A method, computer program product, and computer system for mapping, by a computing device, an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation. The concept marker and the verbalized version of the value associated with the concept marker may be replaced with a formatted version. A plurality of user selectable format configurations of the formatted version may be provided as a textual output in a user interface.
|
1. A computer-implemented method comprising:
mapping, by a computing device, an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a numerical value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation;
replacing the concept marker and the verbalized version of the numerical value associated with the concept marker with a formatted numerical version;
providing a plurality of user selectable format configurations of the formatted numerical version as a textual output in a user interface;
receiving a user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by a user in the user interface, wherein a concept identification grammar is applied to the textual output of a transcribed medical report based upon the user selected format configuration; and
altering the textual output of the transcribed medical report to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface and altering, as a default setting, the textual output in other documentation to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface based upon, at least in part, a number of times the user and one or more additional users select the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version compared to a number of times the user and one or more additional users select a different user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version.
11. A computing system including one or more processors and one or more memories configured to perform operations comprising:
mapping an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a numerical value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation;
replacing the concept marker and the verbalized version of the numerical value associated with the concept marker with a formatted numerical version;
providing a plurality of user selectable format configurations of the formatted numerical version as a textual output in a user interface;
receiving a user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by a user in the user interface, wherein a concept identification grammar is applied to the textual output of a transcribed medical report based upon the user selected format configuration; and
altering the textual output of the transcribed medical report to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface and altering, as a default setting, the textual output in other documentation to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface based upon, at least in part, a number of times the user and one or more additional users select the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version compared to a number of times the user and one or more additional users select a different user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version.
6. A computer program product residing on a non-transitory computer readable storage medium having a plurality of instructions stored thereon which, when executed across one or more processors, causes at least a portion of the one or more processors to perform operations comprising:
mapping an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a numerical value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation;
replacing the concept marker and the verbalized version of the numerical value associated with the concept marker with a formatted numerical version;
providing a plurality of user selectable format configurations of the formatted numerical version as a textual output in a user interface;
receiving a user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by a user in the user interface, wherein a concept identification grammar is applied to the textual output of a transcribed medical report based upon the user selected format configuration; and
altering the textual output of the transcribed medical report to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface and altering, as a default setting, the textual output in other documentation to correspond to the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version selected by the user in the user interface based upon, at least in part, a number of times the user and one or more additional users select the user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version compared to a number of times the user and one or more additional users select a different user selected format configuration of the plurality of user selectable format configurations of the formatted numerical version.
2. The computer-implemented method of
3. The computer-implemented method of
4. The computer-implemented method of
7. The computer program product of
8. The computer program product of
9. The computer program product of
12. The computing system of
13. The computing system of
14. The computing system of
15. The computer-implemented method of
|
This application claims the benefit of U.S. Provisional Application No. 62/638,809 filed on 5 Mar. 2018, the contents of which are all incorporated herein by reference.
Automated Clinical Documentation (ACD) may be used, e.g., to turn transcribed conversational (e.g., physician-patient) speech into formatted (e.g., medical) reports. In some implementations, the “heart” of the process may be sequence-to-sequence (“seq2seq”) models, which transform the ASR output to a final report. In current systems, different examples of various concepts (such as dates, vital signs and dosage) are “rendered” by the seq2seq model. That is, the model must typically learn the way the concepts are formatted.
In one example implementation, a method, performed by one or more computing devices, may include but is not limited to mapping, by a computing device, an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation. The concept marker and the verbalized version of the value associated with the concept marker may be replaced with a formatted version. A plurality of user selectable format configurations of the formatted version may be provided as a textual output in a user interface.
One or more of the following example features may be included. A concept identification grammar may be applied to the textual output of the medical report. The verbalized version may be selected from a plurality of paths provided by a concept verbalization grammar. A path of the plurality of paths may be selected based upon, at least in part, an edit distance alignment between the automatic speech recognition output and an associated target graph. A user selected format configuration of the plurality of user selectable format configurations selected by a user may be received. A model may be trained using concept verbalization disambiguation. The model may be a sequence-to-sequence model.
In another example implementation, a computing system may include one or more processors and one or more memories configured to perform operations that may include but are not limited to an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation. The concept marker and the verbalized version of the value associated with the concept marker may be replaced with a formatted version. A plurality of user selectable format configurations of the formatted version may be provided as a textual output in a user interface.
One or more of the following example features may be included. A concept identification grammar may be applied to the textual output of the medical report. The verbalized version may be selected from a plurality of paths provided by a concept verbalization grammar. A path of the plurality of paths may be selected based upon, at least in part, an edit distance alignment between the automatic speech recognition output and an associated target graph. A user selected format configuration of the plurality of user selectable format configurations selected by a user may be received. A model may be trained using concept verbalization disambiguation. The model may be a sequence-to-sequence model.
In another example implementation, a computer program product may reside on a computer readable storage medium having a plurality of instructions stored thereon which, when executed across one or more processors, may cause at least a portion of the one or more processors to perform operations that may include but are not limited to an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation. The concept marker and the verbalized version of the value associated with the concept marker may be replaced with a formatted version. A plurality of user selectable format configurations of the formatted version may be provided as a textual output in a user interface.
One or more of the following example features may be included. A concept identification grammar may be applied to the textual output of the medical report. The verbalized version may be selected from a plurality of paths provided by a concept verbalization grammar. A path of the plurality of paths may be selected based upon, at least in part, an edit distance alignment between the automatic speech recognition output and an associated target graph. A user selected format configuration of the plurality of user selectable format configurations selected by a user may be received. A model may be trained using concept verbalization disambiguation. The model may be a sequence-to-sequence model.
The details of one or more example implementations are set forth in the accompanying drawings and the description below. Other possible example features and/or possible example advantages will become apparent from the description, the drawings, and the claims. Some implementations may not have those possible example features and/or possible example advantages, and such possible example features and/or possible example advantages may not necessarily be required of some implementations.
Like reference symbols in the various drawings indicate like elements.
System Overview:
In some implementations, the present disclosure may be embodied as a method, system, or computer program product. Accordingly, in some implementations, the present disclosure may take the form of an entirely hardware implementation, an entirely software implementation (including firmware, resident software, micro-code, etc.) or an implementation combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, in some implementations, the present disclosure may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
In some implementations, any suitable computer usable or computer readable medium (or media) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. The computer-usable, or computer-readable, storage medium (including a storage device associated with a computing device or client electronic device) may be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable medium may include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a digital versatile disk (DVD), a static random access memory (SRAM), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, a media such as those supporting the internet or an intranet, or a magnetic storage device. Note that the computer-usable or computer-readable medium could even be a suitable medium upon which the program is stored, scanned, compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory. In the context of the present disclosure, a computer-usable or computer-readable, storage medium may be any tangible medium that can contain or store a program for use by or in connection with the instruction execution system, apparatus, or device.
In some implementations, a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. In some implementations, such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. In some implementations, the computer readable program code may be transmitted using any appropriate medium, including but not limited to the internet, wireline, optical fiber cable, RF, etc. In some implementations, a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
In some implementations, computer program code for carrying out operations of the present disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java®, Smalltalk, C++ or the like. Java® and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. However, the computer program code for carrying out operations of the present disclosure may also be written in conventional procedural programming languages, such as the “C” programming language, PASCAL, or similar programming languages, as well as in scripting languages such as Javascript, PERL, or Python. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the internet using an Internet Service Provider). In some implementations, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGAs) or other hardware accelerators, micro-controller units (MCUs), or programmable logic arrays (PLAs) may execute the computer readable program instructions/code by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present disclosure.
In some implementations, the flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of apparatus (systems), methods and computer program products according to various implementations of the present disclosure. Each block in the flowchart and/or block diagrams, and combinations of blocks in the flowchart and/or block diagrams, may represent a module, segment, or portion of code, which comprises one or more executable computer program instructions for implementing the specified logical function(s)/act(s). These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the computer program instructions, which may execute via the processor of the computer or other programmable data processing apparatus, create the ability to implement one or more of the functions/acts specified in the flowchart and/or block diagram block or blocks or combinations thereof. It should be noted that, in some implementations, the functions noted in the block(s) may occur out of the order noted in the figures (or combined or omitted). For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
In some implementations, these computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks or combinations thereof.
In some implementations, the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed (not necessarily in a particular order) on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts (not necessarily in a particular order) specified in the flowchart and/or block diagram block or blocks or combinations thereof.
Referring now to the example implementation of
In some implementations, as will be discussed below in greater detail, a formatting process, such as formatting process 10 of
In some implementations, the instruction sets and subroutines of formatting process 10, which may be stored on storage device, such as storage device 16, coupled to computer 12, may be executed by one or more processors and one or more memory architectures included within computer 12. In some implementations, storage device 16 may include but is not limited to: a hard disk drive; all forms of flash memory storage devices; a tape drive; an optical drive; a RAID array (or other array); a random access memory (RAM); a read-only memory (ROM); or combination thereof. In some implementations, storage device 16 may be organized as an extent, an extent pool, a RAID extent (e.g., an example 4D+1P R5, where the RAID extent may include, e.g., five storage device extents that may be allocated from, e.g., five different storage devices), a mapped RAID (e.g., a collection of RAID extents), or combination thereof.
In some implementations, network 14 may be connected to one or more secondary networks (e.g., network 18), examples of which may include but are not limited to: a local area network; a wide area network or other telecommunications network facility; or an intranet, for example. The phrase “telecommunications network facility,” as used herein, may refer to a facility configured to transmit, and/or receive transmissions to/from one or more mobile client electronic devices (e.g., cellphones, etc.) as well as many others.
In some implementations, computer 12 may include a data store, such as a database (e.g., relational database, object-oriented database, triplestore database, etc.) and may be located within any suitable memory location, such as storage device 16 coupled to computer 12. In some implementations, data, metadata, information, etc. described throughout the present disclosure may be stored in the data store. In some implementations, computer 12 may utilize any known database management system such as, but not limited to, DB2, in order to provide multi-user access to one or more databases, such as the above noted relational database. In some implementations, the data store may also be a custom database, such as, for example, a flat file database or an XML database. In some implementations, any other form(s) of a data storage structure and/or organization may also be used. In some implementations, formatting process 10 may be a component of the data store, a standalone application that interfaces with the above noted data store and/or an applet/application that is accessed via client applications 22, 24, 26, 28. In some implementations, the above noted data store may be, in whole or in part, distributed in a cloud computing topology. In this way, computer 12 and storage device 16 may refer to multiple devices, which may also be distributed throughout the network.
In some implementations, computer 12 may execute an automatic speech recognition application (e.g., automatic speech recognition application 20), examples of which may include, but are not limited to, e.g., an automatic speech recognition (ASR) application (e.g., speech recognition application 20), examples of which may include, but are not limited to, e.g., an automatic speech recognition (ASR) application (e.g., modeling, etc.), a natural language understanding (NLU) application (e.g., machine learning, intent discovery, etc.), a text to speech (TTS) application (e.g., context awareness, learning, etc.), a speech signal enhancement (SSE) application (e.g., multi-zone processing/beamforming, noise suppression, etc.), a voice biometrics/wake-up-word processing application, an automated clinical documentation (ACD) application, or other application that allows for ASR functionality. In some implementations, formatting process 10 and/or automatic speech recognition application 20 may be accessed via one or more of client applications 22, 24, 26, 28. In some implementations, formatting process 10 may be a standalone application, or may be an applet/application/script/extension that may interact with and/or be executed within automatic speech recognition application 20, a component of automatic speech recognition application 20, and/or one or more of client applications 22, 24, 26, 28. In some implementations, automatic speech recognition application 20 may be a standalone application, or may be an applet/application/script/extension that may interact with and/or be executed within formatting process 10, a component of formatting process 10, and/or one or more of client applications 22, 24, 26, 28. In some implementations, one or more of client applications 22, 24, 26, 28 may be a standalone application, or may be an applet/application/script/extension that may interact with and/or be executed within and/or be a component of formatting process 10 and/or automatic speech recognition application 20. Examples of client applications 22, 24, 26, 28 may include, but are not limited to, e.g., an automatic speech recognition (ASR) application (e.g., speech recognition application 20), examples of which may include, but are not limited to, e.g., an automatic speech recognition (ASR) application (e.g., modeling, etc.), a natural language understanding (NLU) application (e.g., machine learning, intent discovery, etc.), a text to speech (TTS) application (e.g., context awareness, learning, etc.), a speech signal enhancement (SSE) application (e.g., multi-zone processing/beamforming, noise suppression, etc.), a voice biometrics/wake-up-word processing application, an automated clinical documentation (ACD) application, or other application that allows for ASR functionality, a standard and/or mobile web browser, an email application (e.g., an email client application), a textual and/or a graphical user interface, a customized web browser, a plugin, an Application Programming Interface (API), or a custom application. The instruction sets and subroutines of client applications 22, 24, 26, 28, which may be stored on storage devices 30, 32, 34, 36, coupled to client electronic devices 38, 40, 42, 44, may be executed by one or more processors and one or more memory architectures incorporated into client electronic devices 38, 40, 42, 44.
In some implementations, one or more of storage devices 30, 32, 34, 36, may include but are not limited to: hard disk drives; flash drives, tape drives; optical drives; RAID arrays; random access memories (RAM); and read-only memories (ROM). Examples of client electronic devices 38, 40, 42, 44 (and/or computer 12) may include, but are not limited to, a personal computer (e.g., client electronic device 38), a laptop computer (e.g., client electronic device 40), a smart/data-enabled, cellular phone (e.g., client electronic device 42), a notebook computer (e.g., client electronic device 44), a tablet, a server, a television, a smart television, a smart speaker, an Internet of Things (IoT) device, a media (e.g., audio/video, photo, etc.) capturing and/or output device, an audio input and/or recording device (e.g., a handheld microphone, a lapel microphone, an embedded microphone (such as those embedded within eyeglasses, smart phones, tablet computers and/or watches, etc.), and a dedicated network device. Client electronic devices 38, 40, 42, 44 may each execute an operating system, examples of which may include but are not limited to, Android™, Apple® iOS®, Mac® OS X®; Red Hat® Linux®, Windows® Mobile, Chrome OS, Blackberry OS, Fire OS, or a custom operating system.
In some implementations, one or more of client applications 22, 24, 26, 28 may be configured to effectuate some or all of the functionality of formatting process 10 (and vice versa). Accordingly, in some implementations, formatting process 10 may be a purely server-side application, a purely client-side application, or a hybrid server-side/client-side application that is cooperatively executed by one or more of client applications 22, 24, 26, 28 and/or formatting process 10.
In some implementations, one or more of client applications 22, 24, 26, 28 may be configured to effectuate some or all of the functionality of automatic speech recognition application 20 (and vice versa). Accordingly, in some implementations, automatic speech recognition application 20 may be a purely server-side application, a purely client-side application, or a hybrid server-side/client-side application that is cooperatively executed by one or more of client applications 22, 24, 26, 28 and/or automatic speech recognition application 20. As one or more of client applications 22, 24, 26, 28, formatting process 10, and automatic speech recognition application 20, taken singly or in any combination, may effectuate some or all of the same functionality, any description of effectuating such functionality via one or more of client applications 22, 24, 26, 28, formatting process 10, automatic speech recognition application 20, or combination thereof, and any described interaction(s) between one or more of client applications 22, 24, 26, 28, formatting process 10, automatic speech recognition application 20, or combination thereof to effectuate such functionality, should be taken as an example only and not to limit the scope of the disclosure.
In some implementations, one or more of users 46, 48, 50, 52 may access computer 12 and formatting process 10 (e.g., using one or more of client electronic devices 38, 40, 42, 44) directly through network 14 or through secondary network 18. Further, computer 12 may be connected to network 14 through secondary network 18, as illustrated with phantom link line 54. Formatting process 10 may include one or more user interfaces, such as browsers and textual or graphical user interfaces, through which users 46, 48, 50, 52 may access formatting process 10.
In some implementations, the various client electronic devices may be directly or indirectly coupled to network 14 (or network 18). For example, client electronic device 38 is shown directly coupled to network 14 via a hardwired network connection. Further, client electronic device 44 is shown directly coupled to network 18 via a hardwired network connection. Client electronic device 40 is shown wirelessly coupled to network 14 via wireless communication channel 56 established between client electronic device 40 and wireless access point (i.e., WAP) 58, which is shown directly coupled to network 14. WAP 58 may be, for example, an IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, Wi-Fi®, RFID, and/or Bluetooth™ (including Bluetooth™ Low Energy) device that is capable of establishing wireless communication channel 56 between client electronic device 40 and WAP 58. Client electronic device 42 is shown wirelessly coupled to network 14 via wireless communication channel 60 established between client electronic device 42 and cellular network/bridge 62, which is shown by example directly coupled to network 14.
In some implementations, some or all of the IEEE 802.11x specifications may use Ethernet protocol and carrier sense multiple access with collision avoidance (i.e., CSMA/CA) for path sharing. The various 802.11x specifications may use phase-shift keying (i.e., PSK) modulation or complementary code keying (i.e., CCK) modulation, for example. Bluetooth™ (including Bluetooth™ Low Energy) is a telecommunications industry specification that allows, e.g., mobile phones, computers, smart phones, and other electronic devices to be interconnected using a short-range wireless connection. Other forms of interconnection (e.g., Near Field Communication (NFC)) may also be used.
In some implementations, various I/O requests (e.g., I/O request 15) may be sent from, e.g., client applications 22, 24, 26, 28 to, e.g., computer 12. Examples of I/O request 15 may include but are not limited to, data write requests (e.g., a request that content be written to computer 12) and data read requests (e.g., a request that content be read from computer 12).
Referring also to the example implementation of
In some implementations, computer 12 may include processor 202, memory 204, storage device 206, a high-speed interface 208 connecting to memory 204 and high-speed expansion ports 210, and low speed interface 212 connecting to low speed bus 214 and storage device 206. Each of the components 202, 204, 206, 208, 210, and 212, may be interconnected using various busses, and may be mounted on a common motherboard or in other manners as appropriate. The processor 202 can process instructions for execution within the computer 12, including instructions stored in the memory 204 or on the storage device 206 to display graphical information for a GUI on an external input/output device, such as display 216 coupled to high speed interface 208. In other implementations, multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and types of memory. Also, multiple computing devices may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system).
Memory 204 may store information within the computer 12. In one implementation, memory 204 may be a volatile memory unit or units. In another implementation, memory 204 may be a non-volatile memory unit or units. The memory 204 may also be another form of computer-readable medium, such as a magnetic or optical disk.
Storage device 206 may be capable of providing mass storage for computer 12. In one implementation, the storage device 206 may be or contain a computer-readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. A computer program product can be tangibly embodied in an information carrier. The computer program product may also contain instructions that, when executed, perform one or more methods, such as those described above. The information carrier is a computer- or machine-readable medium, such as the memory 204, the storage device 206, memory on processor 202, or a propagated signal.
High speed controller 208 may manage bandwidth-intensive operations for computer 12, while the low speed controller 212 may manage lower bandwidth-intensive operations. Such allocation of functions is exemplary only. In one implementation, the high-speed controller 208 may be coupled to memory 204, display 216 (e.g., through a graphics processor or accelerator), and to high-speed expansion ports 210, which may accept various expansion cards (not shown). In the implementation, low-speed controller 212 is coupled to storage device 206 and low-speed expansion port 214. The low-speed expansion port, which may include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet) may be coupled to one or more input/output devices, such as a keyboard, a pointing device, a scanner, or a networking device such as a switch or router, e.g., through a network adapter.
Computer 12 may be implemented in a number of different forms, as shown in the figure. For example, computer 12 may be implemented as a standard server 220, or multiple times in a group of such servers. It may also be implemented as part of a rack server system 224. Alternatively, components from computer 12 may be combined with other components in a mobile device (not shown), such as client electronic device 42. Each of such devices may contain one or more of computer 12, client electronic device 42, and an entire system may be made up of multiple computing devices communicating with each other.
Client electronic device 42 may include processor 226, memory 204, an input/output device such as display 216, a communication interface 262, and a transceiver 264, among other components. Client electronic device 42 may also be provided with a storage device, such as a microdrive or other device, to provide additional storage. Each of the components 226, 204, 216, 262, and 264, may be interconnected using various buses, and several of the components may be mounted on a common motherboard or in other manners as appropriate.
Processor 226 may execute instructions within client electronic device 42, including instructions stored in the memory 204. The processor may be implemented as a chipset of chips that include separate and multiple analog and digital processors. The processor may provide, for example, for coordination of the other components of client electronic device 42, such as control of user interfaces, applications run by client electronic device 42, and wireless communication by client electronic device 42.
In some embodiments, processor 226 may communicate with a user through a control interface and display interface 260 coupled to a display 216. The display 216 may be, for example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED (Organic Light Emitting Diode) display, or other appropriate display technology. The display interface 260 may comprise appropriate circuitry for driving the display 216 to present graphical and other information to a user. The control interface may receive commands from a user and convert them for submission to the processor 226. In addition, an external interface may be provide in communication with processor 226, so as to enable near area communication of client electronic device 42 with other devices. External interface 262 may provide, for example, for wired communication in some implementations, or for wireless communication in other implementations, and multiple interfaces may also be used.
In some embodiments, memory 204 may store information within the Client electronic device 42. The memory 204 can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units. Expansion memory may also be provided and connected to client electronic device 42 through expansion interface 266, which may include, for example, a SIMM (Single In Line Memory Module) card interface. Such expansion memory may provide extra storage space for client electronic device 42, or may also store applications or other information for client electronic device 42. Specifically, expansion memory may include instructions to carry out or supplement the processes described above, and may include secure information also. Thus, for example, expansion memory may be provide as a security module for client electronic device 42, and may be programmed with instructions that permit secure use of client electronic device 42. In addition, secure applications may be provided via the SIMM cards, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.
The memory may include, for example, flash memory and/or NVRAM memory, as discussed below. In one implementation, a computer program product is tangibly embodied in an information carrier. The computer program product may contain instructions that, when executed, perform one or more methods, such as those described above. The information carrier may be a computer- or machine-readable medium, such as the memory 204, expansion memory, memory on processor 226, or a propagated signal that may be received, for example, over transceiver 264 or external interface.
Client electronic device 42 may communicate wirelessly through communication interface 262, which may include digital signal processing circuitry where necessary. Communication interface 262 may provide for communications under various modes or protocols, such as GSM voice calls, SMS, EMS, or MMS speech recognition, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication may occur, for example, through radio-frequency transceiver 264. In addition, short-range communication may occur, such as using a Bluetooth, WiFi, or other such transceiver (not shown). In addition, GPS (Global Positioning System) receiver module 268 may provide additional navigation and location-related wireless data to client electronic device 42, which may be used as appropriate by applications running on client electronic device 42.
Client electronic device 42 may also communicate audibly using audio codec 270, which may receive spoken information from a user and convert it to usable digital information. Audio codec 270 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of client electronic device 42. Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on client electronic device 42.
Client electronic device 42 may be implemented in a number of different forms, as shown in the figure. For example, it may be implemented as a cellular telephone 280. It may also be implemented as part of a smartphone 282, personal digital assistant, remote control, or other similar mobile device.
Automated Clinical Documentation (ACD) may be used, e.g., to turn transcribed conversational (e.g., physician-patient) speech into formatted (e.g., medical) reports. In some implementations, the “heart” of the process may be sequence-to-sequence (“seq2seq”) models, which transform the ASR output to a final report. In current systems, different examples of various concepts (such as dates, vital signs and dosage) are “rendered” by the seq2seq model. That is, the model must typically learn the way the concepts are formatted. This may result in multiple example disadvantages. For example, if an institution has its own standards for formatting particular concepts (or changes those standards), the model must typically be retrained with data using these formatting rules, which takes time and resources. As another example, data from institutions with different formatting for these concepts cannot generally be maximally shared in training the seq2seq model. As yet another example, the seq2seq model generally has to use some of its capacity learning the output formatting (e.g., the mapping of how numeric expressions are verbalized vs. formatted). Therefore, as will be discussed below in greater detail, the present disclosure may make modifications to a typical seq2seq based ACD workflow to create an ACD system that allows an institution (or even individual doctors or other healthcare professionals) to specify and change concept formatting rules (e.g., semantic items like time, date, blood pressure, temperature, and other concepts that are primarily expressed as number) without one or more of the above-noted disadvantages.
As will be discussed below, formatting process 10 may at least help, e.g., improve existing technology, necessarily rooted in computer technology in order to overcome an example and non-limiting problem specifically arising in the realm of ASR systems associated with, e.g., being integrated into the practical application of ASR based concept formatting. It will be appreciated that the computer processes described throughout are integrated into one or more practical applications, and when taken at least as a whole are not considered to be well-understood, routine, and conventional functions.
The Formatting Process:
As discussed above and referring also at least to the example implementations of
As will be discussed below, users of an Automated Clinical Documentation (ACD) system (e.g., doctors or other healthcare professionals and institutions) may want to control the formatting of various concepts and render them differently from each other. In some implementations, formatting process 10 may decompose the learning of the concept identification and value from the formatting (rendering) process so that an ACD learner (which may include portions of formatting process 10) may make the best use of data with potentially distinct formatting preferences across doctors (or other healthcare professionals) and institutions (e.g., for improved data efficiency) and the doctor (or institution) may configure the formatting decision without requiring the ACD learner to be adapted (e.g., for immediate formatting configurability). In some implementations, unlike formatting process 10, if a system were to require the ACD learner to directly map to formatted text, as a result, the ACD learner may need to learn and encode the mapping of verbalized concept sequences (e.g., one hundred ten over seventy) to formatted sequences (e.g., 110/70), which may unnecessarily erode data efficiency and likely increasing the number of errors in the ACD output.
In some implementations, formatting process 10 may map 300, by a computing device an automatic speech recognition output of a conversation to a concept marker and a verbalized version of a value associated with the concept marker based upon, at least in part, the automatic speech recognition output of the conversation. For example, formatting process 10 may map 300 from the automatic speech recognition (ASR) output of a conversation, which will typically include concepts that require configurable formatting. In the example, formatting process 10 may effect this by, e.g., first mapping 300 the ASR output, where instead of formatted concept values there are concept markers with verbalized versions of the values, and then (as will be discussed below), formatting process 10 may replace 302 the markers and verbalized values by their formatted version per grammars with configurable options. For instance, assume for example purposes only that a doctor (e.g., user 50) is with a patient using an ACD system associated with formatting process 10. In the example, further assume that with a doctor/patient consult transcript, the temperature of the patient is discussed, which may be received by an audio receiving feature (e.g., microphone) of any of the above-noted computing devices (e.g., client electronic device 42). For instance, the temperature documented in the report (which is inferred from the patient stating they have a fever of “a hundred and one”). This may be formatted as, e.g., “101°” but a particular doctor (e.g., user 50) or facility may prefer a format of, e.g., “101° F.” or “101° F.” or even “38° C.”. As will be discussed below, it may be desirable (for formatting process 10) to support this level of configurability without a model having to learn from data alone to map, e.g., “a hundred and one” yielding “38° C.,” since learning such a mapping may require many examples (e.g., of doctor-patient consult transcripts with temperatures and medical reports formatted with ° C., etc.). Further, it may be desirable (for formatting process 10) to allow a user/facility to revisit these decisions and not have to wait for a model to adapt to this change by learning from a doctor or scribe modifying the system output over and over again in reports. Additionally, it may be desirable (for formatting process 10) to allow the model to make better use of data across different doctors/facilities/scribes that happen to prefer to format numeric expressions in different ways (i.e., not unnecessarily fragment the training data). As a result, formatting process 10 may decompose the modeling of these concepts and the rendering of these concepts. Formatting process 10 may let the model learn from data to identify the concept and its value, which may be rendered using an expertly created (formatting/rendering) grammar that supports a user specifying their formatting preference (which may thus instantly be obliged), e.g., the doctor prefers temperatures with “° C.” (as selected from a finite list of options supported by the grammar).
Referring at least to the example implementation of
In some implementations, formatting process 10 may replace 302 the concept marker and the verbalized version of the value associated with the concept marker with a formatted version. Replacing 302 the concept marker and the verbalized version of the value associated with the concept marker with the formatted version may occur as part of the runtime process. During the training process, rather than use an already formatted medical report text as the target for the learner (e.g., a sequence-to-sequence/seq2seq based neural network), formatting process may replace the formatted version (e.g., 101° F.) of the value associated with a concept marker (e.g., <temperature> . . . </temperature>) with a verbalized version (e.g. <temperature> a hundred and one </temperature>), which (to minimize the complexity of the learning task may be the simplest for the learner given the ASR output (e.g., reflecting the physician-patient consult transcript) or audio from which it is mapping. As such, formatting process 10 may modify the output target of a model (e.g., a seq2seq model) to include the concept markup, but verbalized rather than formatted values. Thus, a question may then be what exactly to use as the model's target output, which captures the concept identification and value such that the mapping is as easy as possible for the model. In some implementations, to minimize the amount of data, it may be required to train the model to perform well (discussed further below).
In some implementations, a concept identification grammar may be applied to the textual output of the medical report. For example, the concept identification (ID) grammar may be applied in the data preparation phase for model training and it may be applied to the formatted report. For example, in order to target anything beyond the exact rendering in the report (e.g., “. . . he developed a temperature to 101° F. orally . . . ” in this example) formatting process 10 may need to identify the above-noted relevant numeric concept of “temperature” in the (formatted) report. In some implementations, this may be done via a rule-based mechanism (i.e., concept identification grammar), which may be expert created rather than learned from data. In some implementations, this grammar may also be able to identify and parse out the value, e.g., “. . . a temperature to <temperature>101° F.</temperature>orally . . . ”.
In some implementations, formatting process 10 may select 306 the verbalized version from a plurality of paths provided by a concept verbalization grammar. For example, the medical report available to use for training may have fully formatted concepts, since that is what scribes/doctors may ultimately produce. The concept identification grammar may be applied to this formatted report and it may mark up formatted concepts with a concept identifier. For example, in some implementations, a path of the plurality of paths may be selected 306 based upon, at least in part, an edit distance alignment between the automatic speech recognition output and an associated target graph. For instance, an expertly crafted concept verbalization grammar may take (e.g., via formatting process 10) a formatted value for a concept like “101° F.” for temperature and may create a lattice of all ways it knows it may be spoken, e.g., ((one oh one|a hundred and one|one hundred one| . . . ) [Fahrenheit]|thirty eight [Celsius]). Note that it may actually have been spoken in a novel way or simply partially misrecognized. At this point, formatting process 10 may have a network (e.g., directed acyclic graph or target graph) of possible targets for the model, e.g., “SUBJECTIVE he developed a temperature of <temperature>((one oh one|a hundred and one|one hundred one| . . . ) [Fahrenheit]|thirty eight [Celsius])</temperature> . . . ”. This temperature is likely not the only formatted concept in the report. The simplest attempt at selecting 306 an “easy to model” path through this target graph/network may be for formatting process 10 to perform an edit distance alignment 700 (shown in the example implementation of
In some implementations, and continuing with the above example, formatting process 10 may train 308 a model using concept verbalization disambiguation. In some implementations, the model may be a sequence-to-sequence (seq2seq) model. The concept verbalization grammar may replace the formatted concept value with a plurality of verbalized value paths, which then may be selected based on edit distance alignment with the ASR transcript. For instance, an example 800 training of a seq2seq model is shown in the example implementation of
In some implementations, to provide a less biased estimate, formatting process 10 may perform k-fold cross-validation, e.g., with k=2 the training corpus may be split in half, train a model from each half, and use the model from one half to choose the maximum likelihood target paths for the transcript-report pairs for the other half. Once there are updated/refined targets, formatting process 10 may retrain the model. In principle, formatting process 10 may iterate, using these better models (due to better/easier targets) to choose new targets for the basis of training. However, this may quickly converge, i.e. there is no change in the selected target paths from one iteration to the next (and so modulo randomization in the training process obtains the same model).
In some implementations, formatting process 10 may provide 304 a plurality of user selectable format configurations of the formatted version as a textual output of a user interface. For example, in the actual run time system, the seq2seq model may be applied to the ASR output, which may provide the report with the concept marker and verbalized values encoded therein and then a formatting grammar may be applied to complete the rendering. For example, as noted above, doctors (or other healthcare professionals or institutions) may want the ability to have dynamic formatting control and the ACD learner (via formatting process 10) may need to deal with diversity of formatting realities. For example, and referring at least to the example implementation of
In some implementations, the default configurations for the concept formatting grammars may be induced by applying the concept identification grammar to data from the physician or institution and simply noting the maximally frequent rendering choices. For instance, if the institution frequently (e.g., a majority of the time or beyond a threshold number of times) selects “101°” as the formatting for temperature, this format may be originally provided in the final report (or field of the final report), which may then be changed by the user by selecting their preferred formatting (e.g., via the above-noted drop down menu). In some implementations, the default options may be, e.g., set per clinic, and the doctors (or otherwise) may adjust similarly as described above.
In some implementations, formatting process 10 may receive 310 a user selected format configuration of the plurality of user selectable format configurations selected by a user. For instance, and continuing with the above example, since user 50 has selected the format of 101° F. instead of 101°, formatting process 10 may receive 310 the user selected format at runtime for the concept formatting/rendering grammars. As such, in some implementations, the next time temperature is presented in a report (or elsewhere for documentation by user 50) and identified using the concept marker, formatting process 10 may present the output of the report text (or other abstractive summarization) in the selected format of 101°F.
Accordingly, formatting process 10 may use models (e.g., seq2seq models or other similar models) for abstractive summarization, and in particular may modify the data preparation and decompose the inference process to allow easy (and dynamic) customization for formatting concepts. Additionally, rather than using, e.g., a physician-patient conversation as the input to the mapping task, formatting process 10 may use the ASR output (e.g., from the physician dictation or speech) as the input to the mapping task, as well as use determination of the target for the mapper learned from data (e.g., concept verbalization disambiguation (CVD)).
It will be appreciated that while the present disclosure may be described in terms of an ACD system, other non-medical systems may benefit from the use of formatting process 10. As such, the use of an ACD (or other medical type system) should be taken as example only and not to otherwise limit the scope of the disclosure. Similarly, it will be appreciated that concepts other than temperature may be used without departing from the scope of the disclosure. As such, the use of temperature as the concept should be taken as example only and not to otherwise limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the language “at least one of A, B, and C” (and the like) should be interpreted as covering only A, only B, only C, or any combination of the three, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps (not necessarily in a particular order), operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps (not necessarily in a particular order), operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents (e.g., of all means or step plus function elements) that may be in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications, variations, substitutions, and any combinations thereof will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The implementation(s) were chosen and described in order to explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various implementation(s) with various modifications and/or any combinations of implementation(s) as are suited to the particular use contemplated.
Having thus described the disclosure of the present application in detail and by reference to implementation(s) thereof, it will be apparent that modifications, variations, and any combinations of implementation(s) (including any modifications, variations, substitutions, and combinations thereof) are possible without departing from the scope of the disclosure defined in the appended claims.
Patent | Priority | Assignee | Title |
11322231, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11404148, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11482308, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11482311, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11494735, | Mar 05 2018 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11515020, | Mar 05 2018 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11531807, | Jun 28 2019 | Microsoft Technology Licensing, LLC | System and method for customized text macros |
11605448, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
11670408, | Sep 30 2019 | Microsoft Technology Licensing, LLC | System and method for review of automated clinical documentation |
11777947, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Ambient cooperative intelligence system and method |
11853691, | Aug 10 2017 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
12062016, | Mar 05 2018 | Microsoft Technology Licensing, LLC | Automated clinical documentation system and method |
Patent | Priority | Assignee | Title |
10090068, | Dec 23 2014 | Cerner Innovation, Inc. | Method and system for determining whether a monitored individual's hand(s) have entered a virtual safety zone |
10219083, | Mar 09 2017 | Oticon A/S | Method of localizing a sound source, a hearing device, and a hearing system |
10423948, | Jun 29 2017 | BLOCK, INC | Automated third-party messaging |
10440498, | Nov 05 2018 | META PLATFORMS TECHNOLOGIES, LLC | Estimating room acoustic properties using microphone arrays |
10491598, | Jun 30 2016 | Amazon Technologies, Inc | Multi-factor authentication to access services |
10559295, | Dec 08 2017 | Artificial reverberator room size control | |
10693872, | May 17 2019 | ARTIUS ID, INC | Identity verification system |
10719222, | Oct 23 2017 | GOOGLE LLC | Method and system for generating transcripts of patient-healthcare provider conversations |
10785565, | Nov 16 2016 | Nokia Technologies Oy | Distributed audio capture and mixing controlling |
10810574, | Jun 29 2017 | BLOCK, INC | Electronic audible payment messaging |
10972682, | Dec 12 2019 | Meta Platforms, Inc | System and method for adding virtual audio stickers to videos |
5805747, | Oct 04 1994 | Leidos, Inc | Apparatus and method for OCR character and confidence determination using multiple OCR devices |
5809476, | Mar 23 1994 | System for converting medical information into representative abbreviated codes with correction capability | |
5940118, | Dec 22 1997 | RPX CLEARINGHOUSE LLC | System and method for steering directional microphones |
5970455, | Mar 20 1997 | Xerox Corporation; Fuji Xerox Co., Ltd. | System for capturing and retrieving audio data and corresponding hand-written notes |
5970457, | Oct 25 1995 | Johns Hopkins University | Voice command and control medical care system |
6004276, | Mar 03 1997 | QUINTON INC | Open architecture cardiology information system |
6031526, | Aug 08 1996 | APOLLO CAMERA, L L C | Voice controlled medical text and image reporting system |
6266635, | Jul 08 1999 | Contec Medical Ltd. | Multitasking interactive voice user interface |
6332122, | Jun 23 1999 | Nuance Communications, Inc | Transcription system for multiple speakers, using and establishing identification |
6401063, | Nov 09 1999 | RPX CLEARINGHOUSE LLC | Method and apparatus for use in speaker verification |
6405165, | Mar 05 1998 | KARL STORZ SE & CO KG | Medical workstation for treating a patient with a voice recording arrangement for preparing a physician's report during treatment |
6434520, | Apr 16 1999 | Nuance Communications, Inc | System and method for indexing and querying audio archives |
6523166, | Sep 21 1998 | Microsoft Technology Licensing, LLC | Method and system for on-demand installation of software implementations |
6589169, | Mar 13 1998 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT | Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients undergoing anticoagulation therapy |
6801916, | Apr 01 1998 | ASCEND HIT LLC | Method and system for generation of medical reports from data in a hierarchically-organized database |
6823203, | Jun 07 2001 | Koninklijke Philips Electronics N V | System and method for removing sensitive data from diagnostic images |
6847336, | Oct 02 1996 | Selectively controllable heads-up display system | |
6915254, | Jul 30 1998 | Optum360, LLC | Automatically assigning medical codes using natural language processing |
7236618, | Jul 07 2000 | Virtual surgery system with force feedback | |
7298930, | Nov 29 2002 | Ricoh Company, LTD | Multimodal access of meeting recordings |
7412396, | Feb 15 2001 | Virtual clinic for medical practice | |
7493253, | Jul 12 2002 | Nuance Communications, Inc | Conceptual world representation natural language understanding system and method |
7496500, | Mar 01 2004 | Microsoft Technology Licensing, LLC | Systems and methods that determine intent of data and respond to the data based on the intent |
7516070, | Feb 19 2004 | CUSTOM SPEECH USA, INC | Method for simultaneously creating audio-aligned final and verbatim text with the assistance of a speech recognition program as may be useful in form completion using a verbal entry method |
7558156, | Jan 06 2006 | Agilent Technologies, Inc. | Acoustic location and enhancement |
7817805, | Jan 12 2005 | Zebra Technologies Corporation | System and method for steering the directional response of a microphone to a moving acoustic source |
7830962, | Mar 19 1998 | NORTHSTAR SYSTEMS LLC | Monitoring remote patients |
8214082, | Jan 31 2008 | National Chiao Tung University | Nursing system |
8345887, | Feb 23 2007 | Sony Interactive Entertainment LLC | Computationally efficient synthetic reverberation |
8369593, | Dec 21 2007 | Siemens Healthcare GmbH | Systems and methods for robust learning based annotation of medical radiographs |
8589177, | Jan 16 2001 | Virtual clinic for medical practice | |
8589372, | Dec 16 2008 | Method and system for automated document registration with cloud computing | |
8606594, | Oct 29 2002 | ANTARES CAPITAL LP, AS FIRST LIEN COLLATERAL AGENT | Method and system for automated medical records processing |
8661012, | Dec 29 2006 | GOOGLE LLC | Ensuring that a synonym for a query phrase does not drop information present in the query phrase |
8843372, | Mar 19 2010 | Natural conversational technology system and method | |
8983889, | Mar 25 1996 | STONEMAN, CARY D; STONEMAN, DAN J | Autonomous humanoid cognitive systems |
9146301, | Jan 25 2012 | FUJIFILM Business Innovation Corp | Localization using modulated ambient sounds |
9224180, | Nov 23 2011 | WhenMed VC LLC | Remotely-executed medical diagnosis and therapy including emergency automation |
9270964, | Jun 24 2013 | GOOGLE LLC | Extracting audio components of a portion of video to facilitate editing audio of the video |
9293151, | Oct 17 2011 | Cerence Operating Company | Speech signal enhancement using visual information |
9326143, | Dec 16 2011 | TeleCommunication Systems, Inc. | Authentication via motion of wireless device movement |
9338493, | Jun 30 2014 | Apple Inc | Intelligent automated assistant for TV user interactions |
9536049, | Sep 07 2012 | VERINT AMERICAS INC | Conversational virtual healthcare assistant |
9536106, | Oct 08 2013 | NEC Corporation | System and method for the display of restricted information on private displays |
9569593, | Mar 08 2012 | Microsoft Technology Licensing, LLC | Methods and apparatus for generating clinical reports |
9569594, | Mar 08 2012 | Microsoft Technology Licensing, LLC | Methods and apparatus for generating clinical reports |
9668006, | Jun 01 2011 | Comcast Cable Communications, LLC | Content selection based on dispersion calculations |
9668024, | Jun 30 2014 | Apple Inc. | Intelligent automated assistant for TV user interactions |
9668066, | Apr 03 2015 | AUDIOTELLIGENCE LIMITED | Blind source separation systems |
9679102, | Apr 11 2013 | The Boeing Company | Structure placement using prior design location identification and feedback |
9779631, | Feb 27 2013 | WALGREEN CO. | Facilitating patient communication using branching logic in an outpatient oncology treatment regimen |
9785753, | Mar 08 2012 | Microsoft Technology Licensing, LLC | Methods and apparatus for generating clinical reports |
9799206, | Jan 05 2015 | Brenda Michelle, Wilson Van Horn | Method for automating emergency distress signals from a networked peripheral device |
9824691, | Jun 02 2017 | SORENSON IP HOLDINGS, LLC; SORENSON COMMUNICATIONS, LLC; CAPTIONCALL, LLC | Automated population of electronic records |
20010029322, | |||
20010041992, | |||
20010042114, | |||
20020032583, | |||
20020069056, | |||
20020072896, | |||
20020082825, | |||
20020143533, | |||
20020170565, | |||
20020178002, | |||
20020194005, | |||
20030028401, | |||
20030105638, | |||
20030125940, | |||
20030154085, | |||
20030185411, | |||
20030216937, | |||
20040078228, | |||
20040122701, | |||
20040128323, | |||
20040162728, | |||
20040167644, | |||
20040172070, | |||
20040186712, | |||
20040243545, | |||
20040247016, | |||
20050055215, | |||
20050075543, | |||
20050114179, | |||
20050165285, | |||
20050192848, | |||
20060041427, | |||
20060041428, | |||
20060074656, | |||
20060092978, | |||
20060104454, | |||
20060104458, | |||
20060142739, | |||
20060173753, | |||
20060241943, | |||
20060277071, | |||
20070033032, | |||
20070071206, | |||
20070136218, | |||
20070167709, | |||
20070169021, | |||
20070208567, | |||
20070233488, | |||
20070260977, | |||
20080004505, | |||
20080004904, | |||
20080040162, | |||
20080059182, | |||
20080062280, | |||
20080071575, | |||
20080177537, | |||
20080240463, | |||
20080247274, | |||
20080263451, | |||
20080285772, | |||
20090024416, | |||
20090055735, | |||
20090070103, | |||
20090089100, | |||
20090136094, | |||
20090150771, | |||
20090172773, | |||
20090177477, | |||
20090177492, | |||
20090187407, | |||
20090198520, | |||
20090213123, | |||
20090259136, | |||
20090270690, | |||
20100036676, | |||
20100039296, | |||
20100076760, | |||
20100076784, | |||
20100077289, | |||
20100082657, | |||
20100088095, | |||
20100094650, | |||
20100094656, | |||
20100094657, | |||
20100100376, | |||
20100131532, | |||
20100145736, | |||
20100223216, | |||
20100238323, | |||
20100241662, | |||
20110015943, | |||
20110035221, | |||
20110063405, | |||
20110063429, | |||
20110066425, | |||
20110071675, | |||
20110096941, | |||
20110119163, | |||
20110145013, | |||
20110150420, | |||
20110153520, | |||
20110161113, | |||
20110166884, | |||
20110178798, | |||
20110178813, | |||
20110202370, | |||
20110238435, | |||
20110246216, | |||
20110251852, | |||
20110286584, | |||
20110301982, | |||
20120020485, | |||
20120029918, | |||
20120053936, | |||
20120076316, | |||
20120078626, | |||
20120101847, | |||
20120134507, | |||
20120155703, | |||
20120158432, | |||
20120159391, | |||
20120173281, | |||
20120197660, | |||
20120208166, | |||
20120212337, | |||
20120215551, | |||
20120215557, | |||
20120215559, | |||
20120239430, | |||
20120253801, | |||
20120253811, | |||
20120254917, | |||
20120323574, | |||
20120323575, | |||
20120323589, | |||
20130017834, | |||
20130035961, | |||
20130041682, | |||
20130041685, | |||
20130064358, | |||
20130073306, | |||
20130080879, | |||
20130103400, | |||
20130138457, | |||
20130173287, | |||
20130188923, | |||
20130238312, | |||
20130238329, | |||
20130238330, | |||
20130246098, | |||
20130297347, | |||
20130297348, | |||
20130301837, | |||
20130311190, | |||
20130332004, | |||
20130339030, | |||
20140019128, | |||
20140035920, | |||
20140050307, | |||
20140073880, | |||
20140074454, | |||
20140093135, | |||
20140096091, | |||
20140122109, | |||
20140142944, | |||
20140169767, | |||
20140188475, | |||
20140207491, | |||
20140222526, | |||
20140223467, | |||
20140249818, | |||
20140249830, | |||
20140249831, | |||
20140249847, | |||
20140278522, | |||
20140278536, | |||
20140279893, | |||
20140281974, | |||
20140288968, | |||
20140306880, | |||
20140324477, | |||
20140330586, | |||
20140337016, | |||
20140337048, | |||
20140343939, | |||
20140362253, | |||
20140365239, | |||
20140365241, | |||
20140365242, | |||
20150046183, | |||
20150046189, | |||
20150052541, | |||
20150070507, | |||
20150086038, | |||
20150088514, | |||
20150088546, | |||
20150120305, | |||
20150120321, | |||
20150124277, | |||
20150124975, | |||
20150172262, | |||
20150172319, | |||
20150185312, | |||
20150187209, | |||
20150248882, | |||
20150278449, | |||
20150278534, | |||
20150290802, | |||
20150294079, | |||
20150294089, | |||
20150302156, | |||
20150310174, | |||
20150310362, | |||
20150356250, | |||
20150379200, | |||
20150379209, | |||
20160012198, | |||
20160034643, | |||
20160063206, | |||
20160064000, | |||
20160098521, | |||
20160119338, | |||
20160148077, | |||
20160163331, | |||
20160165350, | |||
20160174903, | |||
20160176375, | |||
20160179770, | |||
20160188809, | |||
20160191357, | |||
20160196821, | |||
20160203327, | |||
20160217807, | |||
20160234034, | |||
20160261930, | |||
20160275187, | |||
20160300020, | |||
20160342845, | |||
20160350950, | |||
20160357538, | |||
20160358632, | |||
20160360336, | |||
20160364606, | |||
20170004260, | |||
20170011194, | |||
20170011740, | |||
20170017834, | |||
20170019744, | |||
20170046326, | |||
20170069226, | |||
20170076619, | |||
20170091246, | |||
20170093848, | |||
20170116384, | |||
20170116392, | |||
20170131384, | |||
20170178664, | |||
20170197636, | |||
20170228500, | |||
20170242840, | |||
20170316775, | |||
20170334069, | |||
20180004915, | |||
20180025093, | |||
20180032702, | |||
20180060282, | |||
20180075845, | |||
20180081859, | |||
20180107815, | |||
20180122506, | |||
20180130554, | |||
20180144120, | |||
20180144747, | |||
20180156887, | |||
20180158461, | |||
20180158555, | |||
20180167243, | |||
20180181716, | |||
20180197544, | |||
20180197548, | |||
20180218731, | |||
20180225277, | |||
20180232591, | |||
20180240538, | |||
20180261307, | |||
20180277017, | |||
20180289291, | |||
20180310114, | |||
20180314689, | |||
20180315428, | |||
20180336275, | |||
20190005959, | |||
20190012449, | |||
20190042606, | |||
20190051395, | |||
20190096534, | |||
20190122766, | |||
20190130073, | |||
20190141031, | |||
20190172493, | |||
20190182124, | |||
20190214121, | |||
20190246075, | |||
20190251156, | |||
20190265345, | |||
20190272844, | |||
20190313903, | |||
20200005939, | |||
20200005949, | |||
20200034753, | |||
20200279107, | |||
20210099433, | |||
CN101790752, | |||
CN106448722, | |||
EP1769771, | |||
EP1927221, | |||
JP2011182857, | |||
JP2015533248, | |||
KR20130118510, | |||
RE47049, | Sep 24 2010 | VOCALIFE LLC | Microphone array system |
WO8585, | |||
WO2013082087, | |||
WO2014101472, | |||
WO2014134089, | |||
WO20160126813, | |||
WO20160149794, | |||
WO2016125053, | |||
WO2017031972, | |||
WO2017138934, | |||
WO2019032778, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 05 2019 | VOZILA, PAUL JOSEPH | Nuance Communications, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048275 | /0381 | |
Feb 08 2019 | Nuance Communications, Inc. | (assignment on the face of the patent) | / | |||
Sep 20 2023 | Nuance Communications, Inc | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 065532 | /0152 |
Date | Maintenance Fee Events |
Feb 08 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 08 2025 | 4 years fee payment window open |
Sep 08 2025 | 6 months grace period start (w surcharge) |
Mar 08 2026 | patent expiry (for year 4) |
Mar 08 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 08 2029 | 8 years fee payment window open |
Sep 08 2029 | 6 months grace period start (w surcharge) |
Mar 08 2030 | patent expiry (for year 8) |
Mar 08 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 08 2033 | 12 years fee payment window open |
Sep 08 2033 | 6 months grace period start (w surcharge) |
Mar 08 2034 | patent expiry (for year 12) |
Mar 08 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |