The present disclosure relates to methods and apparatuses for making elastomeric laminates with deactivated regions that may be used as components of absorbent articles. The methods and apparatuses may be configured with a pattern roll and a pressing surface adjacent the pattern roll. The pattern roll may include a bonding surface and a protuberance. As the pattern roll rotates, first and second substrates are welded together between the bonding surface and the pressing surface to create bonds between the first and second substrates. As the pattern roll continues to rotate, the first and second substrates and one or more stretched elastic strands are compressed between the pressing surface and the protuberance to sever the one or more stretched elastic strands to create deactivated regions in the elastomeric laminate. The processes and apparatuses may be configured to help prevent ends of the severed elastic strands from retracting in an uncontrolled fashion.
|
1. A method for making an elastomeric laminate, the method comprising steps of:
rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising: first bonding elements extending outward from an outer circumferential surface of the pattern roll each comprising a bonding surface; discrete first channels in each bonding surface of a depth not entirely through the first bonding elements, wherein the discrete first channels are circumferentially spaced apart from each other and spaced apart from each other axially in the cross direction, and a protuberance extending axially in the cross direction between two of the discrete first channels;
providing a pressing surface adjacent the pattern roll;
providing an elastic strand, wherein the elastic strand defines a first cross sectional area in an unstretched state;
stretching the elastic strand, wherein the stretched elastic strand defines a second cross sectional area that is less than the first cross sectional area;
advancing a first substrate and a second substrate with the stretched elastic strand between the first substrate and the second substrate in a machine direction;
partially wrapping the first substrate, the second substrate, and the stretched elastic strand on the pattern roll to cause the first substrate and the second substrate to press against each other and against the stretched elastic strand, wherein the stretched elastic strand extends through at least one discrete first channel;
welding the first substrate and the second substrate together between a bonding surface and the pressing surface to create bonds between the first substrate and the second substrate, wherein the bonds are separated from each other in the cross direction by the stretched elastic strand positioned in the at least one discrete first channel to form a first sleeve surrounding the stretched elastic strand, wherein the first sleeve defines a third cross sectional area that is less than the first cross sectional area and equal to or greater than the second cross sectional area;
compressing the first substrate, the second substrate, and the elastic strand between the pressing surface and the protuberance to sever the stretched elastic strand while the first substrate, the second substrate, and the elastic strand are partially wrapped on the pattern roll, wherein the severed elastic strand retracts and expands to create a frictional lock between the first sleeve and the severed elastic strand.
11. A method for making absorbent articles, the method comprising steps of:
rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising: first bonding elements extending outward from an outer circumferential surface of the pattern roll each comprising a bonding surface; discrete first channels in each bonding surface of a depth not entirely through the first bonding elements, wherein the discrete first channels are spaced apart from each other circumferentially and spaced apart from each other axially in the cross direction; and a protuberance extending axially in the cross direction between two of the discrete first channels;
providing a pressing surface adjacent the pattern roll;
providing elastic strands, wherein each elastic strand defines a first cross sectional area in an unstretched state;
stretching the elastic strands, wherein each stretched elastic strand defines a second cross sectional area that is less than the first cross sectional area;
forming an elastomeric laminate by positioning the stretched elastic strands between a first substrate and a second substrate, wherein the stretched elastic strands are separated from each other in the cross direction;
advancing the elastomeric laminate in a machine direction;
partially wrapping the elastomeric laminate on the pattern roll to cause the first substrate and the second substrate to press against each other and against the stretched elastic strands, wherein the stretched elastic strands extend through respective discrete first channels;
welding the first substrate and the second substrate together between a bonding surface and the pressing surface to form bonds between the first substrate and the second substrate, wherein the bonds are separated from each other in the cross direction by the stretched elastic strands positioned in the discrete first channels to form first sleeves surrounding the stretched elastic strands, wherein each first sleeve defines a third cross sectional area that is less than the first cross sectional area and equal to or greater than the second cross sectional area; and
forming a deactivated region in the elastomeric laminate positioned along the machine direction between elasticized regions by compressing the first substrate, the second substrate, and at least one stretched elastic strand between the pressing surface and the protuberance to sever the at least one stretched elastic strand while the elastomeric laminate is partially wrapped on the pattern roll, wherein the at least one severed elastic strand retracts and expands to create a frictional lock between the first sleeve and the at least one severed elastic strand.
2. The method of
3. The method of
4. The method of
5. The method of
9. The method of
10. The method of
12. The method of
13. The method of
14. The method of
15. The method of
17. The method of
18. The method of
providing an absorbent chassis comprising a topsheet, a backsheet, and an absorbent core disposed between the topsheet and the backsheet, the absorbent chassis further comprising a first end region and an opposing second end region separated from each other by a central region, and having a longitudinal axis and a lateral axis; and
bonding the first end region of the absorbent chassis with the deactivated region of the elastomeric laminate.
19. The method of
20. The method of
folding each chassis along the lateral axis to position the elastomeric laminate into a facing relationship with the second elastomeric laminate; and
bonding the elastomeric laminate with the second elastomeric laminate to form pant diaper side seams.
|
The present disclosure relates to methods for manufacturing absorbent articles, and more particularly, to apparatuses and methods for making elastomeric laminates that may be used as components of absorbent articles.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and/or otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. In some cases, individual components created from an advancing web or webs are combined with other individual components created from other advancing webs. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, leg cuffs, waist bands, absorbent core components, front and/or back ears, fastening components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, stretch side panels, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles.
Some absorbent articles have components that include elastomeric laminates. Such elastomeric laminates may include an elastic material bonded to one or more nonwovens. The elastic material may include an elastic film and/or elastic strands. In some laminates, a plurality of elastic strands are joined to a nonwoven while the plurality of strands are in a stretched condition so that when the elastic strands relax, the nonwoven gathers between the locations where the nonwoven is bonded to the elastic strands, and in turn, forms corrugations. The resulting elastomeric laminate is stretchable to the extent that the corrugations allow the elastic strands to elongate.
In some absorbent article assembly operations, the elasticity of regions of an elastomeric laminate may be removed or deactivated by cutting elastic strands in the regions. For example, some diaper pant embodiments are configured with an absorbent chassis connected with front and back elastic belts, wherein opposing end regions of the front and back belts are connected with each other at side seams. In some configurations, diaper pants may include graphics in certain regions of the belts connect with the absorbent chassis, and the absence of elasticity in such regions may allow for reduced distortion of graphics located in those regions. As such, the elasticity of the front and back belts may be removed in regions where the absorbent chassis connects with the belts. Thus, in some converting configurations adapted to assemble such diaper pants, stretched elastic strands are bonded between two continuous nonwoven webs to form an elastomeric laminate. Regions of the elastic strands may then be intermittently deactivated along the length of the elastomeric laminate by cutting the elastic strands. Subsequent to deactivating the elastic strands, the elastomeric laminate may be subjected to additional handling and converting operations.
In some manufacturing configurations, hot melt adhesives are used to adhere stretched elastic stands to advancing substrates to create elastomeric laminates. However, in attempts to eliminate and reduce the costs and complexities associated with the use of adhesives, some assembly processes may be configured to apply mechanical bonds with heat and pressure to trap the stretched elastic strands between two substrates. Such mechanical bonds may be created, for example, by advancing the substrates and elastic strands between an ultrasonic horn and an anvil, such as disclosed in U.S. Pat. No. 6,291,039 and European Patent Publication No. EP 3 092 997 B1.
However, utilizing mechanical bonding techniques to create elastomeric laminates with unbonded regions and subsequently cutting stretched elastic strands in the unbonded regions to create deactivated regions in the elastomeric laminates may present certain challenges. For example, the ends of the cut elastic stands may snap back in an uncontrolled fashion and consequently may end up in undesired locations within the elastomeric laminate. In some instances, ends of cut elastic strands may form of a lump of elastic material within the elastomeric laminate, which may negatively impact comfort and appearance of an assembled product. Consequently, it would be beneficial to provide methods and apparatuses that are configured to assemble elastomeric laminates in such a way to maximize the aesthetic appearance of such laminates when placed in an assembled product and/or reduce handling of the elastomeric laminates after mechanically bonding the elastics therein.
In one form, a method for making an elastomeric laminate, the method comprising the steps of: rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising: a bonding surface; discrete first channels in the bonding surface, wherein the discrete first channels are circumferentially spaced apart from each other; and a protuberance extending axially in the cross direction between two of the discrete first channels; providing a pressing surface adjacent the pattern roll; providing an elastic strand, wherein the elastic strand defines a first cross sectional area in an unstretched state; stretching the elastic strand, wherein the stretched elastic strand defines a second cross sectional area that is less than the first cross sectional area; advancing a first substrate and a second substrate with the stretched elastic strand between the first substrate and the second substrate in a machine direction on the pattern roll, wherein the stretched elastic strand extends through at least one discrete first channel; welding the first substrate and the second substrate together between the bonding surface and the pressing surface to create bonds between the first substrate and the second substrate, wherein the bonds are separated from each other in the cross direction by the stretched elastic strand positioned in the at least one discrete first channel to form a first sleeve surrounding the stretched elastic strand, wherein the first sleeve defines a third cross sectional area that is less than the first cross sectional area and equal to or greater than the second cross sectional area; compressing the first substrate, the second substrate, and the elastic strand between the pressing surface and the protuberance to sever the stretched elastic strand, wherein the severed elastic strand retracts and expands to create a frictional lock between the first sleeve and the severed elastic strand.
In another form, a method for making absorbent articles, the method comprising the steps of: rotating a pattern roll about an axis of rotation extending axially in a cross direction, the pattern roll comprising: a bonding surface; discrete first channels in the bonding surface, wherein the discrete first channels are spaced apart from each other circumferentially and in the cross direction; and a protuberance extending axially in the cross direction between two of the discrete first channels; providing a pressing surface adjacent the pattern roll; providing elastic strands, wherein each elastic strand defines a first cross sectional area in an unstretched state; stretching the elastic strands, wherein each stretched elastic strand defines a second cross sectional area that is less than the first cross sectional area; forming an elastomeric laminate by positioning the stretch elastic strands between a first substrate and a second substrate, wherein the stretched elastic strands are separated from each other in the cross direction; advancing the elastomeric laminate in a machine direction on the pattern roll, wherein the stretched elastic strands extend through respective discrete first channels; welding the first substrate and the second substrate together between the bonding surface and the pressing surface to form bonds between the first substrate and the second substrate, wherein the bonds are separated from each other in the cross direction by the stretched elastic strands positioned in the discrete first channels to form first sleeves surrounding the stretched elastic strands, wherein each first sleeve defines a third cross sectional area that is less than the first cross sectional area and equal to or greater than the second cross sectional area; and forming a deactivated region in the elastomeric laminate positioned along the machine direction between elasticized regions by compressing the first substrate, the second substrate, and at least one elastic strand between the pressing surface and the protuberance to sever the at least one stretched elastic strand, wherein the at least one severed elastic strand retracts and expands to create a frictional lock between the first sleeve and the at least one severed elastic strand.
In yet another form, an apparatus for making an elastomeric substrate, the apparatus comprising: a pattern roll adapted to rotate about an axis of rotation extending axially in a cross direction, the pattern roll comprising: a bonding surface positioned at a first radial distance R1 from the axis of rotation; discrete first channels in the bonding surface, wherein the discrete first channels are spaced apart from each other circumferentially and in the cross direction, the first channels comprising a first width W1 extending axially along the axis of rotation and comprising a first depth D1 extending radially inward from the bonding surface; and a protuberance extending axially along the axis of rotation between two of the discrete first channels, wherein the protuberance extends radially outward from the axis of rotation to a second radial distance R2 wherein R2>(R1−D1); and an ultrasonic horn comprising an energy transfer surface; the ultrasonic horn positioned adjacent the pattern roll to define a nip between the pattern roll and the energy transfer surface.
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. Absorbent articles can comprise sanitary napkins, tampons, panty liners, interlabial devices, wound dressings, wipes, disposable diapers including taped diapers and diaper pants, inserts for diapers with a reusable outer cover, adult incontinent diapers, adult incontinent pads, and adult incontinent pants. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. Nonwovens do not have a woven or knitted filament pattern.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
The term “taped diaper” (also referred to as “open diaper”) refers to disposable absorbent articles having an initial front waist region and an initial back waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about the lateral centerline with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers are disclosed in various suitable configurations U.S. Pat. Nos. 5,167,897, 5,360,420, 5,599,335, 5,643,588, 5,674,216, 5,702,551, 5,968,025, 6,107,537, 6,118,041, 6,153,209, 6,410,129, 6,426,444, 6,586,652, 6,627,787, 6,617,016, 6,825,393, and 6,861,571; and U.S. Patent Publication Nos. 2013/0072887 A1; 2013/0211356 A1; and 2013/0306226 A1, all of which are incorporated by reference herein.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed or pre-fastened by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, rear waist fastened or seamed). Example diaper pants in various configurations are disclosed in U.S. Pat. Nos. 4,940,464; 5,092,861; 5,246,433; 5,569,234; 5,897,545; 5,957,908; 6,120,487; 6,120,489; 7,569,039 and U.S. Patent Publication Nos. 2003/0233082 A1; 2005/0107764 A1, 2012/0061016 A1, 2012/0061015 A1; 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1, all of which are incorporated by reference herein.
The present disclosure relates to methods and apparatuses for manufacturing absorbent articles, and in particular, for making elastomeric laminates with deactivated regions that may be used as components of absorbent articles. The methods and apparatuses according to the present disclosure may be configured with a pattern roll and a pressing surface adjacent the pattern roll. The pattern roll may be adapted to rotate about an axis of rotation extending axially in a cross direction, and the pressing surface may be configured as an energy transfer surface of an ultrasonic horn. The pattern roll may include a bonding surface and discrete first channels in the bonding surface, wherein the discrete first channels are circumferentially spaced apart from each other. The pattern roll may also include a protuberance extending axially in the cross direction between two of the discrete first channels. As discussed in more detail below, the assembly process utilizes elastic strands that define a first cross sectional area in an unstretched state, and the elastic strands are stretched to define a second cross sectional area that is less than the first cross sectional area. The first and second substrates with the stretched elastic strands therebetween advance in a machine direction on the pattern roll, wherein stretched elastic strands extend through the discrete first channels. As the pattern roll rotates, the first substrate and the second substrate are welded together between the bonding surface and the pressing surface to create bonds between the first and second substrates. The bonds are separated from each other in the cross direction by the stretched elastic strands positioned in respective discrete first channels to form first sleeves surrounding the stretched elastic strands. The first sleeves may each define a cross sectional area that is less than the first cross sectional area and equal to or greater than the second cross sectional area. As the pattern roll continues to rotate, the first substrate, the second substrate, and one or more stretched elastic strands are compressed between the pressing surface and the protuberance to sever the one or more stretched elastic strands to create deactivated regions in the elastomeric laminate. In turn, the one or more severed elastic strands retract and expand to create a frictional lock between the first sleeves and the one or more severed elastic strands. As such, the frictional lock prevents the severed elastic strand from continuing to retract.
As discussed in more detail below, the processes and apparatuses herein may also be configured to help prevent ends of the severed elastic strands from snapping back or retracting in an uncontrolled fashion. For example, during the assembly process, the first substrate, the second substrate, and the stretched elastic strands may be wrapped on the rotating pattern roll. In turn, tension exerted on the first and second substrates force the substrates against the pattern roll, and thus, may help to press and hold the stretched elastic strands in position between the first and second substrates. Thus, as the stretched elastic strands are severed, the ends of the severed elastic strands may tend to retract or snap back at a relatively slower and/or controlled rate. In some configurations, the pattern roll may include second discrete channels that may be circumferentially positioned between first discrete channels and/or between first discrete channels and the protuberance. The discrete second channels may also be wider and and/or deeper than the first discrete channels. As the pattern roll rotates, the first substrate and the second substrate are welded together between the bonding surface and the pressing surface to create bonds between the first and second substrates, wherein the bonds are separated from each other in the cross direction by the stretched elastic strands positioned in respective second channels to form second sleeves surrounding the stretched elastic strands. The second sleeves may each define a cross sectional area that is greater than the cross sectional area of a first sleeve. Thus, the ends of the severed elastic strands may retract through the second sleeves while at the same time being guided along the machine direction by the second sleeves while retracting.
With continued reference to
As shown in
As shown in
As previously mentioned, the diaper pant 100P may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material. The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136.
Also described above, the diaper pant 100P may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art. Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
As mentioned above, the diaper pant 100P may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 A1 and 2004/0097895 A1.
As previously mentioned, the diaper 100P may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; and U.S. Patent Publication No. 2009/0312730 A1.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
As previously mentioned, the ring-like elastic belt 104 may be defined by a first elastic belt 106 connected with a second elastic belt 108. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer substrate layer 162 and the inner substrate layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, films, or panels extending along the lengths of the elastic belts. As shown in
In some configurations, the first elastic belt 106 and/or second elastic belt 108 may define curved contours. For example, the inner lateral edges 107b, 109b of the first and/or second elastic belts 106, 108 may include non-linear or curved portions in the first and second opposing end regions. Such curved contours may help define desired shapes to leg opening 112, such as for example, relatively rounded leg openings. In addition to having curved contours, the elastic belts 106, 108 may include elastic strands 168, 172 that extend along non-linear or curved paths that may correspond with the curved contours of the inner lateral edges 107b, 109b.
As previously mentioned, apparatuses and methods according to the present disclosure may be utilized to produce elastomeric laminates that may be used to construct various types of absorbent article components, such as elastic belts, leg cuffs, and the like. For example,
As discussed in more detail below, the converting apparatuses 300 may include metering devices arranged along a process machine direction MD, wherein the metering devices may be configured to stretch the advancing elastic material and/or join stretch elastic material with one or more advancing substrates. In some configurations, an upstream metering device may comprise an overend unwind device and/or a beam of elastic strands wound thereon. During operation, elastic material may advance in a machine direction from an upstream metering device to a downstream metering device to be joined with one or more advancing substrates to form an elastomeric laminate. The elastomeric laminate is partially wrapped onto a pattern roll adjacent a pressing surface. The pattern roll rotates and advances the elastomeric laminate between the pattern roll and the pressing surface, wherein bonds are applied to the first substrate and the second substrate to secure discrete lengths of the stretched elastic strands between the first and second substrates. The discrete bonds may be arranged intermittently along the machine direction. In some configurations, bonds may be separated from each other in a cross direction by an elastic strand. The pattern roll and pressing surface also operate to remove the elasticity of discrete regions of the elastomeric laminate by cutting one or more elastic strands in the discrete regions. It is to be appreciated that the apparatuses and methods of assembly of elastomeric laminates and absorbent articles described herein and illustrated in the accompanying drawings are non-limiting example configurations. The features illustrated or described in connection with one non-limiting configuration may be combined with the features of other non-limiting configurations. Such modifications and variations are intended to be included within the scope of the present disclosure.
As shown in
It is to be appreciated that the beam 314 may be configured in various ways and with various quantities of elastic strands. Example beams, also referred to as warp beams, that may be used with the apparatus and methods herein are disclosed in U.S. Pat. Nos. 4,525,905; 5,060,881; and 5,775,380; and U.S. Patent Publication No. 2004/0219854 A1. Although
In some configurations, one or more of the elastic strands 316 advancing from the beam 314 may also include a spin finish 320 located on outer surfaces of the elastics strands. It is to be appreciated the elastic strands 316 may include various types of spin finish 320, also referred herein as yarn finish, configured as coating on the elastic strands 316 that may be intended to help prevent the elastics strands from adhering to themselves, each other, and/or downstream handling equipment. In some configurations, a spin finish may include various types of oils and other components, such as disclosed for example in U.S. Pat. Nos. 8,377,554; 8,093,161; and 6,821,301. In some configurations, a spin finish may include various types of silicone oils, such as for example, polydimethylsiloxane. In some configurations, a spin finish may include various types of mineral oils. It is to be appreciated that the amount of spin finish applied to elastic strands may be optimized depending on the process configuration in which the elastic strands may be used. For example, in process configurations wherein elastic strands have limited contact or do not contact downstream handling equipment, such as idlers, the amount of spin finish may be selected to help prevent the elastics strands from adhering to themselves and/or each other while wound on a beam without regard to whether elastic strands would adhere to downstream handling equipment. As such, it is to be appreciated that the elastic strands herein may include various amounts of spin finish that may be expressed in various ways. For example, a quantity of 10 grams of spin finish per 1 kilogram of elastic strand may be expressed as 1% spin finish. In some configurations, an elastic strand may include about 0.1% spin finish. In some configurations, a strand may include from about 0.01% to about 10% spin finish, specifically reciting all 0.01% increments within the above-recited range and all ranges formed therein or thereby.
As discussed above, the elastic strands 316 advancing from the rotating beam 314 may also include a spin finish 320, and as such, the apparatuses herein may be configured to bond the elastic strands 316 between the substrates 306, 308 without having to remove the spin finish 320 before joining the elastic strands 316 with the substrates 306, 308. It is also to be appreciated that the methods and apparatuses herein may also be configured to remove the spin finish 320 from the elastic strands 316. Examples of spin finish removal processes and apparatuses are disclosed in U.S. Provisional Patent Application No. 62/483,965, which is incorporated by reference herein. In addition, the elastomeric laminates 302 herein may be constructed with or without adhesives between the first and second substrates 306, 308. In addition, it is to be appreciated that the bonding methods and apparatuses herein may be utilized in conjunction with other bonding methods and apparatuses, such as disclosed in U.S. Patent Application Nos. 62/436,589; 62/553,149; and 62/553,171, which are incorporated by reference herein.
Although the elastomeric laminate assembly process may utilize elastic strands supplied from a beam, it is to be appreciated that the elastic strands may also be supplied with various types of elastic unwinder configurations, such as disclosed in U.S. Pat. Nos. 6,676,054; 7,878,447; 7,905,446; and 9,156,648, all of which are incorporated by reference herein.
Referring again to
With continued reference to
Still referring to
With continued reference to
It is to be appreciated that the bond applicator 400 may be configured in various ways, such as with heated or unheated patterned and anvil rolls and/or ultrasonic bonding devices. For example, the bond applicator 400 schematically shown in
As discussed above, during the assembly operation, the elastomeric laminate 302 may be partially wrapped onto the pattern roll 402. As shown in
It is to be appreciated that the pressing surface 404 may be configured in various ways. For example, as shown in
It is to be appreciated that aspects of the ultrasonic bonding devices 418 may be configured in various ways, such as for example linear or rotary type configurations, and such as disclosed for example in U.S. Pat. Nos. 3,113,225; 3,562,041; 3,733,238; 5,110,403; 6,036,796; 6,508,641; and 6,645,330. In some configurations, the ultrasonic bonding device 418 may be configured as a linear oscillating type sonotrode, such as for example, available from Herrmann Ultrasonic, Inc. In some configurations, the sonotrode may include a plurality of sonotrodes nested together in the cross direction CD.
Although the bond applicator 400 is shown in
It is to be appreciated that the apparatuses and methods herein may be configured to create various configurations of bonds 348 in the elastomeric laminate 302. For example, as previously mentioned, the pattern roll 402 may include one or more bonding elements 412 protruding radially outward from the pattern roll 402, wherein each bonding element 412 includes a bonding surface 410, such as shown for example in
With continued reference to
As shown in
As previously mentioned, the pattern roll 402 may include first channels 422a that are sized to create first sleeves 358a that surround discrete lengths of stretched elastic strands 316. In turn, a frictional lock may be applied between a portion of the elastic strand 316 and the first sleeves 358a by releasing tension from the stretched elastic strand 316. The frictional lock acts to hold and/or secure a portion of the elastic strand 316 in a fixed position relative to the first and second substrates 306, 308. For the purposes of a general explanation,
Turning next to
In some configurations, no adhesive may be applied to and/or present between the elastic strand 316 and the first sleeves 358a. It is also to be appreciated that in some configurations, adhesive may be applied to and/or present between the elastic strand 316 and the first sleeves 358a to help the frictional lock hold the discrete length of the elastic strand 316 in a fixed position with the first and second substrates 306, 308. In some configurations, adhesive and the frictional lock in the first sleeves 358a may share the load exerted by elastic strand 316. In some configurations, adhesive positioned on the elastic strand 316 may increase the coefficient of friction between the elastic strand 316 and the first sleeve 358a. It is to be appreciated that various quantities of adhesive may be present in the first sleeve 358a, such as for example, about 10 gsm or less.
As discussed above, second channels 422b in the pattern roll 402 may be configured to create second sleeves 358b configured to create second sleeves 358b that are sized to allow the elastic strands 316 to move relative to the first and second substrates 306, 308 as the elastic strands 316 stretch and contract along machine direction MD. The second sleeve 358b may also help hold or guide the elastic strands 316 in desired positions along the cross direction CD as the elastic strands 316 stretch and contract along machine direction MD. For example, the elastic strand 316 shown in
It is also to be appreciated that the elastic strands 316 herein bonded in accordance with the methods described herein may also be constructed from one or more filaments 360. For example,
As previously mentioned with reference to
As discussed above with reference to
As discussed above with reference to
As shown in
As shown in
It is to be appreciated that different components may be used to construct the elastomeric laminates 302 in accordance with the methods and apparatuses herein. For example, the first and/or second substrates 306, 308 may include nonwovens and/or films and may be constructed from various types of materials, such as plastic films; apertured plastic films; woven or nonwoven webs of natural materials, such as wood or cotton fibers; synthetic fibers, such as polyolefins, polyamides, polyester, polyethylene, or polypropylene fibers or a combination of natural and/or synthetic fibers; or coated woven or nonwoven webs; polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material.
It is also to be appreciated that the strands 316 and/or filaments 360 herein may define various different cross-sectional shapes. For example, in some configurations, strands 316 or filaments 360 may define circular, oval, or elliptical cross sectional shapes or irregular shapes, such as dog bone and hourglass shapes. In addition, the elastic strands 316 may be configured in various ways and with various decitex values. In some configurations, the elastic strands 316 may be configured with decitex values ranging from about 10 decitex to about 500 decitex, specifically reciting all 1 decitex increments within the above-recited range and all ranges formed therein or thereby.
It is to be appreciated that the bond applicator 400 herein may be configured in various ways with various features described herein to assemble elastomeric laminates 302. For example, as shown in
As discussed above, the pattern roll 402 includes a protuberance 416 that engages the pressing surface 404 to intermittently sever one or more elastic strands 316 to create deactivated regions 350 in the elastomeric laminate 302. In some configurations, the one or more elastic strands 316 may be severed downstream of the pressing surface 404. For example, as shown in
It is to be appreciated that various configurations of cutting rolls 428 can be used with the apparatuses and methods herein. Such cutting roll configurations may include features of the cutting blades/units disclosed, for example, in U.S. Pat. Nos. 5,393,360; 7,708,849; 7,861,756; 7,777,094; and 8,440,043; and U.S. Patent Publication No. 2013/0261589 A1, which are all incorporated by reference herein. As such, the cutting rolls may be configured with die knife, flexible blade, and/or compression roll features, and may also include additional features to control knife-anvil gaps and/or force.
As discussed above, the pattern roll 402 may include one or more protuberances 416 that may be configured in various ways with various different sizes and/or shapes. For example as shown in
It is to be appreciated that the apparatuses 300 herein may be configured in various ways with various features described herein to assemble elastomeric laminates 302 having various stretch characteristics. For example, the apparatus 300 may be configured to assemble elastomeric laminates 302 with elastic strands 316 unwound from more than one beam 314 and/or in combination with elastic stands supplied from an overend unwinder. The elastic strands 316 may be joined with the first and second substrates 306, 308 such that the elastomeric laminate 302 may have different stretch characteristics in different regions along the cross direction CD. For example, when the elastomeric laminate 302 is elongated, the first elastic strands 316 may exert contraction forces in the machine direction MD that are different from contraction forces exerted by the second elastic strands 316. Such differential stretch characteristics can be achieved by stretching the first elastic strands 316 more or less than the second elastic strands 316 before joining the elastic strands with the first and second substrates 306, 308. It is also appreciated that the elastic strands 316 may have various different material constructions and/or decitex values to create elastomeric laminates 302 having different stretch characteristics in different regions. In some configurations, the elastomeric laminate may have regions where the elastic strands 316 are spaced relatively close to one another in the cross direction CD and other regions where the elastic strands 316 are spaced relatively farther apart from each other in the cross direction CD to create different stretch characteristics in different regions. In some configurations, the elastic strands 316 may be supplied on the beam 314 in a stretched state, and as such, may not require additional stretching (or may require relatively less additional stretching) before being combined with the first substrate 306 and/or the second substrate 308.
As previously mentioned, the first substrate and second substrate 306, 308 herein may be defined by two discrete substrates or may be defined by folded portions of a single substrate. In addition, the second metering device 312 may also be configured as the bond applicator 400. For example, as shown in
It is to be appreciated that the elastomeric laminates 302 may be used to construct various types of absorbent article components. For example, the elastomeric laminates 302 may be used as a continuous length of elastomeric belt material that may be converted into the first and second elastic belts 106, 108 discussed above with reference to
This application claims the benefit of U.S. Provisional Application Nos. 62/436,589, filed on Dec. 20, 2016; 62/483,965, filed on Apr. 11, 2017; 62/553,538, filed on Sep. 1, 2017; 62/553,149, filed on Sep. 1, 2017; 62/553,171, filed on Sep. 1, 2017; and 62/581,278, filed on Nov. 3, 2017, the entireties of which are all incorporated by reference herein.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Schneider, Uwe, Tameishi, Kazuaki
Patent | Priority | Assignee | Title |
11690767, | Aug 26 2014 | Curt G. Joa, Inc. | Apparatus and methods for securing elastic to a carrier web |
11701268, | Jan 29 2018 | Curt G. Joa, Inc. | Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product |
11744744, | Sep 05 2019 | Curt G. Joa, Inc. | Curved elastic with entrapment |
11925538, | Jan 07 2019 | Curt G. Joa, Inc. | Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product |
Patent | Priority | Assignee | Title |
10190244, | Jul 31 2015 | The Procter & Gamble Company | Forming belt for shaped nonwoven |
10596045, | Jun 22 2015 | Zuiko Corporation | Composite stretchable member, wearable article, and method for producing wearable article |
10792194, | Aug 26 2014 | CURT G JOA, INC | Apparatus and methods for securing elastic to a carrier web |
3113225, | |||
3434189, | |||
3508722, | |||
3562041, | |||
3575782, | |||
3733238, | |||
3860003, | |||
3871378, | |||
4251587, | Jun 29 1977 | Mitsubishi Rayon Company, Limited | Sheet material and method of producing the same |
4333979, | Aug 18 1980 | Kimberly-Clark Worldwide, Inc | Soft, bulky, lightweight nonwoven web and method of producing; the web has both fused spot bonds and patterned embossments |
4525905, | Jul 18 1981 | Karl Mayer Textilmaschinenfabrik GmbH | Apparatus for beaming elastic threads |
4610678, | Mar 10 1983 | Procter & Gamble Company, The | High-density absorbent structures |
4640859, | Dec 27 1983 | Minnesota Mining and Manufacturing Company | Inelastic, heat-elasticizable sheet material for diapers |
4657539, | Apr 26 1985 | The Procter & Gamble Company; PROCTER & GAMBLE COMPANY THE | Waste containment garment having elasticized barrier wall leg flaps |
4673402, | May 15 1985 | The Procter & Gamble Company | Absorbent articles with dual-layered cores |
4695278, | Oct 11 1985 | The Procter & Gamble Company; PROCTER & GAMBLE COMPANY THE, A CORP OF OHIO | Absorbent article having dual cuffs |
4704115, | Feb 01 1985 | The Procter & Gamble Company | Disposable waste containment garment |
4741941, | Nov 04 1985 | Kimberly-Clark Worldwide, Inc | Nonwoven web with projections |
4776911, | Jun 30 1986 | TOYO EIZAI KABUSHIKI KAISHA, NO 45-2, HANDA-OTSU, KANADA-MACHI, KAWANOE-SHI,EHIME-KEN, JAPAN | Elasticized unit, apparatus for making the elasticized unit, garments incorporating the units, and method for making the garment |
4795454, | Oct 10 1986 | The Procter & Gamble Company | Absorbent article having leakage-resistant dual cuffs |
4834735, | Jul 18 1986 | The Proctor & Gamble Company; Procter & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
4854984, | Jun 19 1987 | The Procter & Gamble Company | Dynamic mechanical bonding method and apparatus |
4888231, | May 28 1986 | Procter & Gamble Company, The | Absorbent core having a dusting layer |
4909803, | Oct 05 1981 | The Procter and Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
4940464, | Dec 16 1987 | Kimberly-Clark Worldwide, Inc | Disposable incontinence garment or training pant |
4984584, | Jan 16 1987 | Riker Laboratories, Inc. | High elastic modulus bandage |
5003676, | Mar 29 1990 | Yarn end splicing apparatus | |
5060881, | Apr 24 1989 | Karl Mayer Textilmaschinenfabrik GmbH | Process for the winding of warp beams |
5092861, | Dec 22 1989 | UNI-CHARM CORPORATION, ORGANIZED UNDER THE LAW OF JAPAN | Disposable garments |
5110403, | May 18 1990 | Kimberly-Clark Worldwide, Inc | High efficiency ultrasonic rotary horn |
5167897, | Feb 28 1991 | The Procter & Gamble Company; PROCTER AND GAMBLE COMPANY, THE | Method for incrementally stretching a zero strain stretch laminate web to impart elasticity thereto |
5246433, | Nov 21 1991 | The Procter & Gamble Company | Elasticized disposable training pant and method of making the same |
5334289, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5342341, | Sep 13 1990 | Uni-Charm Corporation | Disposable garments and method for attachment of elastic members around leg-holes thereof |
5360420, | Jan 23 1990 | The Procter & Gamble Company | Absorbent structures containing stiffened fibers and superabsorbent material |
5393360, | Oct 06 1993 | The Procter & Gamble Company | Method and apparatus for combining a tensioned elastic garter with a substrate |
5413849, | Jun 07 1994 | BBA NONWOVENS SIMPSONVILLE, INC | Composite elastic nonwoven fabric |
5514523, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5531729, | Mar 24 1992 | Procter & Gamble Company, The | Elastic net-like substrate having a layer of fibers pre-bonded thereto for use in an absorbent article |
5558658, | Nov 23 1994 | Kimberly-Clark Worldwide, Inc | Disposable diaper having a humidity transfer area |
5562646, | Mar 29 1994 | The Proctor & Gamble Company; Procter & Gamble Company, The | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity |
5569234, | Apr 03 1995 | The Procter & Gamble Company; Procter & Gamble Company, The | Disposable pull-on pant |
5575874, | Apr 29 1993 | Kimberly-Clark Worldwide, Inc | Method for making shaped nonwoven fabric |
5599335, | Mar 29 1994 | Procter & Gamble Company, The | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
5599420, | Apr 06 1993 | Kimberly-Clark Worldwide, Inc | Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same |
5628097, | Sep 29 1995 | Procter & Gamble Company, The | Method for selectively aperturing a nonwoven web |
5643588, | Nov 28 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Diaper having a lotioned topsheet |
5643653, | May 05 1995 | Kimberly-Clark Worldwide, Inc | Shaped nonwoven fabric |
5669894, | Mar 29 1994 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
5674216, | Jun 13 1991 | The Procter & Gamble Company | Absorbent article with elasticized side panels |
5702551, | Apr 03 1996 | The Procter & Gamble Company | Method for assembling a multi-piece absorbent article |
5775380, | Feb 02 1994 | Santrade Ltd. | Warp beam replacement and threading apparatus |
5827259, | Oct 25 1995 | Kimberly-Clark Worldwide, Inc | Absorbent article with waist elastic and containment system |
5858504, | Nov 30 1994 | Kimberly-Clark Worldwide, Inc | Highly absorbent nonwoven fabric |
5887322, | Apr 02 1998 | INVISTA NORTH AMERICA S A R L | Apparatus for splicing threadlines |
5895623, | Nov 02 1994 | PROCTER & GAMBLE, THE, AN OHIO CORPORATION | Method of producing apertured fabric using fluid streams |
5897545, | Apr 02 1996 | Procter & Gamble Company, The | Elastomeric side panel for use with convertible absorbent articles |
5916661, | Sep 29 1995 | The Procter & Gamble Company | Selectively apertured nonwoven web |
5957908, | Apr 02 1996 | The Procter & Gamble Company | Elastomeric side panel for use with convertible absorbent articles |
5968025, | Nov 28 1994 | The Procter & Gamble Company | Absorbent article having a lotioned topsheet |
5993433, | Oct 20 1997 | Kimberly-Clark Worldwide, Inc | Absorbent article with enhanced elastic design for improved aesthetics and containment |
5997521, | Nov 19 1993 | Procter & Gamble Company, The | Disposable absorbent article with extensible side panels |
6036796, | Jun 26 1998 | Branson Electronics | Closed-loop ultrasonic welding method and apparatus |
6043168, | Aug 29 1997 | Kimberly-Clark Worldwide, Inc | Internal and topical treatment system for nonwoven materials |
6107537, | Sep 10 1997 | Procter & Gamble Company, The | Disposable absorbent articles providing a skin condition benefit |
6107539, | Nov 14 1995 | The Procter & Gamble Company | Disposable absorbent articles having reduced surface wetness |
6118041, | Nov 28 1994 | The Procter & Gamble Company | Diaper having a lotioned topsheet |
6120487, | Apr 03 1996 | The Procter & Gamble Company | Disposable pull-on pant |
6120489, | Oct 10 1995 | Procter & Gamble Company, The | Flangeless seam for use in disposable articles |
6139941, | Dec 06 1996 | BBA Nonwovens Simpsonville, Inc. | Nonwoven web laminate having relatively hydrophilic zone and related method for its manufacture |
6153209, | Sep 28 1999 | The Procter & Gamble Company; Procter & Gamble Company, The | Article having a transferable breathable skin care composition thereon |
6248195, | Nov 21 1996 | The Procter & Gamble Company | Thermal joining of webs |
6248197, | Jul 02 1996 | INVISTA NORTH AMERICA S A R L | Method for producing a shaped multifilament, non-thermoplastic, elastomeric yarn |
6291039, | Mar 15 1996 | Cera France Compagnie d'Equipment Robotique Appliquee | Ruffling slide and method for making same |
6319239, | May 08 1998 | Procter & Gamble Company, The | Absorbent article having improved integrity and acquisition |
6361638, | Jul 11 1996 | Uni-Charm Corporation | Process for producing a nonwoven fabric |
6383431, | Apr 04 1997 | Procter & Gamble Company, The | Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article |
6395957, | Mar 21 1997 | Kimberly-Clark Worldwide, Inc | Dual-zoned absorbent webs |
6410129, | Sep 17 1999 | The Procter & Gamble Company | Low stress relaxation elastomeric materials |
6426444, | Nov 28 1994 | The Procter & Gamble Company | Article having a lotioned topsheet |
6475600, | Dec 23 1998 | Kimberly-Clark Worldwide, Inc | Composite material having stretch and recovery including a layer of an elastic material and a transversely extensible and retractable necked laminate of non-elastic sheet layers |
6478785, | May 28 1998 | The Procter & Gamble Company | Disposable pant-type diaper having enhanced extensibility around waist opening |
6482191, | Oct 23 2000 | Procter & Gamble Company, The | Elasticated topsheet with an elongate slit opening |
6508641, | Feb 02 1998 | ANDRITZ KUESTERS GMBH | Device for processing a strip of material with ultrasound |
6545197, | May 02 1998 | The Procter & Gamble Company | Disposable absorbent article having an improved topsheet |
6554815, | Jun 16 1999 | Zuiko Corporation | Disposable pants having discontinuous elastic elements |
6586652, | Dec 13 1993 | The Procter & Gamble Company | Absorbent article having a lotioned topsheet |
6617016, | Sep 17 1999 | The Procter & Gamble Company | Low stress relaxation elastomeric materials |
6627787, | Nov 28 1994 | Procter & Gamble Company, The | Diaper having a lotioned topsheet |
6632504, | Mar 17 2000 | FITESA NONWOVEN, INC | Multicomponent apertured nonwoven |
6645330, | Jan 03 2002 | PARAGON TRADE BRANDS, INC | Method of making disposable absorbent article having graphics using ultrasonic thermal imaging |
6673418, | Dec 23 1998 | McNeil-PPC, Inc | Absorbent product having a non-woven fabric cover with a three-dimensional profile region |
6676054, | Mar 23 2001 | THE LYCRA COMPANY LLC | Unwinder for as-spun elastomeric fiber |
6702798, | Aug 16 2001 | Kimberly-Clark Worldwide, Inc | Folded absorbent article |
6790798, | Sep 29 1999 | DSG INTERNATIONAL LTD | Highly water absorbent sheet |
6821301, | Jul 31 2000 | Sanyo Chemical Industries, Ltd. | Lubricants for elastic fiber |
6825393, | Dec 13 1993 | The Procter & Gamble Company | Absorbent article having a lotioned topsheet |
6861571, | Nov 28 1994 | Procter & Gamble Company, The | Article having a lotioned topsheet |
7008685, | May 30 2001 | Carl Freudenberg KG | Laminated material and method for its production |
7118558, | Nov 06 2001 | First Quality Retail Services, LLC | Cloth-like laminate and absorbent garment |
7465367, | Jan 07 2005 | GARFLEX, INC | Process for forming a laminate |
7569039, | Nov 19 2003 | The Procter & Gamble Company | Disposable pull-on garment |
7582348, | Sep 08 2003 | Kao Corporation | Composite extensible member and method of manufacturing the same |
7642398, | Dec 28 2001 | ESSITY HYGIENE AND HEALTH AKTIEBOLAG | Elasticized web and a method and apparatus for its manufacture |
7708849, | Apr 20 2004 | CURT C JOA, INC | Apparatus and method for cutting elastic strands between layers of carrier webs |
7777094, | Mar 15 2001 | Daio Paper Corporation; DAIO PAPER CONVERTING CO , LTD | Paper diaper and method for manufacturing extensible sheet used in the diaper |
7861756, | Apr 20 2004 | Curt G. Joa, Inc. | Staggered cutting knife |
7878447, | Dec 30 2005 | HARTZHEIM ENGINEERING, INC | Unwind and feed system for elastomeric thread |
7901393, | Aug 05 2004 | The Procter & Gamble Company | Disposable pull-on garment |
7905446, | Dec 30 2005 | HARTZHEIM ENGINEERING, INC | Unwind and feed system for elastomeric thread |
7954213, | Jun 23 2006 | Uni-Charm Corporation | Nonwoven fabric, nonwoven fabric manufacturing method, and nonwoven fabric manufacturing apparatus |
8093161, | Sep 28 2001 | INVISTA NORTH AMERICA S A R L | Stretchable nonwoven web and method therefor |
8143177, | Jun 23 2006 | Uni-Charm Corporation | Nonwoven fabric |
8186296, | May 05 2010 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
8226625, | Apr 08 2009 | Procter & Gamble Company, The | Stretchable laminates of nonwoven web(s) and elastic film |
8308706, | Feb 28 2007 | Daio Paper Corporation | Disposable diaper |
8377554, | Mar 23 2009 | THE LYCRA COMPANY LLC | Elastic fiber containing an anti-tack additive |
8388594, | Apr 08 2009 | Procter & Gamble Company, The | Stretchable laminates of nonwoven web(s) and elastic film |
8440043, | Mar 30 2012 | The Procter & Gamble Company | Absorbent article process and apparatus for intermittently deactivating elastics in elastic laminates |
8585666, | Sep 29 2010 | The Procter & Gamble Company | Absorbent products having improved packaging efficiency |
8647319, | Nov 19 2007 | ESSITY HYGIENE AND HEALTH AKTIEBOLAG | Absorbent article comprising one or several patterns |
8729332, | May 29 2009 | Livedo Corporation | Pants-type disposable diaper |
8778127, | Feb 22 2012 | INTERSCOPE MANUFACTURING, INC | Apparatuses and methods for bonding substrates |
8853108, | Dec 07 2005 | ESSITY HYGIENE AND HEALTH AKTIEBOLAG | Nonwoven material and absorbing article comprising nonwoven material |
8906275, | May 29 2012 | NIKE, Inc | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
8939957, | Apr 29 2011 | Procter & Gamble Company, The | Absorbent article with leg gasketing cuff |
9005392, | Feb 22 2012 | The Procter & Gamble Company | Apparatuses and methods for seaming substrates |
9039855, | Mar 30 2012 | The Procter & Gamble Company | Apparatuses and methods for making absorbent articles |
9050213, | Mar 30 2012 | The Procter & Gamble Company | Apparatuses and methods for making absorbent articles |
9156648, | Dec 28 2009 | UNICHARM CORPORATION | Elastic thread supply device |
9168182, | Jun 29 2012 | The Procter & Gamble Company | Method and apparatus for attaching elastic components to absorbent articles |
9198804, | Apr 03 2009 | Uni-Charm Corporation | Method of manufacturing sheet, method of manufacturing material of absorbent article, and apparatus to manufacture sheet |
9226861, | Apr 09 2010 | The Procter & Gamble Company | Converting lines and methods for fabricating both taped and pant diapers comprising substantially identical chassis |
9248054, | Nov 27 2012 | The Procter & Gamble Company | Methods and apparatus for making elastic laminates |
9265672, | Nov 27 2012 | The Procter & Gamble Company | Methods and apparatus for applying adhesives in patterns to an advancing substrate |
9295590, | Nov 27 2012 | The Procter & Gamble Company | Method and apparatus for applying an elastic material to a moving substrate in a curved path |
9370775, | Feb 16 2007 | GLOBAL LIFE SCIENCES SOLUTIONS USA LLC | Controlled transfer biological sample collection devices and methods of using such devices |
9440043, | Jun 13 2014 | LEADING AGE SUPPLIES LLC | Catheter having a tapered structure and balloon formed above a lower drainage hole |
9453303, | Sep 11 2008 | Albany International Corp | Permeable belt for the manufacture of tissue, towel and nonwovens |
9539735, | Jun 11 2014 | CURT G JOA, INC | Methods and apparatus for elastic deactivation in a laminate |
9732454, | Feb 06 2009 | Nike, Inc. | Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements |
9758339, | Sep 27 2013 | The Procter & Gamble Company | Apparatus and method for isolating a broken elastic strand |
9795520, | Sep 28 2012 | UNICHARM CORPORATION | Disposable diaper |
9877876, | Apr 18 2014 | Breathable structural web and breathable structural web-forming apparatus | |
20010030014, | |||
20020026660, | |||
20020046802, | |||
20020072723, | |||
20020099347, | |||
20020103469, | |||
20020134067, | |||
20020153271, | |||
20020177829, | |||
20030044585, | |||
20030070780, | |||
20030087056, | |||
20030093045, | |||
20030119404, | |||
20030125687, | |||
20030144643, | |||
20030203162, | |||
20030233082, | |||
20040006323, | |||
20040030317, | |||
20040059309, | |||
20040097895, | |||
20040127881, | |||
20040133180, | |||
20040158212, | |||
20040158217, | |||
20040219854, | |||
20040230171, | |||
20050013975, | |||
20050107764, | |||
20050148971, | |||
20050230037, | |||
20050244640, | |||
20050267431, | |||
20060047260, | |||
20060069373, | |||
20060087053, | |||
20060105075, | |||
20060189954, | |||
20060228969, | |||
20060270302, | |||
20070026753, | |||
20070045143, | |||
20070045144, | |||
20070131335, | |||
20070141311, | |||
20070179466, | |||
20070196650, | |||
20080134487, | |||
20080149292, | |||
20080161768, | |||
20080287897, | |||
20090177176, | |||
20090204093, | |||
20090312730, | |||
20100022151, | |||
20100036346, | |||
20100048072, | |||
20100075103, | |||
20100076394, | |||
20100248575, | |||
20100307668, | |||
20110092943, | |||
20110118689, | |||
20110120897, | |||
20110250378, | |||
20120004633, | |||
20120061015, | |||
20120061016, | |||
20120071852, | |||
20120095429, | |||
20120271267, | |||
20120277713, | |||
20120323206, | |||
20130001125, | |||
20130002113, | |||
20130002615, | |||
20130032656, | |||
20130072887, | |||
20130102982, | |||
20130139960, | |||
20130171421, | |||
20130199696, | |||
20130199707, | |||
20130211356, | |||
20130255861, | |||
20130255862, | |||
20130255863, | |||
20130255864, | |||
20130255865, | |||
20130306226, | |||
20140000794, | |||
20140005621, | |||
20140018759, | |||
20140041797, | |||
20140107605, | |||
20140127460, | |||
20140136893, | |||
20140148773, | |||
20140234575, | |||
20140235127, | |||
20140257231, | |||
20140276517, | |||
20140288521, | |||
20140296815, | |||
20140302286, | |||
20140305570, | |||
20140324009, | |||
20140343525, | |||
20140377506, | |||
20140377513, | |||
20150083309, | |||
20150126956, | |||
20150136893, | |||
20150164708, | |||
20150167207, | |||
20150173967, | |||
20150230995, | |||
20150245958, | |||
20150257941, | |||
20150282999, | |||
20150320612, | |||
20150320613, | |||
20150320619, | |||
20150320620, | |||
20150320622, | |||
20150328056, | |||
20150351972, | |||
20160058624, | |||
20160058627, | |||
20160067119, | |||
20160100989, | |||
20160100997, | |||
20160106633, | |||
20160129661, | |||
20160136009, | |||
20160228305, | |||
20160270977, | |||
20160331600, | |||
20170014281, | |||
20170027774, | |||
20170029993, | |||
20170029994, | |||
20170056256, | |||
20170065461, | |||
20170079852, | |||
20170119595, | |||
20170191198, | |||
20170258650, | |||
20170281417, | |||
20170319403, | |||
20170348163, | |||
20180092784, | |||
20180140473, | |||
20180168874, | |||
20180168875, | |||
20180168876, | |||
20180168877, | |||
20180168878, | |||
20180168879, | |||
20180168880, | |||
20180168885, | |||
20180168887, | |||
20180168888, | |||
20180168889, | |||
20180168890, | |||
20180168891, | |||
20180168892, | |||
20180168893, | |||
20180169964, | |||
20180170026, | |||
20180170027, | |||
20180214318, | |||
20180214321, | |||
20180216269, | |||
20180216270, | |||
20180216271, | |||
20180333311, | |||
20190003079, | |||
20190003080, | |||
20190070041, | |||
20190070042, | |||
20190112737, | |||
20190246196, | |||
20190254881, | |||
20190298586, | |||
20190298587, | |||
20190374392, | |||
20190374404, | |||
20200155370, | |||
20200155371, | |||
20200206040, | |||
20200214901, | |||
20200298545, | |||
CA2158790, | |||
CN101746057, | |||
CN105997351, | |||
CN1276196, | |||
CN1685099, | |||
EP989218, | |||
EP1305248, | |||
EP1393701, | |||
EP1452157, | |||
EP1473148, | |||
EP3056176, | |||
EP3092997, | |||
EP3251642, | |||
EP3257488, | |||
EP3563817, | |||
JP2000026015, | |||
JP2000160460, | |||
JP2002035029, | |||
JP2002178428, | |||
JP2002248127, | |||
JP2003521949, | |||
JP2004081365, | |||
JP2004229857, | |||
JP2004237410, | |||
JP2004254862, | |||
JP2004298362, | |||
JP2005320636, | |||
JP2006149747, | |||
JP2006149749, | |||
JP2006204673, | |||
JP2007190397, | |||
JP2008029749, | |||
JP2008055198, | |||
JP2008104853, | |||
JP2008105425, | |||
JP2008148942, | |||
JP2008154998, | |||
JP2008179128, | |||
JP2008194493, | |||
JP2008229006, | |||
JP2008229007, | |||
JP2008253290, | |||
JP2008260131, | |||
JP2008264480, | |||
JP2008272250, | |||
JP2008272253, | |||
JP2008296585, | |||
JP2009000161, | |||
JP2009039341, | |||
JP2009056156, | |||
JP2009106667, | |||
JP2009172231, | |||
JP2009240804, | |||
JP2009241607, | |||
JP2010131833, | |||
JP2011015707, | |||
JP2011111165, | |||
JP2011178124, | |||
JP2011225000, | |||
JP2012050882, | |||
JP2012050883, | |||
JP2012115358, | |||
JP2012521498, | |||
JP2013138795, | |||
JP2014097257, | |||
JP2014111222, | |||
JP2014188042, | |||
JP2015510831, | |||
JP2015521499, | |||
JP2016013687, | |||
JP2016016536, | |||
JP2016193199, | |||
JP2019081304, | |||
JP2019166804, | |||
JP2019181807, | |||
JP2020054741, | |||
JP2020054742, | |||
JP2020054744, | |||
JP2020054745, | |||
JP3086141, | |||
JP3213543, | |||
JP430847, | |||
JP5124187, | |||
JP5124188, | |||
JP5942819, | |||
JP6149635, | |||
JP6254117, | |||
JP8071107, | |||
JP8132576, | |||
WO3059603, | |||
WO2003015681, | |||
WO2008123348, | |||
WO2013084977, | |||
WO2014084168, | |||
WO2014196669, | |||
WO2016047320, | |||
WO2016056092, | |||
WO2016056093, | |||
WO2016063346, | |||
WO2016067387, | |||
WO2016071981, | |||
WO2016075974, | |||
WO2016098416, | |||
WO2016104412, | |||
WO2016104422, | |||
WO2016158499, | |||
WO2016158746, | |||
WO2016208502, | |||
WO2016208513, | |||
WO2017105997, | |||
WO2018061288, | |||
WO2018084145, | |||
WO2018154680, | |||
WO2018154682, | |||
WO2018167836, | |||
WO2019046363, | |||
WO2019111203, | |||
WO2019150802, | |||
WO9925296, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 06 2017 | SCHNEIDER, UWE | The Procter & Gamble Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044397 | /0907 | |
Dec 12 2017 | The Procter & Gamble Company | (assignment on the face of the patent) | / | |||
Dec 13 2017 | TAMEISHI, KAZUAKI | The Procter & Gamble Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044397 | /0907 |
Date | Maintenance Fee Events |
Dec 12 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jan 11 2025 | 4 years fee payment window open |
Jul 11 2025 | 6 months grace period start (w surcharge) |
Jan 11 2026 | patent expiry (for year 4) |
Jan 11 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 11 2029 | 8 years fee payment window open |
Jul 11 2029 | 6 months grace period start (w surcharge) |
Jan 11 2030 | patent expiry (for year 8) |
Jan 11 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 11 2033 | 12 years fee payment window open |
Jul 11 2033 | 6 months grace period start (w surcharge) |
Jan 11 2034 | patent expiry (for year 12) |
Jan 11 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |