A ball and socket joint assembly is disclosed that includes a body defining a cavity, a collet disposed in the cavity to receive a ball of a connector, and an actuator shaft coupled to the collet for rotating and translating the collet in the cavity. The cavity has a distal opening to accept the ball and an engagement feature extending into the cavity. The collet has an outer diameter larger than the opening in the body when the ball is disposed in the collet, and the collet has a corresponding engagement feature around at least a portion of the outer surface for receiving the engagement feature and converting rotation of the compression member into translation of the compression member along a proximal-distal axis of the body. The collet is compressed against the opening of the cavity when the collet is advanced distally against the opening.
|
1. A ball and socket joint assembly comprising:
a housing defining a cavity and a distal opening to the cavity, the distal opening having a diameter larger than a diameter of a spherical portion of a connector and less than a diameter of an inner wall of the cavity proximal to the distal opening, the housing comprising an engagement feature extending into the cavity;
a compression member disposed in the cavity, a distal end of the compression member comprising a collet configured to accept the spherical portion of the connector, the collet defining an outer diameter that is configured to be larger than the diameter of the distal opening in the housing when the spherical portion is disposed in the collet, and the compression member comprising an outer surface defining a corresponding engagement feature around at least a portion of the outer surface for receiving the engagement feature of the housing and converting rotation of the compression member into translation of the compression member along a longitudinal axis of the housing; and
an actuator shaft extending through a proximal end of the housing, the actuator shaft coupled to the compression member and permitting rotation and translation of the compression member in the cavity,
wherein the collet is configured to be compressed against the distal opening of the cavity when the compression member is advanced distally against the distal opening;
wherein the engagement feature is a cam pin, and the corresponding engagement feature comprises an angled locking channel sized and shaped to receive the cam pin.
2. The assembly of
3. The assembly of
4. The assembly of
5. The assembly of
6. The assembly of
7. The assembly of
8. The assembly of
9. The assembly of
10. The assembly of
11. The assembly of
12. The assembly of
13. The assembly of
14. The assembly of
15. A surgical instrument, comprising:
a retractor body configured to couple to an implantable anchor; the retractor body comprising a first connector and a second connector each having a spherical portion;
a first tissue manipulating implement coupled to the first connector of the retractor body and capable of polyaxial movement relative thereto; and
a second tissue manipulating implement coupled to the second connector retractor body and capable of polyaxial movement relative thereto;
wherein each of the first and second tissue manipulating implements couples to the corresponding connector via the ball and socket joint assembly of
16. The instrument of
17. The instrument of
18. A method of assembling a surgical instrument, the method comprising:
providing a ball and socket joint assembly according to
inserting the spherical portion of the connector into the collet of the compression member disposed within the cavity, the connector being attached to an arm of a surgical retractor;
rotating the actuator shaft in a first direction, the actuator shaft rotating the compression member with respect to the engagement feature of the housing that extends into the cavity, the engagement feature interfacing with the compression member such that the rotation of the compression member urges the compression member distally in the cavity; and
continuing to rotate the actuator shaft until the outer surface of the collet is compressed against the distal opening of the cavity and an inner surface of the collet is compressed around the spherical portion to retain the spherical portion in the collet.
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
|
This disclosure relates generally to surgical instruments, systems, and methods, and more particularly to instruments, systems, and methods including a ball and socket joint with a quick-locking and quick-releasing mechanism. Such instruments, systems, and methods can be used in various procedures, e.g., orthopedic or neurologic surgical procedures such as spinal fusion surgery.
Surgical procedures are used to treat and cure a wide range of diseases, conditions, and injuries. Surgery often requires access to internal tissue through open or minimally invasive surgical procedures. The term “minimally invasive” refers to all types of minimally invasive surgical procedures, including endoscopic, laparoscopic, arthroscopic, natural orifice intraluminal, and natural orifice transluminal procedures. Minimally invasive surgery can have numerous advantages compared to traditional open surgical procedures, including reduced trauma, faster recovery, reduced risk of infection, and reduced scarring.
Whether minimally invasive or not, there are a number of surgical procedures in which it can be desirable to form a working channel in a patient to provide access to a surgical site within the patient. One such example is orthopedic or neurologic surgical procedures, including, e.g., spinal fusion procedures where it can be desirable to form a working channel through a patient's tissue to access their vertebrae and/or the intervertebral discs disposed between adjacent vertebrae.
A variety of methods for providing such a working channel are known, including various devices that are anchored to a surgical table upon which a patient is disposed, devices that penetrate tissue without being anchored to any other structure, or devices that anchor to one or more anchors implanted in a patient's bone. In some arrangements a modular tissue retractor system can be employed in which one or more tissue retracting implements can be selectively coupled to a modular retractor body that is itself coupled to, for example, an implanted bone anchor.
Prior mechanisms for permitting polyaxial adjustment of tissue retracting implements relative to the retractor body can present challenges. For example, in some arrangements an expandable element coupled to the tissue retractor implement can be received within a socket formed in the retractor body. Such an arrangement can permit adjustment of the expandable element relative to the socket and selective locking of a particular orientation by actuation of the expandable element to interface with the walls of the socket. Actuation of the expandable element can be by rotation of a screw in some cases, and this can present challenges in that multiple rotations of the screw can be required to achieve acceptable locking levels that resist the forces imparted to the tissue retracting implements by abutting tissue. Further, in some cases the actuating screw can be coupled to the tissue retracting implement, such that a user might move the implement during actuation. Still further, operation of such an arrangement can be complex, e.g., actuation of the screw can be required to achieve any degree of locking, even provisional locking force that still allows some adjustment of tissue retracting implement positioning by a user.
Accordingly, there is a need for improved access devices, systems, and methods that can streamline the instrumentation and methodology of various surgical procedures. For example, there is a need for improved polyaxial restraint and locking of components of surgical retractor assemblies. Additionally, there is a need for locking assemblies that both enable easy assembly and polyaxial retention of retractor components while achieving acceptable lockout levels with simple operation.
Surgical instruments, systems, and methods are disclosed herein that provide improved polyaxial restraint and locking of components of surgical retractor assemblies. For example, the embodiments described herein provide selectively lockable ball-and-socket joints that can be used to couple, for example, tissue retracting implements to modular retractor bodies. The embodiments described herein can provide a number advantages over prior approaches. This can include, for example, the ability to quickly couple and decouple tissue retracting implements to a retractor body, the ability to impart a provisional locking or drag force to a coupled tissue retracting implement without requiring actuation of a locking element, e.g., a screw, and ability to achieve selective locking with sufficient locking strength with minimum movement, e.g., less than one rotation of a locking actuator.
In one aspect a ball and socket joint assembly includes a body defining a cavity and a distal opening to the cavity, a compression member disposed in the cavity, and an actuator shaft extending through a proximal end of the housing, the actuator shaft coupled to the compression member and permitting rotation and translation of the compression member in the cavity.
The distal opening an have a diameter larger than a diameter of a spherical portion of a connector and less than a diameter of an inner wall of the cavity proximal to the opening. The body can include an engagement feature extending into the cavity. A distal end of the compression member can include a collet configured to accept the spherical portion of the connector, and the collet can define an outer diameter that is configured to be larger than the diameter of the opening in the body when the spherical portion is disposed in the collet. The compression member can include an outer surface defining a corresponding engagement feature around at least a portion of the outer surface for receiving the engagement feature of the body for converting rotation of the compression member into translation of the compression member along a longitudinal axis of the body. The collet can be configured to be compressed against the opening of the cavity when the receiver is advanced distally against the opening.
In some instances, after inserting the spherical portion of the connector into the collet, rotation of the actuator shaft in a first direction rotates the compression member and engagement between the engagement feature and the locking channel advances the compression member distally, and, when advanced distally, the collet engages the opening of the cavity and locks the collet about the spherical portion. The cavity can define an outwardly tapered inner wall region extending proximally from the distal opening.
A distal end of the collet can define a plurality of resilient fingers each having a tapered exterior surface configured to interface with the outwardly tapered inner wall region of the cavity when the receiver is advanced distally such that the outwardly tapered inner wall region constricts the plurality of resilient fingers.
The engagement feature can be a cam pin and the corresponding engagement feature can include an angled locking channel sized and shaped to receive the cam pin. The angled locking channel can define a variable pitch to provide a variable mechanical advantage during rotation of the compression member with respect to the cam pin, when the cam pin is disposed in the angled locking channel.
The outer surface of the compression member can include an axial channel for receiving the cam pin and allowing the compression member to translate freely along the proximal-distal axis in the cavity, and the locking channel can extend from the axial channel and be angled proximally from the axial channel.
The assembly can include a spring disposed in the housing, the spring being coupled to the body and the receiving member for biasing the compression member towards the distal opening. In some instances, the spring is configured to urge the collet against the distal opening and impart a drag force on the spherical portion for resisting polyaxial movement of the spherical portion about the collet. The spring can be configured to urge the collet against the distal opening and impart a retaining force on the spherical portion.
In some instances, the engagement feature includes a threaded portion of the inner wall of the cavity, and the angled locking channel includes a corresponding threaded portion of the outer wall of the compression member, where the compression member is in threaded engagement with the body.
The collet can be configured to passively secure the spherical portion of the connector without engaging the opening of the body. In some instances, the collet is configured to extend distally beyond a maximum diameter location of the spherical portion of the connector. In some instances, the collet defines a distal opening having an inner diameter less than a maximum inner diameter of the collet. In some instances, the collet includes a central through-hole adapted to receive the actuator shaft.
Another example of the present disclosure is a surgical instrument having a retractor body configured to couple to an implantable anchor, with the retractor body including a first connector and a second connector each having a spherical portion, a first tissue manipulating implement coupled to the first connector of the retractor body and capable of polyaxial movement relative thereto, and a second tissue manipulating implement coupled to the second connector retractor body and capable of polyaxial movement relative thereto. Where each of the first and second tissue manipulating implements couples to the corresponding connector via a ball and socket joint assembly having aspects of the present disclosure, where each tissue manipulating implement includes the body of the ball and socket joint assembly. In some instances, the connector includes an extension post coupled to the retractor body. In some instances, the extension post pivots relative to the body.
Yet another example of the present disclosure is a method of assembling a surgical instrument including inserting a spherical portion of a connector into a collet of a compression member disposed within a cavity of a body, the connector being attached to an arm of a surgical retractor, the ball-shaped end passing through a distal opening to the cavity that has a diameter larger than a diameter of a spherical portion of a connector and less than a diameter of an inner wall of the cavity proximal to the opening, rotating an actuator shaft that is coupled to the compression member in a first direction, the actuator shaft rotating the compression member with respect to an engagement feature of the body that extends into the cavity, the engagement feature interfacing with the compression member such that the rotation of the compression member urges the compression member distally in the cavity, and continuing to rotate the actuator shaft until an outer surface of the collet is compressed against the opening of the cavity and an inner surface of the collet is compressed around the spherical portion to retain the spherical portion in the collet.
In some instances, inserting the spherical portion into the collet includes urging the compression member proximally against a spring force, where the spring force urges the compression member distally towards the opening after the inserting. In some instances, the spring force urges the collet distally against the distal opening and imparts a provisional retaining force to the spherical portion. In some instances, the provisional retaining force serves to impart a drag force on the spherical portion to resist polyaxial movement of the spherical portion about the collet.
Rotating the actuator shaft can include threading the compression member inside the cavity. In some instances, continuing to rotate the actuator shaft includes adjusting a degree of frictional resistance to polyaxial movement of the spherical portion in the collet. In some instances, the method further includes rotating the actuator shaft in a second direction to urge the compression member proximally in the cavity until the spherical portion can be removed from the collet and pass through the opening of the cavity.
Any of the features or variations described above can be applied to any particular aspect or embodiment of the present disclosure in a number of different combinations. The absence of explicit recitation of any particular combination is due solely to the avoidance of repetition in this summary.
This disclosure will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present disclosure is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
Additionally, to the extent that linear or circular dimensions are used in the description of the disclosed devices and methods, such dimensions are not intended to limit the types of shapes that can be used in conjunction with such devices and methods. Equivalents to such linear and circular dimensions can be determined for any geometric shape. Further, in the present disclosure, like-numbered components of the embodiments generally have similar features. Still further, sizes and shapes of the devices, and the components thereof, can depend at least on the anatomy of the subject in which the devices will be used, the size and shape of components with which the devices will be used, and the methods and procedures in which the devices will be used.
An exemplary method of using the assembly 100 of
The above described retractor assembly 106, in combination with the support instrument or anchor extension 102 and implanted anchor 104, can be used to, for example, widen an incision formed in a patient's skin and tissue to enable better access to a surgical site. By way of further example, in some embodiments these components can form an assembly that is anchored to a single implanted screw or anchor and provides medial-lateral tissue retraction to increase access for a variety of surgical procedures. Medially and laterally retracting skin and underlying tissue surrounding an incision can provide a wider opening and working channel between the tissue manipulating implements to access the patient's spine or intervertebral space. In some embodiments, the working channel can extend to encompass an adjacent anchor implanted in an adjacent vertebra. Once the tissue of the incision walls is retracted to form the working channel, any of a variety of surgical procedures can be performed by introducing one or more instruments through the working channel defined by the tissue manipulating implements of the retractor assembly. For example, procedures on the intervertebral disc space, such as disc replacement, discectomy, endplate preparation, fusion cage insertion, bone graft delivery, and the like can be performed by passing instruments or implants through the working channel.
Returning to
Generally, the support instrument can include an elongate body 108 with a laterally-extending fork formed at a distal end thereof that can interface with a narrowed neck of the anchor 104. The fork can include opposed projections that extend laterally from a distal portion of the elongate body and define a U-shaped or otherwise open-ended recess that can be sized to receive a portion of the implantable anchor 104. For example, the projections can be configured to fit around a proximal portion of a bone anchor that can be part of a modular mono- or polyaxial pedicle screw. Such anchors can include a generally cylindrical distal shank portion with threads for tapping into bone, as well as a narrowed neck proximal of the shank portion and a wider proximal head. The proximal head can be generally spherical or semi-spherical in shape and can be configured to couple with a receiver head before or after implantation in a patient's bone. The elongate body can also include a lock configured to exert a drag force on the head of the anchor to control polyaxial movement of the instrument 102 relative to the anchor 104. As shown in
Returning to
As noted above, the tissue retractor 106 can be configured to couple to a support instrument or anchor extension 102 and can be configured to slide along a length of such an instrument to adjust a height of the retractor relative to the implanted anchor 104. As shown in
In addition to adjusting a position of the retractor 106 along a length of the support instrument 102, a length of each of the tissue manipulating implements 204, 206 can also be adjusted. For example, in some embodiments the tissue manipulating implements 204, 206 can each include an extension 226, 228 that can be configured to translate relative to the tissue manipulating implements 204, 206. Proximally or distally translating either extension 226, 228 relative to the associated implement 204, 206 can change an overall length of the implement and, for example, can allow an implement to reach deeper into tissue even if the retractor 106 is mounted at a greater height above a patient's skin surface along a more proximal portion of the support instrument elongate body 108.
When assembled, with the expanding members 418, 420 disposed within the generally ball-shaped proximal ends 406, 408 in an un-locked (e.g., retracted or resting) position, the expanding members 418, 420 can be disposed within one of the sockets 402, 404 of the body 202 to enable a locking function. In use, as the locks 216, 218 are rotated relative to the arms 208, 210, they can advance the expanding member 420 farther into the ball-shaped proximal end 408 due to the threaded coupling between the arms 208, 210 and the locks 216, 218. Advancement of the locks 216, 218 into the ball-shaped proximal end 408 can cause the expanding member 418, 420 formed at a distal end of each lock to expand the petals 428 radially outward inside the sockets 402, 404. As the petals 428 of the ball-shaped proximal ends 406, 408 expand radially, they are urged into contact with the sidewalls of the sockets 402, 404. This can cause an increase in frictional force between the sockets 402, 404 and the ball-shaped proximal ends 406, 408 of the arms 208, 210. Further, upon sufficient advancement of the locks 216, 218, the force of the expanding members 418, 420 against the petals 428 can effectively lock the ball-shaped proximal ends 406, 408 in a given position and thereby prevent any movement of the arms 208, 210 or tissue manipulating implements 204, 206 coupled thereto.
The embodiment illustrated in
A ball and socket joint is one method for positioning a screw mounted retractor. Examples of the present disclosure provide for a ball and socket joint that includes structure for capturing and locking the ball orientation with sufficient force to resist reaction forces imparted by muscle/tissue. Additionally, the examples of the ball and socket joints can be easily assembled and disassembled in order to allow positioning of the retractor for the surgeon. Accordingly, the above described retractor assembly 106 can be constructed with an alternate polyaxial joint design, which replaces the polyaxial joint assembly 499 shown in
In some examples, the ball and socket joint assembly 500 includes a spring 560 disposed in the cavity 505 for distally biasing the compression member 530 against the lip 504 of the opening 509, as illustrated in
In some examples, the ball and socket joint assembly 500 includes an actuator shaft 518 extending proximally from the housing 501, with the actuator shaft 518 extending into the cavity 505 and coupled to the compression member 530. The actuator shaft 518 is able to rotate and translate with respect to the housing 501 and the actuator shaft 518 can be used to position the compression member 530 with respect to the cam pin 550. For example, when the compression member 530 is sprung distally, torque applied to the actuator shaft 518 can rotate the compression member 530 to use the cam pin 550 as a thread in the angled channel 539 and advance the compression member 530 distally to collapse the collet 508 around the ball-shaped end 520, creating a friction fit. This cam pin 539 and angled track 539 design can be replaced with a partial thread in some embodiments.
In some examples, and as illustrated, the collet 508 extends beyond and around a midpoint (i.e., a maximum diameter location) of the ball-shaped end 520, such that the collet 508 passively retains the ball-shaped end 520. Additionally, in some examples, the distal outer surface 507 of the collet 508 is sloped such that, when the collet 508 is advanced distally against the lip 504, the lip 504 imparts both a radially inward and proximal force on the collet 508 to retain the ball-shaped end 520 in the collet 508. This diameter d1 of the lip 504 can be smaller than the outer diameter d2 of the collet 508 at a location distal to the midpoint (i.e., a maximum diameter location) of the ball-shaped end 520. In some examples, and as illustrated, the lip 504 can include a conical or sloped region 506 to increase the surface area over which the distal outer surface 507 of the collet 508 engages the lip 504.
In
In some instances, the degree of torque applied to the actuator shaft 518 determines the strength of the friction fit between the collet 508 and the lip 504, which in turn defines the strength of the hold that the collet 508 has on the ball-shaped end 520. Accordingly, a user can tighten the actuator shaft 518 to completely lock the ball-shaped end 520 in place in the collet 508, or to a degree which still allows for some resisted polyaxial movement of the ball-shaped end 520 in the collet 508. In some instances, and as shown in
While a cam pin and track are used in the illustrated embodiments, a threaded connection can be used as well, provided the collet has an axial groove allowing the thread segment in the housing to travel freely. For example, the compression member 530 can be threaded into the housing 501 such that rotation of the compression member 530 translates the compression member 530 distally towards the lip 504 or proximally away from the lip 504. In operation, the actuator shaft 581 can be rotated to rotate the compression member 530 such that it is translated proximally to allow the ball-shaped end 520 to be received by the collet 508 and, afterwards, the actuator shaft 518 can be rotated in an opposite direction to rotate the compression member 530 such that the collet 508 is moved distally into contact with the lip 504 until the ball-shaped end 520 is locked and/or frictionally constrained by the collet 508. Alternatively, the compression member 530 can include an angled channel 538 without the axial channel 538 such that the rotation of the compression member 530 about the cam pin 550 translates the compression member 530 in the housing 501 between a proximal location where the collet 508 can accept the ball-shaped end 520 (e.g., as shown in
It should be noted that any ordering of method steps expressed or implied in the description above or in the accompanying drawings is not to be construed as limiting the disclosed methods to performing the steps in that order. Rather, the various steps of each of the methods disclosed herein can be performed in any of a variety of sequences. In addition, as the described methods are merely exemplary embodiments, various other methods that include additional steps or include fewer steps are also within the scope of the present disclosure.
The instruments disclosed herein can be constructed from any of a variety of known materials. Exemplary materials include those which are suitable for use in surgical applications, including metals such as stainless steel, titanium, nickel, cobalt-chromium, or alloys and combinations thereof, polymers such as PEEK, ceramics, carbon fiber, and so forth. The various components of the instruments disclosed herein can have varying degrees of rigidity or flexibility, as appropriate for their use. Device sizes can also vary greatly, depending on the intended use and surgical site anatomy. Furthermore, particular components can be formed from a different material than other components. One or more components or portions of the instrument can be formed from a radiopaque material to facilitate visualization under fluoroscopy and other imaging techniques, or from a radiolucent material so as not to interfere with visualization of other structures. Exemplary radiolucent materials include carbon fiber and high-strength polymers.
The devices and methods disclosed herein can be used in minimally-invasive surgery and/or open surgery. While the devices and methods disclosed herein are generally described in the context of spinal surgery on a human patient, it will be appreciated that the methods and devices disclosed herein can be used in any of a variety of surgical procedures with any human or animal subject, or in non-surgical procedures.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices described herein can be processed before use in a surgical procedure. First, a new or used instrument can be obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument can be placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and its contents can then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation can kill bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container can keep the instrument sterile until it is opened in the medical facility. Other forms of sterilization known in the art are also possible. This can include beta or other forms of radiation, ethylene oxide, steam, or a liquid bath (e.g., cold soak). Certain forms of sterilization may be better suited to use with different portions of the device due to the materials utilized, the presence of electrical components, etc.
One skilled in the art will appreciate further features and advantages based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Patent | Priority | Assignee | Title |
11668340, | Nov 27 2019 | MEDOS INTERNATIONAL SARL | Selectively lockable ball and socket joint |
Patent | Priority | Assignee | Title |
10076320, | Aug 31 2011 | Zimmer Biomet Spine, Inc. | Lateral retractor system and methods of use |
10463402, | Jul 13 2016 | DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL | Bone anchor assemblies and related instrumentation |
10792168, | Feb 06 2015 | Alphatec Spine, Inc. | Implant insertion instrument |
4874375, | Apr 13 1987 | Tissue retractor | |
5728046, | Jun 23 1995 | Aesculap AG | Surgical retractor |
5876332, | Jul 24 1997 | Technology Holding Company II | Surgical support member |
5899627, | Sep 12 1996 | Minnesota Scientific, Inc. | Clamp for retractor support |
5931777, | Mar 11 1998 | Tissue retractor and method for use | |
5944658, | Sep 23 1997 | Lumbar spinal fusion retractor and distractor system | |
6083154, | Oct 23 1997 | Sofamor S.N.C. | Surgical instrumentation and method for retracting and shifting tissues |
6234961, | Apr 15 1998 | PINE RIDGE HOLDINGS PTY LTD | Ball and socket interconnection and retractor assembly employing the same |
6254532, | May 22 1998 | CORONEO INC | Surgical apparatus and method |
6322500, | Dec 23 1996 | Smith & Nephew, Inc | Minimally invasive surgical apparatus |
6602190, | May 25 2001 | MINNESOTA SCIENTIFIC, INC | Multi-position spherical retractor holder |
6951538, | Jan 29 2001 | Depuy Spine, Inc | Retractor and method for spinal pedicle screw placement |
7179261, | Dec 16 2003 | MEDOS INTERNATIONAL SARL | Percutaneous access devices and bone anchor assemblies |
7491168, | Dec 18 2003 | Depuy Synthes Products, LLC | Surgical retractor systems and illuminated cannulae |
7611460, | Sep 19 2003 | INTEGRA LIFESCIENCES CORPORATION | Surgical support arm docking apparatus |
7918792, | Jan 04 2006 | Depuy Spine, Inc | Surgical retractor for use with minimally invasive spinal stabilization systems and methods of minimally invasive surgery |
7959564, | Jul 08 2006 | Pedicle seeker and retractor, and methods of use | |
8162827, | Jul 13 2009 | CUSTOM SPINE ACQUISITION, INC | Adjustable polyaxial tissue retractor |
8202216, | Mar 08 2007 | Warsaw Orthopedic, Inc. | Tissue retractor |
8394109, | Oct 23 2007 | Alphatec Spine, Inc | Systems and methods for spinal fixation |
8409087, | Apr 13 2009 | ZIMMER BIOMET SPINE, INC | Expandable retractor and methods incorporating the same |
8469960, | Oct 23 2007 | Alphatec Spine, Inc | Systems and methods for spinal fixation |
8535320, | Nov 10 2009 | NuVasive, Inc. | Method and apparatus for performing spinal surgery |
8636655, | Jan 19 2010 | Tissue retraction system and related methods | |
8668715, | Nov 14 2011 | CUSTOM SPINE ACQUISITION, INC | Cervical spine retractor |
8715175, | Jun 09 2010 | KARL STORZ SE & CO KG | Thoracic retractor |
8882661, | Sep 22 2006 | Alphatec Spine, Inc | Retractor |
8894573, | Aug 05 2009 | CTL Medical Corporation | Retractor component system and method comprising same |
8911442, | Oct 26 2011 | Alphatec Spine, Inc | Systems for vertebral adjustments and rod reduction |
8974381, | Apr 26 2011 | NuVasive, Inc | Cervical retractor |
9050146, | Nov 10 2009 | NuVasive, Inc | Method and apparatus for performing spinal surgery |
9078635, | Feb 02 2012 | TEDAN SURGICAL INNOVATIONS, LLC | Anterior hip replacement retractor assembly |
9216016, | Sep 06 2012 | Medacta International SA | Surgical device for minimally invasive spinal fusion and surgical system comprising the same |
9307972, | May 10 2011 | NuVasive, Inc | Method and apparatus for performing spinal fusion surgery |
9386971, | Aug 31 2011 | NuVasive, Inc. | Systems and methods for performing spine surgery |
9414828, | May 01 2014 | ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC | Integrated retractor-distractor system for use with modular bone screws |
9545250, | May 10 2013 | SPINE WAVE, INC | Kit of parts for use in retracting body tissue |
9572560, | Aug 31 2011 | ZIMMER BIOMET SPINE, INC | Lateral retractor system and methods of use |
9649099, | Aug 31 2011 | NuVasive, Inc. | Systems and methods for performing spine surgery |
9693762, | Mar 03 2014 | Alphatec Spine, Inc | Soft tissue retractor |
9700293, | Aug 18 2015 | Globus Medical, Inc.; Globus Medical, Inc | Devices and systems for surgical retraction |
9801667, | Nov 16 2015 | NEXUS SPINE, L L C | Instruments, tools, and methods for presson pedicle screws |
9844400, | Oct 19 2012 | Alphatec Spine, Inc | Instrument and method for provisionally locking a polyaxial screw |
9907583, | Nov 12 2013 | Alphatec Spine, Inc | Spondylolisthesis reduction system |
9962147, | Aug 13 2014 | NuVasive, Inc. | Minimally disruptive retractor and associated methods for spinal surgery |
20050131408, | |||
20050228400, | |||
20050245929, | |||
20060052671, | |||
20070093823, | |||
20070213715, | |||
20080021285, | |||
20090093684, | |||
20090105547, | |||
20090149885, | |||
20090187080, | |||
20090216087, | |||
20090254187, | |||
20100160975, | |||
20100317928, | |||
20110004248, | |||
20110034779, | |||
20110137345, | |||
20120089150, | |||
20120179211, | |||
20120232350, | |||
20140074166, | |||
20140194697, | |||
20140277163, | |||
20140296917, | |||
20150148853, | |||
20150313585, | |||
20160074029, | |||
20160106408, | |||
20160296220, | |||
20160354073, | |||
20170014117, | |||
20170014118, | |||
20170014119, | |||
20170105770, | |||
20170135735, | |||
20180116758, | |||
20180303473, | |||
20190090864, | |||
20190090979, | |||
WO2010121291, | |||
WO2016131077, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 27 2019 | Medos International Sari | (assignment on the face of the patent) | / | |||
Jul 14 2020 | SMITH, KEANAN R | DEPUY SYNTHES PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054450 | /0938 | |
Oct 27 2020 | DEPUY SYNTHES PRODUCTS, INC | MEDOS INTERNATIONAL SARL | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054450 | /0934 |
Date | Maintenance Fee Events |
Nov 27 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Dec 21 2024 | 4 years fee payment window open |
Jun 21 2025 | 6 months grace period start (w surcharge) |
Dec 21 2025 | patent expiry (for year 4) |
Dec 21 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 21 2028 | 8 years fee payment window open |
Jun 21 2029 | 6 months grace period start (w surcharge) |
Dec 21 2029 | patent expiry (for year 8) |
Dec 21 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 21 2032 | 12 years fee payment window open |
Jun 21 2033 | 6 months grace period start (w surcharge) |
Dec 21 2033 | patent expiry (for year 12) |
Dec 21 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |