A system and method for staged drying of temperature sensitive materials, the method comprising the following steps. Heated air is blown into a duct and solids are introduced into the duct at an elevated position along a vertical portion of the duct. The heated air and solids mixture is then transported along the duct for a desired retention time with adequate initial flash heating of the solids and then a gradual cool down of the solids. The solids are at an elevated temperature beyond the ambient dewpoint with evaporative cooling taking place. The solids and air mixture is then transported in the duct to a cyclone, where the solids are removed from the air. The air is exhausted out of the cyclone by an exhaust duct, and the solids are collected from the cyclone in a container.
|
1. A method for staged drying of temperature sensitive materials, the method comprising the steps of:
blowing heated air into a duct;
introducing solids into the duct at an elevated position along a vertical portion of the duct;
transporting the heated air and solids mixture along the duct for a desired retention time with adequate initial flash heating of the solids by the heated air, the retention time causing a gradual cool down of the solids, the solids being at a temperature above the ambient dewpoint causing evaporative cooling to take place.
2. A method according to
transporting the solids and air mixture in the duct sequentially to at least one of a first cyclone separator, a fluidized bed dryer, and a second cyclone separator; and
collecting the solids in a container.
|
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/919,872 filed 2 Apr. 2019 and titled “Effects of Staged Drying for Temperature Sensitive Materials,” which is incorporated herein by reference in its entirety.
This disclosure relates generally to a system and method for transporting and drying a moisture laden bulk material and, more particularly, to a staged drying process for temperature sensitive materials, such as certain plants or portions thereof.
The proposition of thermally treating discrete bulk solids that are highly temperature sensitive in chemical composition during the heating process has troubled engineers and plant operators for many years. Perhaps the best-known example is that of materials that undergo a chemical decomposition in thermal processing upon heating. There is especially a need for a better system and method to address the needs of the botanical extract, essential oil or pharmaceutical components from bio mass markets.
The fastest growing segment of the industrial drying technologies is the use of fast or flash drying. Flash dryers prove to be highly efficient and easy to use but have an inherent weakness if the feed to be processed has a wide variation in feed stock particle size distribution or moisture. Flash dryers can prove to be poor in terms of quality control for end product quality. The coarse end of incoming feed will likely fall out of suspension whereas the finest portion may be elutriated too easily and hence not have enough dwell time for full thermal treatment. There is a need to address these weaknesses in conventional flash dryer systems.
The concept of solids suspension in gas is fairly well studied but complex, nonetheless. Factors such as particle density, particle shape, particle size, gas fluid density, and gas velocity all affect the dynamics in such a two-phase system. In addition to these factors, industrial dryers, reactors and calciners may not always be in steady state with temperatures, material feed stocks and flow dynamic regimes (laminar or turbulent) changing in time. A design is needed to address these very complex issues in a simple and easily operated machine.
The disclosed method combines process steps to address these issues. In a first stage a high sheer mill preferably grinds and/or conditions material to a fairly uniform particle size through an integral screen.
The next process step is to introduce the conditioned material or solids into a hot gas (e.g., about 700 to about 800 degrees Fahrenheit), such as hot air, available from a pre-dryer heater. The pre-dryer is capable of operating with higher inlet gas temperatures compared to rotary or fluid bed dryers due to the true plug flow nature of the design. A plug flow dryer is a model used to describe chemical reactions in a continuous, flowing system of cylindrical geometry.
Due to the unique operation of this system, the ability exists to classify product based on particle size and/or density (e.g., moisture content), such as through elutriation. A focused application of high pressure and/or velocity drying fluid (e.g., air) near the gravitational bottom of a cyclone effectively contemporaneously dries wetter particles (e.g. more dense, and located near bottom of cyclone) and drier particles (e.g., less dense, located above wetter particles) to allow for efficient elutriation or further processing.
The pre-dryer is combined with a secondary polish dryer, most typically a fluid bed dryer. The disclosed dryer system combines a fluid bed drying section for efficient drying utilizing lower product temperatures to attempt to lessen product degradation.
A two-staged drying process according to the present invention includes the steps of passing material through a flash dryer (i.e., a pneumatic-conveying dryer), conveying the material to a fluid bed, and removing moisture from the material with the fluid bed. A majority of the material is preferably exposed to a maximum flash dryer temperature for a first dry time (e.g., preferably two seconds or less, and more preferably about 0.5 to about 1.0 second) and is conveyed to and supported in the fluid bed for a second dry time (e.g., about two to about five minutes). The second dry time is preferably greater than the first dry time, and more preferably the second dry time is thirty to six hundred times the first dry time. A preferred flash dryer uses conveying air velocity that is greater than an ambient terminal velocity of a solid particle of a predetermined material and predetermined maximum size, thereby ensuring a material particle velocity that is greater than zero in the same direction as the conveying air. Conveyance of the material particles after being heated by the flash dryer (pre-dryer) along a pre-dryer duct occurs for a predetermined retention time that is sufficient to allow for partial evaporation heat absorption from the gas. The particles are conveyed to a dilute phase fluid bed dryer wherein the material stays in a much cooler environment (e.g., about 200 to about 300 degrees Fahrenheit, with about 250 degrees being more preferred) for up to 5 minutes to continue the drying process. Temperature and gas environments may be preset and/or dynamically adjusted so as to establish low dewpoint temperatures of the gases for lower product (material) temperature, in coordinated effort to increase or maximize gas to solids contact time and efficacy. Inherent in this design, the larger particles that by nature need more time for drying than the smaller particles.
Although the disclosure hereof enables those skilled in the art to practice the invention, the embodiments described merely exemplify the invention which may be embodied in other ways. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims. It should be noted that like part numbers represent like parts among the various embodiments.
As illustrated in
The disclosed drying system 10 especially benefits the drying of biomass in that it operates as a true plug flow reactor wherein the coldest wettest product is exposed to the hottest drying gases. As the product dries and is more at risk of combustion, the gases have become progressively colder. This approach can be beneficially used in any temperature sensitive elevated temperature processing including those where recovery of solvent from post extraction biomass is desired.
As illustrated in
As shown in
As shown in
The disclosed staged drying results in the lowest possible temperatures. Staged drying allows aggressive treatment of the highly wet initial stages coupled with more gentle temperature regimes on the partially dried feed. Products especially appropriate for this system and method of staged drying for temperature sensitive materials include, but are not limited to wood products, agricultural products and bi-products, and cannabinoids, such as hemp. A secondary benefit to this staged drying is there is some demonstrable degree of evaporative cooling while being conveyed between stages.
The disclosed orientation of gas and solids flow within the disclosed two-stage dryer is unique to other industrial drying techniques and may be important to successful operation. The mass of gas and gas temperature is determined by the thermal load of a given process. The overall dryer volume and geometry is determined by exact process requirements such as retention time considerations.
In other embodiments (not shown), several options exist for the removal of the solids from the fluid bed dryer. Material and gas can exit by positive pressure head or can be induced by imposing a modest draft in the upper section of the fluid bed dryer.
In another embodiment (not shown) of the disclosed system and method, only the one pre-drying step can be used. In cases, however, of high moisture removal loads, mass transfer will lag heat transfer and the flash drying approach will be insufficient. In such cases, the fluid bed dryer is used to increase drying time. The initial flash stage is truly plug flow where the hottest gases (e.g., about 700 to about 800 degrees Fahrenheit) are in direct contact with only the coldest wettest solids. The fluid bed stage is a continuously stirred vessel type design meaning that some dried product is exposed to fully hot gases (e.g., about 200 to 300 degrees Fahrenheit, with about 250 degrees being most preferred). As such, in fluid bed processing only, inlet temperatures have to be greatly reduced thereby decreasing efficiency. The concept of coupling a plug flow flash dryer to a fluid bed offers the best possible thermal efficiency.
Further, in cases where thermal treatment of products is needed to reduce biological activity, such as killing pathogens, the disclosed method couples the attrition flash dryer system to an indirectly heated retention vessel such as depicted in
Further, in some cases, the use of the disclosed indirectly heated vessel can be used if a specific atmospheric composition or gas is needed to carry out a desired reaction with the material.
In another embodiment an internal rake arm (not shown) is added to the fluid bed to redirect untreated particles back into the most aggressive reaction zones.
In another embodiment (not shown), the exhaust from one stage can be coupled or recycled to another stage for reasons of efficiency or reduction in overall gas volume for emissions compliance reasons.
In another embodiment, the fluid bed drying column can include internal adjustable weirs (not shown) so as to control retention time of courser product needing more retention time for full drying.
The foregoing is illustrative only of the principles of embodiments according to the present invention. Modifications and changes will readily occur to those skilled in the art, so it is not desired to limit the invention to the exact disclosure herein provided. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10159908, | Oct 04 2013 | NATURAL EXTRACTION SYSTEMS, LLC | Method and apparatus for extracting botanical oils |
10456708, | Oct 04 2013 | NATURAL EXTRACTION SYSTEMS, LLC | Method and apparatus for extracting botanical oils |
10555914, | Dec 14 2018 | NATURAL EXTRACTION SYSTEMS, LLC | Methods of producing anionic cannabinoid molecules dissolved in water |
10609944, | Dec 14 2018 | NATURAL EXTRACTION SYSTEMS, LLC | Compositions comprising 2-[(1R,6R)-6-isopropenyl-3-methylcyclohex-2-en-1-yl]-3-hydroxy-5-pentylphenolate and 2-[(1R,6R)-6-isopropenyl-3-methylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol |
10610805, | Dec 10 2018 | NATURAL EXTRACTION SYSTEMS, LLC | Methods to separate cannabidiol and tetrahydrocannabinol |
10617974, | May 02 2016 | NATURAL EXTRACTION SYSTEMS, LLC | Method and apparatus for extracting botanical oils |
10745517, | Sep 26 2012 | POLYMETRIX AG | Process and apparatus for direct crystallization of polycondensates |
10914519, | May 07 2013 | Andritz Technology and Asset Management GmbH | Method for producing salts with a reduced water of crystallisation content |
3212197, | |||
4213888, | Dec 06 1976 | Copolymer Rubber & Chemical Corporation | Particulate elastomeric materials and method |
4304049, | May 28 1979 | Escher Wyss Limited | Process for thermal treatment, especially drying |
4395830, | Sep 12 1980 | Jetsonic Processes, Ltd. | Pulse combustion fluidizing dryer |
4436589, | May 29 1981 | Krupp-Koppers GmbH | Method of pretreating coal for coking plant |
6085440, | Nov 21 1995 | SPX FLOW TECHNOLOGY DANMARK A S | Process and an apparatus for producing a powdered product by spin flash drying |
7322124, | Dec 17 2002 | TETRA PAK CHEESE AND POWER SYSTEMS B V ; TETRA PAK CHEESE AND POWDER SYSTEMS B V | Spray-drying device |
7343699, | Jun 21 2002 | Method and apparatus for drying | |
7651565, | Mar 08 2002 | CONTINENTAL BUILDING PRODUCTS OPERATING COMPANY, LLC | Device for drying and/or calcining gypsum |
8188163, | Aug 28 2007 | NIPPON SHOKUBAI CO , LTD | Process for producing water-absorbing resin |
9506691, | Aug 12 2008 | SCHWING BIOSET, INC | Closed loop drying system and method |
20060210687, | |||
20100083525, | |||
20100146814, | |||
20100249320, | |||
20170067686, | |||
20170127716, | |||
20180078874, | |||
20190151771, | |||
20200011600, | |||
20200048214, | |||
20200048215, | |||
20200080021, | |||
20200129882, | |||
20200182544, | |||
20200318904, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 02 2020 | Innovative Environmental Companies, Inc. | (assignment on the face of the patent) | / | |||
May 15 2020 | HAWKINS, WALTER J | INNOVATIVE ENVIRONMENTAL COMPANIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052717 | /0258 |
Date | Maintenance Fee Events |
Apr 02 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Apr 09 2020 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Jan 11 2025 | 4 years fee payment window open |
Jul 11 2025 | 6 months grace period start (w surcharge) |
Jan 11 2026 | patent expiry (for year 4) |
Jan 11 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 11 2029 | 8 years fee payment window open |
Jul 11 2029 | 6 months grace period start (w surcharge) |
Jan 11 2030 | patent expiry (for year 8) |
Jan 11 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 11 2033 | 12 years fee payment window open |
Jul 11 2033 | 6 months grace period start (w surcharge) |
Jan 11 2034 | patent expiry (for year 12) |
Jan 11 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |