An implant delivery device may include an implant holding portion proximate the distal end, the implant holding portion being configured to retain a sheet-like implant during implantation of the implant. In addition, the implant holding portion may be configured to receive the implant with a fixed implant supporting flange member configured to support the implant on one side, and a movable implant supporting flange member. The movable implant supporting flange member may be configured to be slidable between a distal position and a proximal position, wherein, in the distal position, the movable implant supporting flange member and secures the implant against the fixed implant supporting flange member, and in the proximal position, the movable implant supporting flange member is withdrawn from the distal end of the implant delivery device, thus enabling release of the implant.
|
1. An implant delivery device, comprising:
a handle disposed at a proximal end of the implant delivery device and configured to be grasped by a user; and
an outer shaft extending from the handle to a distal end of the implant delivery device;
the implant delivery device including an implant holding portion proximate the distal end of the implant delivery device, the implant holding portion being configured to retain a sheet-like implant during implantation of the implant; and
the implant holding portion being configured to receive the implant between a fixed implant supporting flange member associated with the outer shaft and configured to support the implant on one side, and a movable implant supporting flange member;
wherein the movable implant supporting flange member is configured to be slidable between a first, distal position and a second, proximal position;
wherein, in the first, distal position, the movable implant supporting flange member secures the implant against the fixed implant supporting flange member, thus holding the implant in an unfurled configuration; and
wherein, in the second, proximal position, the movable implant supporting flange member is withdrawn from the distal end of the implant delivery device, thus enabling release of the implant.
2. The implant delivery device of
3. The implant delivery device of
4. The implant delivery device of
5. The implant delivery device of
6. The implant delivery device of
7. The implant delivery device of
8. The implant delivery device of
9. The implant delivery device of
wherein a distal wall of the recess is beveled.
|
This application claims the benefit of Provisional Patent Application No. 62/972,775, filed on Feb. 11, 2020, and titled “Graft Delivery Device,” the entire disclosure of which is hereby incorporated by reference.
The present embodiments relate generally to medical devices, and in particular to medical devices used to repair tissue.
Rotator cuff repair is a surgical procedure performed to repair torn (or partially torn) tendons in the shoulder. This procedure can be done with large incisions or with arthroscopic techniques. To repair a torn tendon (such as the supraspinatus tendon), a surgeon may use anchors and sutures to reattach the tendon to the humerus bone. The repaired area may then be covered with a graft to facilitate healing. Inserting a graft through a small incision and laying it down in a desired position can be difficult with arthroscopic surgery.
There is a need in the art for a system and method that addresses the shortcomings discussed above.
In one aspect, the present disclosure is directed to an implant delivery device including a handle disposed at a proximal end of the implant delivery device and configured to be grasped by a user. The device may further include an outer shaft extending from the handle to a distal end of the implant delivery device. In addition, the implant delivery device may include an implant holding portion proximate the distal end of the implant delivery device, the implant holding portion being configured to retain a sheet-like implant during implantation of the implant. Further, the implant holding portion may be configured to receive the implant between a fixed implant supporting flange member and configured to support the implant on one side, and a movable implant supporting flange member. The movable implant supporting flange member may be configured to be slidable between a first, distal position and a second, proximal position. In the first, distal position, the movable implant supporting flange member secures the implant against the fixed implant supporting flange member, thus holding the implant in an unfurled configuration. In the second, proximal position, the movable implant supporting flange member is withdrawn from the distal end of the implant delivery device, thus enabling release of the implant.
In another aspect, the present disclosure is directed to an implant delivery device including an implant holding portion proximate a distal end of the implant delivery device, the implant holding portion being configured to retain a sheet-like implant during implantation of the implant. The implant holding portion may be configured to receive the implant with a movable implant supporting flange member configured to retain the implant. The movable implant supporting flange member may be configured to be movable between a first position in which the movable implant supporting flange member holds the implant within the recess and a second position in which the implant is unencumbered by the movable implant supporting flange member, thus enabling release of the implant from the implant holding portion of the implant delivery device.
In another aspect, the present disclosure is directed to a method of delivering a sheet-like implant to a surgical site. The method may include providing an implant delivery device with a sheet-like implant secured by an implant holding portion of the implant delivery device such that the implant is held with respect to an outer shaft and between a fixed implant supporting flange member and a movable implant supporting flange member. The method may also include inserting the implant holding portion of the implant delivery device to a surgical site. Further, the method may include moving the movable implant supporting flange member to a second position, thereby allowing the implant to be released.
Other systems, methods, features, and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For clarity, the description makes reference to distal and proximal directions (or portions). As used herein, the term “distal” shall refer to a direction or portion oriented or located away from a user who is holding the implant delivery device (i.e., away from a surgeon using the device and toward a patient into which the device is being inserted). The term “proximal” shall refer to a direction or portion oriented or located toward a user who is holding the implant delivery device (i.e., toward a surgeon using the device and away from a patient into which the device is being inserted).
In addition, as used herein, the term “fixedly attached” shall refer to two components joined in a manner such that the components may not be readily separated (for example, without destroying one or both components). The term “removably attached” shall refer to components that are attached to one another in a readily separable manner (for example, with fasteners, such as bolts, screws, etc.).
Once the tendon has been sufficiently repaired and/or the surgical site is otherwise prepared, surgeon 102 may insert an implant, such as a graft, through an incision (possibly using another device to facilitate insertion). The graft can then be placed over the tendon and/or portion of the underlying bone in order to facilitate healing. As an example,
Although the exemplary embodiment depicts a procedure in which a tendon is first secured to the bone using sutures and anchors, in other embodiments a graft can be applied to one or more tendons without first reattaching a tendon. For example, grafts could be applied to tendons that have only partial tears.
Once graft 202 has been placed over the tendon, one or more sutures or anchors are required to hold graft 202 in place. The present embodiments disclose a graft delivery device configured to hold an implant, such as a graft, during insertion and release the implant/graft once it has been secured at the surgical site.
An embodiment of an implant delivery device that can be used to insert an implant through a small incision and position it in over tissue in a fully opened condition is shown in
The implant delivery device may include provisions for biasing a sheet-like implant to an open, unfurled configuration as well as for releasing the implant once it has been placed in a desired location. The handle includes provisions to actuate components of an implant holding portion of the device. It will be understood that the disclosed implant delivery device may be configured to deliver any type of sheet-like implant. For example, in some embodiments, the delivery device may be used to deliver a sheet-like graft. In some embodiments, the graft may be formed, at least in part of collagen. In other embodiments, the sheet-like implant may be formed of synthetic material or blends of collagen and various synthetic polymers as are described, for example, in Francis et al., U.S. Pat. No. 10,617,787, issued Apr. 14, 2020, and entitled “Biopolymer Compositions, Scaffolds and Devices,” the entire disclosure of which is incorporated herein by reference, and Francis et al., U.S. Pat. No. 10,653,817, issued May 19, 2020, and entitled “Method for Producing an Implantable Ligament and Tendon Repair Device,” the entire disclosure of which is incorporated herein by reference.
The handle includes a slider member coupled to components that facilitate releasing the implant once it has been placed in a desired position in the body of the patient. The slider member and related components are described in further detail below and shown.
The deployment device may be designed to be easily held. To this end, the body may include a handgrip portion. The handgrip portion may be designed to accommodate either a left or right hand. A user's hand may engage the handgrip portion and use their fingers to actuate the slider member. Additionally, a user's finger(s) or thumb can be used to move the slider member. It may be appreciated that in some embodiments, a variety of different materials, coatings and/or surface treatments can be used with the handle and/or the slider member to improve grip and prevent slipping.
In some embodiments, the disclosed implant delivery device may be configured for insertion through a medical cannula. Medical cannulas are generally well-known in the art of arthroscopic surgery. For example, various types of cannulas are used to control the inflow or outflow of fluids, to allow access for tools into the tissue, and for other functions. In some types of surgeries, an implant or other substrate material may be introduced into a surgical site through a cannula, which maintains an enlarged access port to the surgical site. Additionally, many arthroscopic surgeries, such as joint surgeries, use pressurized irrigation fluid to keep tissue separated apart from other tissue. In particular, pressurized irrigation fluid may be used to aid in visualization of the surgical site as well as to prevent bleeding from vasculature surrounding the surgical cuts. Other types of surgeries, such as gastrointestinal procedures, use pressurized gas to provide access to and visualization of the surgical site.
Utilizing a cannula eliminates the need to include an outer sheath covering the implant during insertion. That is, if the implant is inserted through an incision in the bare skin of the patient, the implant, which is typically relatively delicate, is typically preferred to be encased. Accordingly, implant delivery devices configured to introduce implants directly through the skin (i.e., without a cannula) typically include a sheath that covers the implant during insertion and which is then retracted to expose the implant once the distal end of the instrument reaches the surgical site. Alternatively, devices may include a fixed outer sheath and a movable inner component that holds the implant within the sheath during insertion and is then moved distally to expose the implant at the surgical site.
The presently disclosed implant delivery device is devoid of implant-covering sheathes. Instead, the disclosed device includes resilient implant supporting flange members that pinch the implant generally along a midline of the implant. The flange members abut against a partial area of both sides of the implant. The resilient flange members thus bias the implant toward an unfurled configuration. However, because both the implant and flange members are flexible, the implant (and flange members) may roll up when delivered through a surgical cannula. When the distal end of the device exits the distal end of the cannula, the flange members bias the implant into an unfurled condition. The implant can then be positioned over the tendon and/or bone at the surgical site. In addition, the implant delivery device can be used to hold the implant in place while anchors are used to secure the implant to the native tissue/bone.
Implant delivery device 300 may include an implant holding portion 325 proximate distal end 315 of implant delivery device 300, implant holding portion 325 being configured to retain a sheet-like implant 330 during implantation of implant 330.
Handle 320 may include a casing 335 including a slider member 340 configured to actuate an implant release mechanism discussed in greater detail below. In some embodiments, handle 320 may include an ambidextrous configuration. For example, as shown in
Casing 335 of handle 320 may be formed of a substantially rigid material, such as a hard/rigid plastic and/or metal. Casing 335 must substantially maintain its shape and structural integrity during manipulation of implant delivery device 300 as handle 320 is the portion of the device to which forces are applied during use. Further, the connection between handle 320 and outer shaft 390 must be configured to withstand this loading.
As shown in
Further, implant delivery device 300 may include an outer shaft 390 extending from handle 320 to distal end 315 of implant delivery device 300. Outer shaft 390 may be formed out of a substantially rigid material that is also biocompatible. For example, outer shaft 390 may be formed out of surgical stainless steel or titanium. In some embodiments, outer shaft 390 may be formed to have substantially no deflection when subjected to the forces of implant delivery. In other embodiments, outer shaft 390 may be configured to have a predetermined amount of flexibility in order to facilitate placement of the implant via manipulation of the handle. It will be understood that, also contemplated are configurations where the implant is not necessarily attached to a shaft, but attached to an alternative structure at the distal end of the device.
In addition, as shown in
When implant insertion device 300 is to be inserted through cannula 305, seal structure 370 may be removed from proximal end 350 of cannula 305. In order to maintain pressure at the surgical site, cannula sealing member 400 may be inserted into cannula 305 as implant delivery device 300 is passed through cannula 305. Cannula sealing member 400 may be slidable along outer shaft 390 of implant insertion device 300 in order to facilitate manipulation of implant insertion device 300 to and about the surgical site.
As also shown in
Fixed implant supporting flange member 435 and movable implant supporting flange member 440 may be formed of a flexible but resilient material. That is, the material may be able to flex relatively easily, but return to the flat configuration when the loading is removed.
In addition, since fixed implant supporting flange member 435 and movable implant supporting flange member 440 are exposed to the surgical site, they may be formed of a biocompatible material. Such biocompatible plastics may include the following: polyethylene, polypropylene, polyimide (Kapton®), acrylonitrile butadiene styrene and PAEK polymers. In some embodiments, implant supporting flange members formed of such materials may have thicknesses of approximately 0.001 to 0.025 inch. Other possible materials for the flange members may include nitinol, stainless steel, and/or titanium. Implant supporting flange members formed of such metallic materials may be formed in the appropriate thickness to match the properties of flange members formed of the non-metal materials mentioned above.
As also shown in
In addition, as also shown in
It will be understood that, in some embodiments, the sliding movement of the movable implant supporting flange member may be opposite. That is, the movable flange member may be slid in the distal direction to release the implant. In still other embodiments, the movable implant supporting flange member may be moved in an alternative non-sliding manner to release the implant. For example, in some embodiments, the movable implant supporting flange member may be moved with respect to the fixed implant supporting flange member in a clamshell type action. In some cases, the clamshell opening may occur at the proximal end or distal end of the implant. In other cases, the clamshell opening may be at one lateral side of the implant or the other.
It will be understood that the fixed implant supporting flange member (435;
In order to fully release the implant from the recess in the outer shaft, the inner shaft is retracted further, completely withdrawing the movable implant supporting flange member from the recess.
Once implant 330 is secured at the surgical site and released, implant delivery device 300 may be removed from the surgical site through cannula 305.
In addition, once the cannula is inserted, the method may also include arthroscopically inserting the implant holding portion of the implant delivery device through the cannula to a surgical site. (Step 2005.) It will be noted that, in some cases, the implant delivery device may be used in non-arthroscopic (e.g., open) surgeries. It will be further noted that the disclosed implant delivery device need not necessarily be used with a cannula such as cannula 305. If the implant delivery device were to be used during an open surgery, the cannula would not be necessary.
The next step in the method involves the securing of the implant to tissue/bone at the surgical site, for example, with one or more anchors. (Step 2010.) Once the implant has been secured, the movable implant supporting flange member may be moved to the proximal position (by moving the slider member in the proximal direction) allowing the implant to be released. (Step 2015.) Finally, once the implant has been released, the instrument (i.e., the implant delivery device) may be removed from the surgical site. (Step 2020.)
While various embodiments are described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the disclosed embodiments. Although many possible combinations of features are shown in the accompanying figures and discussed in this detailed description, many other combinations of the disclosed features are possible. Any feature or element of any embodiment may be used in combination with or substituted for any other feature or element in any other embodiment unless specifically restricted. Further, unless otherwise specified, any step in a method or function of a system may take place in any relative order in relation to any other step described herein.
Churchill, R. Sean, Running, Isaac, Ball, Robert J., Snell, Douglas, Jones, Christopher K., Bryant, Brandon
Patent | Priority | Assignee | Title |
11779371, | Oct 28 2022 | EXPAND MEDICAL LTD | Implant delivery device |
11850167, | Feb 11 2020 | Embody, Inc. | Implant delivery device |
Patent | Priority | Assignee | Title |
10085785, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
10105210, | Mar 11 2010 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
10123866, | Mar 11 2010 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
10172703, | Oct 01 2015 | ARTHREX, INC | Joint kinematic reconstruction techniques |
10195016, | Dec 29 2011 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
10226325, | Mar 20 2009 | Rotation Medical, Inc. | Medical device delivery system and method |
10245138, | Dec 29 2011 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
10258459, | May 09 2014 | ROTATION MEDICAL, INC | Medical implant delivery system and related methods |
10265156, | Jun 15 2015 | ROTATION MEDICAL, INC | Tendon repair implant and method of implantation |
10278801, | Apr 15 2010 | Smith & Nephew, Inc | Method and devices for implantation of biologic constructs |
10307238, | Apr 15 2010 | Smith & Nephew, Inc | Method and devices for implantation of biologic constructs |
10314689, | Dec 31 2015 | ROTATION MEDICAL, INC | Medical implant delivery system and related methods |
10376352, | Sep 26 2013 | Covidien LP | Mesh deployment devices and kits |
10413397, | Jan 08 2009 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
10426464, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
10449031, | Feb 15 2011 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
10568622, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target tissue |
10653415, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
10675016, | Oct 30 2015 | New York Society for the Relief of the Ruptured and Crippled, maintaining the Hospital for Special Surgery | Suture sleeve patch and methods of delivery within an existing arthroscopic workflow |
10695155, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
10765423, | Oct 30 2015 | New York Society for the Relief of the Ruptured and Crippled, Maintaing the Hospital for Special Surgery | Suture sleeve patch and methods of delivery within an existing arthroscopic workflow |
10806565, | Mar 20 2009 | Rotation Medical, Inc. | Medical device delivery system and method |
10813742, | Oct 01 2015 | Arthrex, Inc. | Joint kinematic reconstruction techniques |
10820981, | May 07 2018 | Arthrex, Inc. | Surgical tools and joint kinematic reconstruction techniques |
10835235, | Oct 30 2015 | New York Society for the Relief of the Ruptured and Crippled, maintaining the Hospital for Special Surgery | Suture sleeve patch and methods of delivery within an existing arthroscopic workflow |
10835368, | Dec 07 2017 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
10864072, | Mar 11 2010 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
10874503, | Dec 31 2015 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
5195542, | Apr 27 1989 | Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person | |
5318589, | Apr 15 1992 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
5441508, | Apr 27 1989 | Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person | |
6179872, | Mar 17 1998 | MEDTRONIC INTERNATIONAL, LTD | Biopolymer matt for use in tissue repair and reconstruction |
6755863, | Oct 08 1999 | ANOVA CORP | Rotator cuff repair using engineered tissues |
6852330, | Dec 21 2000 | DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC | Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
7153312, | Dec 02 1999 | Smith & Nephew, Inc | Closure device and method for tissue repair |
7559941, | Jun 30 2003 | Depuy Synthes Products, LLC | Instrument for delivery of implant |
7601165, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable suture loop |
7658751, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
7749250, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
7803395, | May 15 2003 | DSM IP ASSETS B V | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
7819918, | Jul 16 2001 | Depuy Synthes Products, LLC | Implantable tissue repair device |
7887551, | Dec 02 1999 | Smith & Nephew, Inc | Soft tissue attachment and repair |
7909851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7963972, | Sep 12 2007 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
8080260, | Feb 13 2008 | The Cleveland Clinic Foundation | Molecular enhancement of extracellular matrix and methods of use |
8084428, | Sep 02 2005 | Geistlich Pharma AG | Method of repairing meniscal tears |
8088130, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8092529, | Jul 16 2001 | Depuy Synthes Products, LLC | Meniscus regeneration device |
8118836, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8128658, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8361113, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8585773, | Apr 15 2010 | Smith & Nephew, Inc | Method and devices for implantation of biologic constructs |
8668718, | Jun 04 2009 | ROTATION MEDICAL, INC | Methods and apparatus for fixing sheet-like materials to a target tissue |
8753359, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
8763878, | Jun 04 2009 | ROTATION MEDICAL, INC | Methods and apparatus having bowstring-like staple delivery to a target tissue |
8821507, | Jul 06 2007 | HOWMEDICA OSTEONICS CORP | Augmentation delivery device |
8821536, | Jun 04 2009 | ROTATION MEDICAL, INC | Methods and apparatus for delivering staples to a target tissue |
8821537, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
8840642, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
8864780, | Feb 15 2011 | ROTATION MEDICAL, INC | Methods and apparatus for delivering and positioning sheet-like materials |
8888811, | Oct 20 2008 | Covidien LP | Device and method for attaching an implant to biological tissue |
8906045, | Aug 17 2009 | Covidien LP | Articulating patch deployment device and method of use |
8920464, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
9005224, | Feb 15 2011 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
9027819, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
9033201, | Feb 15 2011 | ROTATION MEDICAL, INC | Methods and apparatus for fixing sheet-like materials to a target tissue |
9095337, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target issue |
9101460, | Jan 08 2009 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
9107726, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
9113977, | Dec 29 2011 | Rotation Medical, Inc. | Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery |
9179910, | Mar 20 2009 | ROTATION MEDICAL, INC | Medical device delivery system and method |
9179961, | Jun 04 2009 | ROTATION MEDICAL, INC | Methods and apparatus for deploying sheet-like materials |
9198750, | Mar 11 2010 | ROTATION MEDICAL, INC | Tendon repair implant and method of arthroscopic implantation |
9198751, | Dec 29 2011 | ROTATION MEDICAL, INC | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
9204940, | Dec 29 2011 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
9259220, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
9314331, | Dec 29 2011 | ROTATION MEDICAL, INC | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
9393002, | Feb 18 2008 | Covidien LP | Clip for implant deployment device |
9393103, | Mar 11 2010 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
9393104, | Mar 11 2010 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
9642891, | Jun 30 2006 | BioMimetic Therapeutics, LLC | Compositions and methods for treating rotator cuff injuries |
9655709, | Sep 26 2013 | Covidien LP | Mesh deployment devices and kits |
9675346, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
9743970, | Dec 29 2011 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
9878141, | Apr 15 2010 | Smith & Nephew, Inc | Method and devices for implantation of biologic constructs |
9931119, | Jun 04 2009 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
9993247, | Feb 15 2011 | Rotation Medical, Inc. | Apparatus for fixing sheet-like materials to a target tissue |
20020127265, | |||
20050113938, | |||
20060029633, | |||
20060247641, | |||
20070156174, | |||
20070190108, | |||
20070288023, | |||
20080051809, | |||
20090156986, | |||
20090156997, | |||
20100191332, | |||
20100312357, | |||
20120209401, | |||
20120265219, | |||
20130184716, | |||
20150327975, | |||
20160058535, | |||
20160345991, | |||
20170202920, | |||
20180256162, | |||
20180360914, | |||
20190015145, | |||
20190029802, | |||
20190038395, | |||
20190110885, | |||
20190175328, | |||
20190209287, | |||
20190254802, | |||
20190274675, | |||
20190274814, | |||
20190282352, | |||
20190350608, | |||
20190388215, | |||
20200000462, | |||
20200170780, | |||
20200197003, | |||
20200237499, | |||
FR2800595, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 11 2021 | Embody, Inc. | (assignment on the face of the patent) | / | |||
Jul 30 2021 | EMBODY, INC | HORIZON TECHNOLOGY FINANCE CORPORATION | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 057372 | /0332 | |
Aug 14 2021 | BRYANT, BRANDON | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 | |
Aug 17 2021 | JONES, CHRISTOPHER K | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 | |
Jan 19 2022 | CHURCHILL, R SEAN | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 | |
Jan 19 2022 | BALL, ROBERT J | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 | |
Jan 19 2022 | SNELL, DOUGLAS | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 | |
Jan 19 2022 | RUNNING, ISAAC | EMBODY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058711 | /0150 |
Date | Maintenance Fee Events |
Feb 11 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 23 2021 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Mar 01 2025 | 4 years fee payment window open |
Sep 01 2025 | 6 months grace period start (w surcharge) |
Mar 01 2026 | patent expiry (for year 4) |
Mar 01 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 01 2029 | 8 years fee payment window open |
Sep 01 2029 | 6 months grace period start (w surcharge) |
Mar 01 2030 | patent expiry (for year 8) |
Mar 01 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 01 2033 | 12 years fee payment window open |
Sep 01 2033 | 6 months grace period start (w surcharge) |
Mar 01 2034 | patent expiry (for year 12) |
Mar 01 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |