A bone fixation apparatus includes an insert and a bone anchor. The insert has open ends defining a lumen. A first thread is disposed on an outer surface of the insert and a second thread is disposed in the lumen. The insert is configured for threadably engaging bone. A driving tool is releasably attachable to the insert. The bone fixation apparatus also includes a bone anchor with a bone screw member and a housing. The bone screw member extends from the housing and has a third thread along a shank of the bone screw member. The third thread of the shank is engageable with the second thread of the lumen such that the bone anchor is coupled to the insert.
|
10. A method of inserting a bone fixation apparatus comprising:
attaching a non-expandable insert to a driving tool;
positioning a distal portion of the driving tool proximate a target location on bone such that the insert is proximate the target location;
securing the insert in bone by rotating the driving tool such that a first thread of the insert rotatably engages bone;
removing the driving tool from the insert; and
coupling a bone anchor to the insert, the bone anchor including a housing and a screw member, the screw member having a threaded shank engageable with a second thread in a lumen of the insert.
1. A bone fixation apparatus comprising:
an insert having an open proximal end and an open distal end defining a lumen therethrough, the open proximal end having a geometric pattern for mating with a driving tool;
a first helical thread disposed on an outer surface of the insert, the first helical thread configured to engage bone;
a second helical thread disposed in the lumen of the insert, the second helical thread extending substantially from the open proximal end of the insert to the open distal end of the insert; and
a bone anchor having a bone screw member and a housing, the bone screw member including a spherical head and a shank extending, therefrom, the shank having a third helical thread on an outer surface thereof, the spherical head movably retained in a cavity of the housing, the second helical thread engageable with the third helical thread such that the bone anchor is coupled to the insert.
2. The bone fixation apparatus of
3. The bone fixation apparatus of
4. The bone fixation apparatus of
5. The bone fixation apparatus of
6. The bone fixation apparatus of
7. The bone fixation apparatus of
8. The bone fixation apparatus of
9. The bone fixation apparatus of
11. The method of inserting the bone fixation apparatus of
12. The method of inserting the bone fixation apparatus of
13. The method of inserting the bone fixation apparatus of
14. The method of inserting the bone fixation apparatus of
15. The method of inserting the bone fixation apparatus of
|
The present application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2018/024547, filed on Mar. 27, 2018, which claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 62/478,713, filed Mar. 30, 2017, the entireties of which are hereby incorporated by reference.
The present disclosure relates to spinal implants and, more particularly, to a bone anchor apparatus and a method of using the bone anchor apparatus.
Spinal pathologies, whether the result of genetic or developmental irregularities, trauma, chronic stress, tumors, or disease can limit the spine's range of motion or threaten critical elements of the nervous system housed within the spine. A variety of systems to correct the alignment of the spinal vertebrae involving the implantation of artificial assemblies in or on the spine have been devised.
The mechanical hardware used to immobilize the spinal column typically involves a series of bone screws and metal rods or plates. When the spine surgery is performed, it is common practice to place bone screws into the vertebral bodies and then connect a metal rod between the screws, thus creating a rigid structure between adjacent vertebral bodies. In some cases, these devices may be permanently implanted in the patient. In other cases, the devices may be implanted only as a temporary means of stabilizing or fixing the bones or bone fragments, with subsequent removal when no longer needed.
When using screws, the surgeon directs the screw into the vertebral body. Because different patients have different anatomies, there exists the potential for part of the vertebral body to be breached. A breach occurs when the screw protrudes through the bone on either the lateral or medial side. Often, if there is a lateral breach, the surgeon leaves the screw in place. If the breach occurs medially into the spinal canal, the spinal nerves can rub against the threads causing the patient pain and possibly requiring a revision surgery. Typically, when the surgeon recognizes the breach, he uses an instrument to displace the nerves to protect them from damage, removes the original screw and redirects it. Redirection removes more bone and can compromise fixation of the screw or completely damage the vertebral body rendering it unusable as a point of device fixation.
According to one embodiment of the present disclosure a bone fixation apparatus includes an insert having an open proximal end and an open distal end defining a lumen therethrough. The open proximal end has a geometric pattern for mating with a driving tool. A first helical thread is disposed on an outer surface of the insert and is configured to engage bone. A second helical thread is disposed in the lumen of the insert. The bone fixation apparatus also includes a bone anchor having a bone screw member and a housing. The bone screw member includes a spherical head and a shank extending therefrom. The shank has a third helical thread on an outer surface thereof and the spherical head is movably retained in a cavity of the housing. The first helical thread is engageable with the third helical thread such that the bone anchor is coupled to the insert.
In embodiments, the first and third helical threads may be reversed from the second helical thread.
In embodiments, the open proximal end may include alternating lobes and recesses defining a hexolobular geometric configuration.
In embodiments, the first helical thread may be configured to engage osseous tissue in a pedicle of a vertebra.
In embodiments, the lumen of the insert may slidably receive a portion of the driving tool.
In embodiments, a major diameter of the first helical thread may be between about 10 mm and about 12 mm. The major diameter of the first helical thread may taper along a length of the insert. The major diameter may taper from a proximal end of the insert towards the distal end of the insert at a ratio of about 1.4 to about 1.7. An angle of the taper may be between about 18 degrees and about 56 degrees.
According to an embodiment of the present disclosure, a method of inserting a bone fixation apparatus is disclosed. The method includes attaching an insert to a driving tool and positioning a distal portion of the driving tool proximate a target location on bone such that the insert is proximate the opening. The method also includes securing the insert in bone by rotating the driving tool such that a first thread of the insert rotatably engages bone in the opening. The method also includes removing the driving tool from the insert and coupling a bone anchor to the insert wherein the bone anchor includes a housing and a screw member with a threaded shank engageable with a second thread in a lumen of the insert.
In embodiments, the method may include creating an opening in the vertebra at the target location.
In embodiments, the method may include preparing a preexisting opening at the target location to receive the insert therein.
In embodiments, the method may include the opening or the preexisting opening disposed on a pedicle of the vertebra.
In embodiments, the method may include the bone anchor having a modular housing.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure, wherein:
Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the terms “proximal” and “trailing” may be employed interchangeably and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The term “clinician” refers to a doctor (e.g., a surgeon), a nurse, or any other care provider, and may include support personnel. The terms “distal” and “leading” may also be employed interchangeably and should be understood as referring to the portion of a structure that is farther from the clinician during proper use. In addition, the term “cephalad” is used in this application to indicate a direction toward a patient's head, whereas the term “caudad” indicates a direction toward the patient's feet. Further still, the term “medial” indicates a direction toward the middle of the body of the patient, while the term “lateral” indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient). The term “posterior” indicates a direction toward the patient's back, and the term “anterior” indicates a direction toward the patient's front. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
With initial reference to
The lumen 10 also includes an internal or first thread 14 that extends distally from proximal end 22 to a distal end of the lumen 10 that corresponds to the open distal end 24 of the insert 20. In one embodiment, the first thread 14 originates at the proximal end 22 and terminates at the open distal end 24. The internal thread 14 is a helical thread and may be a right-hand thread (i.e., clockwise to tighten) or a left-hand thread (i.e., counter-clockwise to tighten). Similarly, an outer surface of insert 20 has an external or second thread 26 disposed thereon that is also a helical thread. As with the internal thread 14 of the lumen 20, the external thread 26 may be right-handed or left-handed. Regardless of the handedness of the threads, the internal and the external threads 14, 26 may have a major diameter between about 9 mm and about 13 mm with a preferred range being between about 10 mm and about 12 mm. The major diameter tapers along a length of the insert at a ratio of the major diameter at the proximal end to the major diameter at the distal end in a range of about 1 to 2 with a preferred range of about 1.4 to about 1.7. Additionally, an angle of the taper may vary from about 10 degrees to about 60 degrees with a preferred angle ranging from about 18 degrees to about 56 degrees. It is envisioned that the internal thread 14 may be the same as the external thread 26 or they may differ in diameter, angle of taper, major diameter ratio, etc. It is contemplated that the internal thread 14 and the external thread 26 may differ in that one is a right-handed thread while the other is a left-handed thread. In one embodiment, the tapered portion of the external thread 26 extends along at least one-half of the length of the insert 20 and in a preferred embodiment, the tapered portion extends less than one-quarter of the length of the insert 20.
The external thread 26 of the insert 20 is configured to cut into or engage with osseous tissue (i.e., bone tissue) while the internal thread 14 of the insert 20 is configured to engage with a thread of a bone screw 60 (
The insert 20 may be used in situations where a hole or an opening exists in bone (e.g., a vertebra) with a diameter too large for a bone screw. This may result from a previous bone anchor installation and removal where the opening now has a diameter unsuitable for securing a bone screw therein or the opening has an incorrect orientation for proper securement of a bone screw. In such situations, the opening is resized to a diameter less than an outer diameter of the external thread 26 of the insert 20. Alternatively, an insert with a more suitable diameter for the existing opening is selected. The opening may be prepared using standard instruments such as a burr and then an awl to start the hole. A drill may be used to form the opening. Once the opening has been resized to accommodate the insert 20 or a suitable sized insert is selected for the opening, the insert 20 is driven into the opening as will be discussed hereinbelow. Alternatively, the insert 20 may be positioned in an opening prepared and dimensioned specifically for the insert 20. This opening is prepared using conventional tools (e.g., burr, awl, drill, etc.) and techniques. This may result from the target bone tissue having a relatively low density and using the insert 20 with its increased size relative to a bone screw provides improved securement as compared to using a bone screw by itself. Alternatively, the insert 20 is positioned in bone to increase the resistance to pull out in view of possible load values placed on the bone when the final spinal construct (e.g., screws and rod) is completed.
Once the target opening has been identified and/or prepared, the insert 20 is releasably coupled to an insertion instrument or insertion tool 40. As illustrated in
Referring now to
A suitable driving tool or driver 200 (
The bone screw 60 may be modular such that the housing 70 may be replaced with a different housing or structure. By providing a modular arrangement, the clinician can modify the overall construct and tailor it to suit a particular procedure for a specific patient and that patient's anatomy. A different housing or other attachment structure allows for utilizing different sized rods, flexible tethers, plates, etc. to be part of the overall construct. An example of a suitable modular bone screw is disclosed in International Application No. PCT/US18/14179, filed on Jan. 18, 2018, the entire contents of which are incorporated herein by reference.
Referring now to
The modular head assembly 120 includes a housing 170, an anvil 180, a snap ring 160, and an insert 190. A through hole 174 extends through the housing 170. An inner surface 174a of a proximal portion of the through hole 174 includes threads 174b configured to threadably engage a setscrew (not shown). A distal portion of the inner surface 174a of the through hole 174 defines slots 174c disposed in juxtaposed relation to one another and extending along the longitudinal axis A-A. The slots 174c are configured to slidably engage tabs 182 of the anvil 180 to enable translation of the anvil 180 within the through hole 174, but inhibit rotation of the anvil 180 within the through hole 174. In this manner, the slots 174c ensure that a U-shaped slot 178 of the housing 170 remains aligned with a concave relief defined in the anvil 180. The U-shaped slot 178 is configured to receive a spinal rod (not shown). Additionally, the housing 170 includes inner threads 176 disposed in a distal region of the housing 170.
The snap ring 160 is configured to be slidably received within a portion of the insert 190. The snap ring 160 may be formed from a resilient material that enables the snap ring 160 to expand and contract without being permanently deformed. The snap ring 160 has a lumen 162 defined between upper and lower surfaces of the snap ring 160. An inner surface of the snap ring 160 defines a generally concave profile corresponding to the profile of the head 142 of the bone screw 140. An outer surface of the snap ring 160 defines a slot 164 that interrupts a perimeter of the snap ring 160 such that the snap ring 160 forms a generally C-shaped profile which enables the snap ring 160 to expand and contract due to an external or internal force being applied thereto.
With continued reference to
With reference to
It is contemplated that any of the above-described components may be formed from any biocompatible material suitable for use in surgical procedures, such as titanium, titanium alloys, (e.g., Ti-6Al-4V), stainless steels, cobalt chrome alloys.
It will be understood that various modifications may be made to the embodiments of the presently disclosed retraction system. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
Errico, Thomas J., McClintock, Larry E., Newton, Peter, Shufflebarger, Harry
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5382248, | Sep 10 1992 | JACOBSON, ROBERT E ; MIRSON, BRIAN | System and method for stabilizing bone segments |
5487744, | Apr 08 1993 | ENCORE MEDICAL, L P ; ENCORE MEDICAL IHC, INC ; Encore Medical Asset Corporation | Closed connector for spinal fixation systems |
5725528, | Feb 12 1997 | K2M, INC | Modular polyaxial locking pedicle screw |
5735851, | Oct 09 1996 | K2M, INC | Modular polyaxial locking pedicle screw |
5800435, | Oct 09 1996 | K2M, INC | Modular spinal plate for use with modular polyaxial locking pedicle screws |
6004322, | Oct 25 1994 | SDGI Holdings, Inc | Modular pedicle screw system |
6050997, | Jan 25 1999 | Spinal fixation system | |
6146383, | Feb 02 1998 | Sulzer Orthopadie AG | Pivotal securing system at a bone screw |
6482207, | Jul 13 2000 | K2M, INC | Efficient assembling modular locking pedicle screw |
6623485, | Oct 17 2001 | MULLANE, THOMAS | Split ring bone screw for a spinal fixation system |
6669697, | Sep 25 1998 | Perumala Corporation | Self-retaining bolt for internal spinal stabilizers |
6887242, | Oct 17 2001 | MULLANE, THOMAS | Split ring bone screw for a spinal fixation system |
7186255, | Aug 12 2004 | ATLAS SPINE, INC | Polyaxial screw |
7314467, | Apr 24 2002 | MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC | Multi selective axis spinal fixation system |
7722645, | Sep 24 2001 | Pedicle screw spinal fixation device | |
7766943, | Aug 11 2005 | Medicine Lodge Inc.; MedicineLodge, Inc | Modular percutaneous spinal fusion system and method |
8007518, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing component having a deflectable post and method for dynamic stabilization of the spine |
8012181, | Feb 26 2008 | SPARTEK MEDICAL, INC | Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine |
8016861, | Feb 26 2008 | SPARTEK MEDICAL, INC | Versatile polyaxial connector assembly and method for dynamic stabilization of the spine |
8048115, | Feb 26 2008 | SPARTEK MEDICAL, INC | Surgical tool and method for implantation of a dynamic bone anchor |
8048126, | Oct 20 2005 | ZIMMER BIOMET SPINE, INC | Bone fixation assembly |
8057515, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
8075603, | Nov 14 2008 | Ortho Innovations, LLC | Locking polyaxial ball and socket fastener |
8083772, | Feb 26 2008 | SPARTEK MEDICAL, INC | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
8083775, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
8083777, | Jun 15 2007 | ROBERT REID | System and method for polyaxially adjustable bone anchorage |
8092501, | Feb 26 2008 | FOUNDERS SPINE RESEARCH LLC | Dynamic spinal rod and method for dynamic stabilization of the spine |
8097024, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
8114134, | Feb 26 2008 | SPARTEK MEDICAL, INC | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
8128670, | Apr 15 2005 | FIRST COMMERCE BANK | Surgical expansion fasteners |
8137384, | Sep 02 2008 | BHDL Holdings, LLC | Modular pedicle screw system |
8192468, | Dec 23 2005 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Dynamic stabilization device for bones or vertebrae |
8192470, | Jul 31 2007 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device |
8197518, | May 16 2007 | Ortho Innovations, LLC | Thread-thru polyaxial pedicle screw system |
8211155, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
8257397, | Dec 02 2009 | FOUNDERS SPINE RESEARCH LLC | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
8333792, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
8337530, | Mar 09 2011 | ZIMMER BIOMET SPINE, INC | Polyaxial pedicle screw with increased angulation |
8337536, | Feb 26 2008 | SPARTEK MEDICAL, INC | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
8430916, | Feb 07 2012 | SPARTEK MEDICAL, INC | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
8506609, | Dec 30 2008 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device with such a receiving part |
8518085, | Jun 10 2010 | FOUNDERS SPINE RESEARCH LLC | Adaptive spinal rod and methods for stabilization of the spine |
8636781, | Nov 28 2008 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device with such a receiving part |
8636782, | Dec 29 2008 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and bone anchoring device with such a receiving part |
8663290, | Oct 28 2011 | Spinal LLC | Top loading polyaxial ball and socket fastener with saddle |
8663291, | Oct 28 2011 | Spinal LLC | Top loading polyaxial ball and socket fastener |
8881358, | Nov 23 2010 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Method and tool for assembling a bone anchoring device |
8900270, | Feb 17 2004 | Globus Medical, Inc | Facet joint replacement instruments and methods |
8926671, | Feb 20 2009 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device with such a receiving part |
8961568, | Jan 12 2007 | ZIMMER BIOMET SPINE, INC | Bone fastener assembly |
8979904, | May 01 2007 | JACKSON, ROGER P | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
8986349, | Nov 11 2009 | NuVasive, Inc | Systems and methods for correcting spinal deformities |
8992579, | Mar 08 2011 | NuVasive, Inc | Lateral fixation constructs and related methods |
8998958, | Dec 20 2007 | AESCULAP IMPLANT SYSTEMS, LLC | Locking device introducer instrument |
9017390, | Nov 14 2011 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device |
9044273, | Oct 07 2013 | Intelligent Implant Systems, LLC | Polyaxial plate rod system and surgical procedure |
9060814, | Oct 28 2011 | Ortho Innovations, LLC | Spring clip bottom loading polyaxial ball and socket fastener |
9066759, | Dec 10 2010 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device |
9119674, | Nov 22 2006 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device |
9131971, | Nov 14 2011 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device |
9173684, | Dec 10 2010 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and bone anchoring device with such a receiving part |
9186187, | Jul 15 2011 | Globus Medical, Inc | Orthopedic fixation devices and methods of installation thereof |
9198694, | Dec 31 2012 | Globus Medical, Inc | Orthopedic fixation devices and methods of installation thereof |
9247965, | Aug 18 2011 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device with enlarged pivot angle |
9254150, | Aug 20 2009 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device, tool and method for assembling the same and tool for use with the same |
9277938, | Aug 18 2011 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring system |
9277941, | Dec 10 2010 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device |
9277942, | Jul 27 2012 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device with enlarged pivot angle |
9333016, | Jul 03 2012 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device |
9339304, | Oct 27 2011 | Miami Device Solutions, LLC; BIEDERMANN TECHNOLOGIES GMBH & CO KG | High angulation polyaxial bone anchoring device |
9358047, | Jul 15 2011 | Globus Medical, Inc | Orthopedic fixation devices and methods of installation thereof |
9364266, | May 29 2012 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Receiving part for receiving a rod for coupling the rod to a bone anchoring element and a bone anchoring device with such a receiving part |
9393049, | Aug 20 2010 | K2M, INC | Spinal fixation system |
9439680, | Jul 24 2013 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Coupling assembly for coupling a rod to a bone anchoring element, kit of such a coupling assembly different rod receiving elements and bone anchoring device |
9451990, | Feb 17 2004 | Globus Medical, Inc | Facet joint replacement instruments and methods |
9452006, | Sep 15 2011 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device with enlarged pivot angle |
9486246, | Dec 21 2009 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Bone anchoring device |
9492204, | Nov 14 2013 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Polyaxial bone anchoring device with enlarged pivot angle |
9579125, | Feb 09 2013 | VertiScrew, LLC | Bone screw |
9603635, | Jul 15 2011 | Globus Medical, Inc | Orthopedic fixation devices and methods of installation thereof |
9615858, | Jul 18 2013 | Ortho Innovations, LLC | Spring clip-bottom loading polyaxial ball and socket fastener |
9649142, | Mar 10 2015 | Spinal LLC | Modular head assembly |
9693808, | Jun 02 2004 | Globus Medical, Inc | Facet joint replacement instruments and methods |
9707013, | Apr 30 2015 | Warsaw Orthopedic, Inc. | Spinal implant system and methods of use |
9820780, | Sep 30 2015 | SPINAL ELEMENTS, INC | Angled offset tulip assembly |
9883892, | Jun 15 2009 | Roger P., Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer, winged insert and low profile edge lock |
9895170, | Feb 11 2013 | BIEDERMANN MOTECH GMBH & CO KG; BIEDERMANN TECHNOLOGIES GMBH & CO KG | Coupling assembly for coupling a rod to a bone anchoring element and bone anchoring device with such a coupling assembly |
9895171, | Jul 29 2014 | TRANSCENDENTAL SPINE, LLC | Modular polyaxial bone screw |
9907574, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features |
9918745, | Jun 15 2009 | JACKSON, ROGER P | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
9936983, | Mar 15 2013 | SI-BONE INC | Implants for spinal fixation or fusion |
9980753, | Jun 15 2009 | JACKSON, ROGER P | pivotal anchor with snap-in-place insert having rotation blocking extensions |
20020151977, | |||
20030060823, | |||
20040210227, | |||
20080039846, | |||
20100057135, | |||
20110118783, | |||
20110307018, | |||
20120041490, | |||
20120143262, | |||
20120150233, | |||
20120259372, | |||
20120265258, | |||
20150196338, | |||
20160030086, | |||
20160030090, | |||
20160100870, | |||
20160106475, | |||
20160220277, | |||
20170020574, | |||
20170049482, | |||
20170049484, | |||
20170065306, | |||
20170112542, | |||
20170172630, | |||
20170224386, | |||
20170245898, | |||
20170333085, | |||
20180014858, | |||
20180014862, | |||
20180014863, | |||
20180036039, | |||
20180055545, | |||
20180092679, | |||
20180110548, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 27 2018 | K2M, Inc. | (assignment on the face of the patent) | / | |||
Feb 07 2020 | MCCLINTOCK, LARRY E | K2M, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054533 | /0960 | |
Feb 12 2020 | SHUFFLEBARGER, HARRY | K2M, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054533 | /0960 | |
Feb 15 2020 | NEWTON, PETER | K2M, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054533 | /0960 | |
Nov 03 2020 | ERRICO, THOMAS J | K2M, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054533 | /0960 |
Date | Maintenance Fee Events |
Sep 26 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 01 2025 | 4 years fee payment window open |
Sep 01 2025 | 6 months grace period start (w surcharge) |
Mar 01 2026 | patent expiry (for year 4) |
Mar 01 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 01 2029 | 8 years fee payment window open |
Sep 01 2029 | 6 months grace period start (w surcharge) |
Mar 01 2030 | patent expiry (for year 8) |
Mar 01 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 01 2033 | 12 years fee payment window open |
Sep 01 2033 | 6 months grace period start (w surcharge) |
Mar 01 2034 | patent expiry (for year 12) |
Mar 01 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |