 136 and the second textured layer 137 may have other shapes resulting from being channeled, creased, folded, grooved, indented, pleated, or ribbed. When the chamber of the container 103 subjected to a reduced pressure, the first textured layer 136 and the second textured layer 137 collapse against the sides of the absorptive lamination 130. The first textured layer 136 and the second textured layer 137 may provide a fluid reservoir for a bolus of bodily fluid entering the container 103, allowing the bodily fluid from the tissue site 110 to be distributed more thoroughly across the face of the absorptive lamination 130 to enhance the ability of the absorptive layers 132 collect and store such fluids. Additionally, textured surfaces of the first textured layer 136 and the second textured layer 137 provide additional spacing adjacent the outermost absorptive layers 132 and/or the wicking layers 134 to further enhance the flow of bodily fluids throughout the entire absorptive lamination 130.

The absorptive layers 132 and the wicking layers 134 may be organized in other alternating sequences of absorptive material and wicking material. Additionally, the absorptive layers 132 and the wicking layers 134 may be formed into a composite rather than being discrete layers of material. For example, an absorptive composite may be formed from co-extruding absorptive material and wicking material such that the absorptive composite possesses characteristics similar to the characteristics of the discrete absorptive layers 132 and the wicking layers 134. The absorptive and wicking lamina of the absorptive composite would then be aligned in an alternating sequence when disposed within the container 103.

In operation, the absorptive lamination 130 including wicking layers interleaved between the absorptive layers within the container 103 greatly enhances the ability of the container 103 to expand and completely fill the chamber as described above, especially when oriented in a generally vertical position. Referring more specifically to FIGS. 2, 2A, and 2B, the container 102 of the canister 102 is shown as being substantially vertically oriented and expanding from an empty state to being partially filled and then completely filled, respectively. Referring to FIG. 2A, the container 102 is shown as being partially filled with bodily fluids and expanding at the lower end near the bottom of the container 102. The bodily fluids and exudates are drawn from the tissue site 110 into the inlet 104 and the tube 127, and then flow into the chamber of the container 102 through the distal end 128 of the tube 127. When the bodily fluids enter the chamber of the container 102, they begin to separate into gaseous and liquid components with the gaseous fluids exiting the outlet 105 as indicated by the arrows 129 and the liquid fluids manifolding down the side of the absorptive lamination 130 with the assistance of gravity as indicated by liquid line 139. The liquid bodily fluids are manifolded through a combination of the wicking action created by the wicking layers 134 and the osmotic pressure of the absorptive layers 132, and supplemented by the effects of gravity which pulls the fluid downward toward the bottom of the container 102 which begins to expand along with the expanding absorptive layers 132. This leaves the top of the container 102 generally unobstructed by the liquid fluids to manifold the reduced pressure through the tube 127 to the outlet 105. This action also facilitates fluid flow by pulling intermittent bolus' of liquid fluids and exudates from the tissue site 110 down to the bottom of the container 102 by gravity where the absorbent layers 132 have more time to trap and retain the liquid fluids.

As can be seen in the illustration, the absorptive layers 132 continue to expand as the wicking layers 132 continue to channel the liquid fluids across the surfaces of the absorptive layers 132 and the longer the absorptive layers 132 are submersed in the liquid fluids. For example, the most distal absorptive layer 132a has expanded more at the lower end which has expanded more than the lower end of the most proximal absorptive layer 132b with varying degrees of absorption and expansion for each intervening absorptive layer 132. As the container 102 continues to fill with the liquid fluids, the absorptive layers 132 continue to expand until they reach a full capacity such that the container 102 is fully expanded in a filled state as shown in FIG. 2B. When the chamber of the container 102 is substantially filled, the liquid fluid eventually covers the distal end 128 of the tube 127 as shown by fluid line 139′ which substantially prevents the continuing flow of bodily fluids from the tissue site 110. The container 102 is capable of expanding with the expansion of the absorptive lamination 132 by means of any of the embodiments described above. It should be understood that the container 102 will function in a substantially horizontal position by virtue of the wicking action provided by the wicking layers 134 without the aid of gravity as long as the distal end 128 of the tube 127 is in an elevated position.

Referring now to FIG. 3, a container 303 is shown is substantially similar in all respects to the container 103 of FIGS. 1 and 2 except for the shape as pointed out above. The container 303 also comprises a first wall 320 and a second wall 322 joined together by the connecting member 324. As also described above, the container 303 may be constructed of a liquid impervious material such as, for example, a thermoplastic such as polyurethane. In one exemplary embodiment, the first wall 320 and the second wall 322 of the container 303 may be constructed of polyurethane film having a cross-sectional thickness greater than about 50 μm wherein the container 303 is substantially impervious to vapor. In another exemplary embodiment, the first wall 320 and a second wall 322 of the container 303 may comprise a material permeable to vapor such as, for example, the same polyurethane film wherein the polyurethane film has a cross-sectional thickness less than about 50 μm but greater than about 15 μm. If the container 303 is permeable to vapor, the reduced pressure treatment unit 101 may further comprise a positive pressure source 140 that may provide positive pressure to the container 303 to facilitate the evaporation of collected bodily fluid into vapor and the subsequent transmission of vapor through the container 303 and into the atmosphere. In one embodiment, the source of positive pressure 140 may be the exhaust of the source negative pressure 108. In another embodiment, the positive pressure source 140 may be activated when the negative pressure source 108 is deactivated.

In yet another exemplary embodiment, the first wall 320 and the second wall 322 of the container 303 may be substantially impervious to vapor but may further comprise portions or regions 150 having a cross-sectional thickness greater than about 5 μm and less than about 50 μm that are permeable to vapor. The regions 150 of vapor permeability allow bodily fluid collected in the container 303 to evaporate into the atmosphere as described above and further assisted by providing positive pressure to the chamber of the container 303. The regions 150 may have varying shapes such as, for example, the shape of a regular polygon or an ellipse. The regions 150 may comprise between about 5% and about 95% of the surface area of the container 303.

In yet another embodiment, a method for collecting bodily fluid from a tissue site is provided. The method comprises disposing a plurality of absorptive layers with wicking layers interleaved between the absorptive layers into a container of a bodily fluid canister, fluidly coupling the container to both a source of bodily fluid and a source of negative pressure, and applying negative pressure through the container to the source of bodily fluid. The method further comprises utilizing the negative pressure to draw the bodily fluids from the tissue site and manifold the bodily fluids to the absorptive layers to collect and trap the liquid portion of the bodily fluids, and allowing the container to volumetrically expand as the absorptive layers swell in size, whereby the container expands to a full state after the absorptive layers are fully absorbed with the liquid fluids.

It will be appreciated that the illustrative embodiments described herein may be used with reduced pressure treatment systems of any type, shape, or size and similarly with canisters of any type, shape, or size. The location of the inlet, outlet, semi-permeable membrane, and flexible bag may also vary depending upon the particular collection system design. Similarly, the geometry of the semi-permeable membrane may be modified as necessary to conform to the contours or configuration of the canister. Similarly, the location of the means to withdraw the collected absorbent may also vary depending upon the particular collection system design.

It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.

Locke, Christopher Brian, Stephenson, Gareth

Patent Priority Assignee Title
12161792, Nov 16 2017 Convatec Limited Fluid collection apparatus
Patent Priority Assignee Title
1355846,
2547758,
2632443,
2682873,
2910763,
2969057,
3066672,
3367332,
3520300,
3568675,
3648692,
3682180,
3826254,
4080970, Nov 17 1976 Post-operative combination dressing and internal drain tube with external shield and tube connector
4096853, Jun 21 1975 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
4136696, Nov 19 1973 C R BARD, INC , A CORP OF NJ Self-contained, combined irrigator and evacuator for wounds
4139004, Feb 17 1977 Bandage apparatus for treating burns
4165748, Nov 07 1977 Catheter tube holder
4184510, Mar 15 1977 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
4233969, Nov 11 1976 ANSONIA NOMINEES LIMITED, 1 LOVE LANE, LONDON, EC2; ENGLISH ASSOCIATION OF AMERICAN THE, BOND AND SHARE HOLDERS LIMITED, 4 FORE STREET, LONDON EC2; FOSTER AND BRAITHWAITE, 22 AUSTIN FRIARS, LONDON, EC2; JESSEL GROUP THE, 30 REIGATE HILL, REIGATE, SURREY RH2 OAR; STRABUL NOMINEES LIMITED, 3 MOORGATE PLACE, LONDON, EC2; LLOYDS BANK BRANCHES NOMINEES LIMITED, 111 OLD BROAD STREET, LONDON, EC2 Wound dressing materials
4245630, Oct 08 1976 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
4256109, Jul 10 1978 Allegiance Corporation Shut off valve for medical suction apparatus
4261363, Nov 09 1979 C R BARD, INC , A CORP OF NJ Retention clips for body fluid drains
4275721, Nov 28 1978 Procter & Gamble Hygien Aktiebolag Vein catheter bandage
4284079, Jun 28 1979 Method for applying a male incontinence device
4297995, Jun 03 1980 KEY PHARMACEUTICALS, INC Bandage containing attachment post
4333468, Aug 18 1980 Mesentery tube holder apparatus
4373519, Jun 26 1981 Minnesota Mining and Manufacturing Company Composite wound dressing
4382441, Dec 06 1978 Device for treating tissues, for example skin
4392853, Mar 16 1981 Sterile assembly for protecting and fastening an indwelling device
4392858, Jul 16 1981 Sherwood Services AG; TYCO GROUP S A R L Wound drainage device
4419097, Jul 31 1981 Rexar Industries, Inc. Attachment for catheter tube
4465485,
4475909, May 06 1982 Male urinary device and method for applying the device
4480638, Mar 11 1980 Cushion for holding an element of grafted skin
4525166, Nov 21 1981 B BRAUN-SSC AG Rolled flexible medical suction drainage device
4525374, Feb 27 1984 MANRESA, INC Treating hydrophobic filters to render them hydrophilic
4540412, Jul 14 1983 The Kendall Company Device for moist heat therapy
4543100, Nov 01 1983 Catheter and drain tube retainer
4548202, Jun 20 1983 Ethicon, Inc. Mesh tissue fasteners
4551139, Feb 08 1982 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
4569348, Feb 22 1980 VELCRO INDUSTRIES B V Catheter tube holder strap
4605399, Dec 04 1984 Complex, Inc. Transdermal infusion device
4608041, Oct 14 1981 Device for treatment of wounds in body tissue of patients by exposure to jets of gas
4640688, Aug 23 1985 Mentor Corporation Urine collection catheter
4655754, Nov 09 1984 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
4664662, Aug 02 1984 Smith and Nephew Associated Companies plc Wound dressing
4710165, Sep 16 1985 SURGIDYNE, INC Wearable, variable rate suction/collection device
4733659, Jan 17 1986 Seton Company Foam bandage
4743232, Oct 06 1986 The Clinipad Corporation Package assembly for plastic film bandage
4758220, Sep 26 1985 ALCON MANUFACTURING, LTD Surgical cassette proximity sensing and latching apparatus
4787888, Jun 01 1987 University of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
4826494, Nov 09 1984 Stryker Corporation Vacuum wound drainage system
4838883, Mar 07 1986 Nissho Corporation Urine-collecting device
4840187, Sep 11 1986 BARD LIMITED, PENNYWELL INDUSTRIAL ESTATE, SUNDERLAND SR4 9EW, ENGLAND Sheath applicator
4863449, Jul 06 1987 Hollister Incorporated Adhesive-lined elastic condom cathether
4872450, Aug 17 1984 Wound dressing and method of forming same
4878901, Dec 07 1987 Condom catheter, a urethral catheter for the prevention of ascending infections
4897081, May 25 1984 TMCA FOUNDATION INC Percutaneous access device
4906233, May 29 1986 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
4906240, Feb 01 1988 Innovative Technologies Limited Adhesive-faced porous absorbent sheet and method of making same
4919654, Aug 03 1988 KALT MEDICAL CORPORATION, A CORP OF FLORIDA IV clamp with membrane
4941882, Mar 14 1987 Smith and Nephew Associated Companies, p.l.c. Adhesive dressing for retaining a cannula on the skin
4953565, Nov 26 1986 Shunro Tachibana Endermic application kits for external medicines
4969880, Apr 03 1989 KCI Licensing, Inc Wound dressing and treatment method
4985019, Mar 11 1988 Warsaw Orthopedic, Inc X-ray marker
5037397, Dec 27 1985 Medical Distributors, Inc. Universal clamp
5086170, Jan 16 1989 Roussel Uclaf Process for the preparation of azabicyclo compounds
5092858, Mar 20 1990 Becton, Dickinson and Company Liquid gelling agent distributor device
5100396, Apr 03 1989 KCI Licensing, Inc Fluidic connection system and method
5134994, Feb 12 1990 SAY, SAMUEL L AND BETTY JANE SAY, TRUSTEES OF THE SAY FAMILY TRUST DATED DECEMBER 2, 1995 Field aspirator in a soft pack with externally mounted container
5149331, May 03 1991 Ariel, Ferdman Method and device for wound closure
5167613, Mar 23 1992 The Kendall Company Composite vented wound dressing
5176663, Dec 02 1987 Principal AB; PHARMARK INNOVATIONS, LTD ; INNOVATIVE THERAPIES, INC Dressing having pad with compressibility limiting elements
5215522, Jul 23 1984 CITIBANK, N A Single use medical aspirating device and method
5232453, Jul 14 1989 CONVATEC TECHNOLOGIES INC Catheter holder
5261893, Apr 03 1989 KCI Licensing, Inc Fastening system and method
5278100, Nov 08 1991 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
5279550, Dec 19 1991 Gish Biomedical, Inc. Orthopedic autotransfusion system
5298015, Jul 11 1989 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
5342376, May 03 1993 Ethicon, Inc Inserting device for a barbed tissue connector
5344415, Jun 15 1993 DeRoyal Industries, Inc. Sterile system for dressing vascular access site
5358494, Jul 11 1989 Principal AB; PHARMARK INNOVATIONS, LTD Irrigation dressing
5437622, Apr 29 1992 Laboratoire Hydrex (SA) Transparent adhesive dressing with reinforced starter cuts
5437651, Sep 01 1993 Edwards Lifesciences Corporation Medical suction apparatus
5527293, May 14 1901 KCI Licensing, Inc Fastening system and method
5549584, Feb 14 1994 Smith & Nephew, Inc Apparatus for removing fluid from a wound
5556375, Jun 16 1994 Hercules Incorporated Wound dressing having a fenestrated base layer
5607388, Jun 16 1994 Hercules Incorporated Multi-purpose wound dressing
5630855, Oct 16 1992 Humanteknik AB Moisture-collecting device
5636643, Nov 14 1991 WAKE FOREST UNIVERSITY HEALTH SCIENCES Wound treatment employing reduced pressure
5645081, Nov 14 1991 WAKE FOREST UNIVERSITY HEALTH SCIENCES Method of treating tissue damage and apparatus for same
6071267, Feb 06 1998 KCI Licensing, Inc Medical patient fluid management interface system and method
6135116, Jul 28 1997 KCI Licensing, Inc Therapeutic method for treating ulcers
6241747, May 03 1993 Ethicon, Inc Barbed Bodily tissue connector
6287316, Mar 26 1999 Ethicon, Inc Knitted surgical mesh
6345623, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
6488643, Oct 08 1998 Huntleigh Technology Limited Wound healing foot wrap
6493568, Jul 19 1994 Huntleigh Technology Limited Patient interface system
6553998, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
6814079, Sep 12 1997 KCI Licensing, Inc Surgical drape and suction head for wound treatment
7520872, Sep 13 2002 CONVATEC, LTD Closed wound drainage system
7846141, Sep 03 2002 Smith & Nephew, Inc Reduced pressure treatment system
8062273, Sep 03 2002 Smith & Nephew, Inc Reduced pressure treatment system
8216198, Jan 09 2009 Smith & Nephew, Inc Canister for receiving wound exudate in a negative pressure therapy system
8251979, May 11 2009 Smith & Nephew, Inc Orientation independent canister for a negative pressure wound therapy device
8257327, Oct 28 2003 Smith & Nephew PLC Wound cleansing apparatus with actives
8398614, Oct 28 2002 Smith & Nephew PLC Apparatus for aspirating, irrigating and cleansing wounds
8449509, Apr 05 2004 Smith & Nephew, Inc Flexible reduced pressure treatment appliance
8529548, Apr 27 2004 Smith & Nephew PLC Wound treatment apparatus and method
8535296, Oct 28 2002 Smith & Nephew PLC Apparatus for aspirating, irrigating and cleansing wounds
8551060, Jul 17 2008 Smith & Nephew, Inc Subatmospheric pressure mechanism for wound therapy system and related methods therefor
8568386, May 11 2009 Smith & Nephew, Inc Orientation independent canister for a negative pressure wound therapy device
8679081, Jan 09 2009 Smith & Nephew, Inc Canister for receiving wound exudate in a negative pressure therapy system
8834451, Oct 28 2002 Smith & Nephew PLC In-situ wound cleansing apparatus
8926592, Oct 28 2003 Smith & Nephew PLC Wound cleansing apparatus with heat
9017302, Jul 21 2008 Smith & Nephew, Inc Thin film wound dressing
9198801, Apr 05 2004 Smith & Nephew, Inc Flexible reduced pressure treatment appliance
9211365, Sep 03 2002 Smith & Nephew, Inc Reduced pressure treatment system
9289542, Oct 28 2003 Smith & Nephew PLC Wound cleansing apparatus
20020077661,
20020115951,
20020120185,
20020143286,
20080082059,
20080200905,
20090292263,
20090306630,
20100324510,
20110028919,
20110172616,
20110257613,
20130032539,
20130053797,
20130270166,
20130304004,
20140163491,
20140276499,
20150080788,
AU550575,
AU745271,
AU755496,
CA2005436,
DE2640413,
DE29504378,
DE4306478,
EP100148,
EP117632,
EP161865,
EP358302,
EP1018967,
GB2195255,
GB2197789,
GB2220357,
GB2235877,
GB2329127,
GB2333965,
GB692578,
JP4129536,
SG71559,
WO8002182,
WO8704626,
WO90010424,
WO93009727,
WO94020041,
WO9605873,
WO9718007,
WO9913793,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 13 2014STEPHENSON, GARETHKCI Licensing, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0469530705 pdf
Jan 14 2014LOCKE, CHRISTOPHER BRIANKCI Licensing, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0469530705 pdf
Aug 21 2018KCI Licensing, Inc.(assignment on the face of the patent)
Aug 24 2023KCI Licensing, Inc3M Innovative Properties CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0647180544 pdf
Feb 01 20243M Innovative Properties CompanySOLVENTUM INTELLECTUAL PROPERTIES COMPANYASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0664440162 pdf
Date Maintenance Fee Events
Aug 21 2018BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Dec 07 20244 years fee payment window open
Jun 07 20256 months grace period start (w surcharge)
Dec 07 2025patent expiry (for year 4)
Dec 07 20272 years to revive unintentionally abandoned end. (for year 4)
Dec 07 20288 years fee payment window open
Jun 07 20296 months grace period start (w surcharge)
Dec 07 2029patent expiry (for year 8)
Dec 07 20312 years to revive unintentionally abandoned end. (for year 8)
Dec 07 203212 years fee payment window open
Jun 07 20336 months grace period start (w surcharge)
Dec 07 2033patent expiry (for year 12)
Dec 07 20352 years to revive unintentionally abandoned end. (for year 12)