A pressure sensor device in a pressure sensor module includes a membrane that is conductive and deformable under pressure, fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film disposed on the electrode surface of each of the fixed electrodes. The fixed electrodes are disposed in a direction from the center of the membrane toward an outer portion.
|
1. A pressure sensor device comprising:
a membrane that is conductive and deformable under pressure;
a plurality of fixed electrodes each including an electrode surface opposed to the membrane; and
a dielectric film independently disposed on the electrode surface of each of the plurality of fixed electrodes; wherein
the membrane is configured to come into direct physical contact with the dielectric film; and
the plurality of fixed electrodes are disposed in a direction from a center of the membrane toward an outer portion thereof.
22. A pressure sensor device comprising:
a membrane that is conductive and deformable under pressure;
a plurality of fixed electrodes each including an electrode surface opposed to the membrane; and
a dielectric film independently disposed on the electrode surface of each of the plurality of fixed electrodes; wherein
the membrane is configured to come into direct physical contact with the dielectric film;
the plurality of fixed electrodes are disposed in a direction from a center of the membrane toward an outer portion thereof;
the plurality of fixed electrodes include a central fixed electrode opposed to a central portion of the membrane, and an outer fixed electrode surrounding the central fixed electrode and having a ring shape; and
an area of the outer fixed electrode is larger than an area of the central fixed electrode.
12. A pressure sensor module for measuring pressure, the pressure sensor module comprising:
a pressure sensor device including a membrane that is conductive and deformable under pressure, a plurality of fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film independently disposed on the electrode surface of each of the plurality of fixed electrodes, the plurality of fixed electrodes being disposed in a direction from a center of the membrane toward an outer portion thereof; and
a sensor controller to calculate pressure to the membrane based on an electrostatic capacitance between the membrane and one of the plurality of fixed electrodes and to output the calculated value as an output pressure value therefrom; wherein
the membrane is configured to come into direct physical contact with the dielectric film;
a pressure measurement range is divided into a plurality of pressure segments; and
in calculation of the pressure within at least one of the plurality of pressure segments, the sensor controller uses a fixed electrode of the plurality of fixed electrodes with an electrostatic capacitance that changes in response to pressure changes in the at least one of the pressure segments more linearly than that of another of the plurality of fixed electrodes.
2. The pressure sensor device according to
3. The pressure sensor device according to
4. The pressure sensor device according to
5. The pressure sensor device according to
a membrane terminal electrically connected to the membrane; and
electrode terminals electrically connected to the plurality of fixed electrodes.
6. The pressure sensor device according to
7. The pressure sensor device according to
8. The pressure sensor device according to
9. The pressure sensor device according to
10. The pressure sensor device according to
11. The pressure sensor device according to
13. The pressure sensor module according to
the plurality of fixed electrodes include a central fixed electrode and an outer fixed electrode surrounding the central fixed electrode and having a ring shape;
the plurality of pressure segments include a first pressure segment extending to pressure at which the membrane comes into contact with the central fixed electrode, a second pressure segment extending from the pressure at which the membrane comes into contact with the central fixed electrode to pressure at which the membrane comes into contact with the outer fixed electrode, and a third pressure segment corresponding to pressure higher than the pressure at which the membrane comes into contact with the outer fixed electrode;
the output pressure value is calculated using correction formulae for the electrostatic capacitance; and
the correction formulae used for the plurality of pressure segments are different from each other.
14. The pressure sensor module according to
15. The pressure sensor module according to
a membrane terminal electrically connected to the membrane; and
electrode terminals electrically connected to the plurality of fixed electrodes.
16. The pressure sensor module according to
17. The pressure sensor module according to
18. The pressure sensor module according to
19. The pressure sensor module according to
20. The pressure sensor device according to
21. The pressure sensor device according to
23. The pressure sensor device according to
24. The pressure sensor device according to
the dielectric film is independently disposed on the electrode surface of each of the plurality of fixed electrodes and an electrode surface of the float electrode that is opposed to the membrane.
|
This application claims the benefit of priority to Japanese Patent Application No. 2016-247055 filed on Dec. 20, 2016 and is a Continuation Application of PCT Application No. PCT/JP2017/033128 filed on Sep. 13, 2017. The entire contents of each of these applications are hereby incorporated herein by reference.
The present invention relates to a pressure sensor device for measuring pressure, such as atmospheric pressure, and to a pressure sensor module including the same.
There are known pressure sensors of the electrostatic capacitance type, one example of which is described in Japanese Unexamined Patent Application Publication No. 2013-104797. In particular, the pressure sensor described in Japanese Unexamined Patent Application Publication No. 2013-104797 is called a touch-mode pressure sensor. The touch-mode pressure sensor includes a membrane that deforms under pressure, a fixed electrode having an electrode surface opposed to the membrane with a gap, and a dielectric layer disposed on the electrode surface. In the pressure sensor described in Japanese Unexamined Patent Application Publication No. 2013-104797, a surface portion of the dielectric layer opposed to the central portion of the membrane includes a recessed portion (recess).
In such a touch-mode pressure sensor, when pressure to the membrane increases, first, the electrostatic capacitance between the membrane and the fixed electrode is increased by a decrease in the distance between the membrane and the dielectric layer. After the membrane comes into contact with the dielectric layer, when the pressure to the membrane further increases, the electrostatic capacitance between the membrane and the fixed electrode is increased by an increase in the area of contact between the membrane and the dielectric layer.
In the pressure sensor described in Japanese Unexamined Patent Application Publication No. 2013-104797, because the dielectric layer includes the recessed portion, the degrees of linearity between the pressure to the membrane and the electrostatic capacitance before and after the membrane comes into contact with the dielectric layer do not noticeably differ from each other. Therefore, the pressure sensor described in Japanese Unexamined Patent Application Publication No. 2013-104797 is able to operate with high measurement accuracy.
In the pressure sensor described in Japanese Unexamined Patent Application Publication No. 2013-104797, however, it is necessary to form the dielectric layer on the electrode surface of the fixed electrode and then partially remove (etch) the dielectric layer to form the recessed portion in the dielectric layer. Thus, the shape of the recessed portion in the dielectric layer tends to vary with processing. Examples of such variations may include the depth of the recessed portion and the smoothness of the bottom surface of the recessed portion. This leads to variations in the electrostatic capacitance between the membrane and the fixed electrode and also to variations in the linearity of changes in the electrostatic capacitance in response to changes in the pressure to the membrane. As a result, the pressure sensor may not be able to obtain desired linearity and may be unable to measure the pressure with high accuracy.
Preferred embodiments of the present invention provide pressure sensor devices that are each capable of obtaining desired linearity of changes in electrostatic capacitance between a membrane and a fixed electrode in response to changes in the pressure to the membrane and, thus, capable of measuring pressure with high accuracy and to provide pressure sensor modules each including a pressure sensor device according to a preferred embodiment of the present invention.
A pressure sensor device according to a preferred embodiment of the present invention includes a membrane that is conductive and deformable under pressure, a plurality of fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film disposed on the electrode surface of each of the plurality of fixed electrodes, wherein the plurality of fixed electrodes are disposed in a direction from a center of the membrane toward an outer portion thereof.
In a pressure sensor device according to a preferred embodiment of the present invention, the plurality of fixed electrodes include a central fixed electrode opposed to a central portion of the membrane.
In a pressure sensor device according to a preferred embodiment of the present invention, the plurality of fixed electrodes further include an outer fixed electrode surrounding the central fixed electrode and having a ring shape.
In a pressure sensor device according to a preferred embodiment of the present invention, a float electrode disposed between neighboring fixed electrodes of the plurality of fixed electrodes and not electrically connected to the neighboring fixed electrodes is provided.
A pressure sensor module for measuring pressure according to a preferred embodiment of the present invention includes a pressure sensor device including a membrane that is conductive and deformable under pressure, a plurality of fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film disposed on the electrode surface of each of the plurality of fixed electrodes, the plurality of fixed electrodes being disposed in a direction from a center of the membrane toward an outer portion thereof, and a sensor controller to calculate pressure to the membrane based on an electrostatic capacitance between the membrane and one of the plurality of fixed electrodes and to output the calculated value as an output pressure value therefrom, wherein a pressure measurement range is divided into a plurality of pressure segments, and in calculation of the pressure within at least one of the pressure segments, the sensor controller uses a fixed electrode with an electrostatic capacitance that changes in response to pressure changes in the pressure segment more linearly than that of the other fixed electrode(s).
In a pressure sensor module according to a preferred embodiment of the present invention, the plurality of fixed electrodes include the central fixed electrode and an outer fixed electrode surrounding the central fixed electrode and having a ring shape, the plurality of pressure segments include a first pressure segment extending to pressure at which the membrane comes into contact with the central fixed electrode, a second pressure segment extending from the pressure at which the membrane comes into contact with the central fixed electrode to pressure at which the membrane comes into contact with the outer fixed electrode, and a third pressure segment corresponding to pressure higher than the pressure at which the membrane comes into contact with the outer fixed electrode, the output pressure value is calculated using a correction formula for the electrostatic capacitance, and the correction formulae used for the plurality of pressure segments are different from each other.
According to preferred embodiments of the present invention, pressure sensor devices that are each capable of obtaining desired linearity of changes in electrostatic capacitance between a membrane and a fixed electrode in response to changes in the pressure to the membrane and, thus, capable of measuring pressure with high accuracy, and pressure sensor modules including pressure sensor devices according to preferred embodiments of the present invention are provided.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
Preferred embodiments of the present invention are described below with reference to the accompanying drawings.
As illustrated in
As illustrated in
The pressure sensor device 20 includes a membrane terminal 30 electrically connected to the membrane 22 and electrode terminals 32 and 34 electrically connected to the fixed electrodes 24 and 26, respectively.
The membrane 22 in the pressure sensor device 20 has elasticity and conductivity preferably by being made of, for example, a conductive silicon material. The outer edge of the membrane 22 is supported by a spacer 38 having a frame shape disposed on a substrate 36. The membrane 22 includes a pressure receiving surface 22a exposed to the outside of the pressure sensor module 10 and structured to receive pressure to be measured. When the pressure receiving surface 22a receives the pressure, the membrane 22 bends and deforms toward a side opposite to the pressure receiving surface, that is, toward a fixed-electrode side. The membrane 22 may partially have conductivity. For example, a portion of the membrane 22 opposed to the fixed electrodes 24 and may preferably be made of a conductive material, and its peripheral portion may be made of a different elastic material.
An example of each of the fixed electrodes 24 and 26 may preferably be a conductor made of a conductive polysilicon material and is disposed inside the spacer 38 and on the substrate 36. The fixed electrode 24 includes an electrode surface 24a opposed to the membrane 22. The fixed electrode 26 also includes an electrode surface 26a opposed to the membrane 22.
When the fixed electrodes 24 and 26 are seen from the side of the membrane 22 (seen along the Z-axis direction), as illustrated in
The fixed electrode 26 is a ring-shaped electrode surrounding the central fixed electrode 24 with a gap therebetween. That is, the fixed electrode 26 is positioned outside the central fixed electrode 24. Hereinafter, the fixed electrode 26 is referred to as outer fixed electrode 26. In the first preferred embodiment, the outer fixed electrode 26 includes an outer perimeter and an inner perimeter each preferably having square or substantially square shapes, for example.
The dielectric film 28 is preferably a thin film made of a dielectric material, for example, and, as illustrated in
If the central fixed electrode 24 and the outer fixed electrode 26 are spaced away from each other by a sufficient distance and a leak current does not occur between the central fixed electrode 24 and outer fixed electrode 26, the dielectric film 28 may be disposed on only the electrode surfaces 24a and 26a. Instead of a configuration in which the dielectric film 28 is disposed independently on each of the central fixed electrode 24 and the outer fixed electrode 26, the central fixed electrode 24 and outer fixed electrode 26 may be embedded in a single dielectric layer.
As illustrated in
The sensor controller 50 is configured and/or programmed to calculate an output pressure value Pout as a detected value of pressure received by the membrane 22 based on the electrostatic capacitance between the membrane 22 and each of the plurality of fixed electrodes (central and outer fixed electrodes) 24 and 26 and to output the calculated output pressure value Pout therefrom.
Specifically, the sensor controller 50 includes an electrostatic capacitance detector 52 to detect an electrostatic capacitance Ca between the membrane 22 and the central fixed electrode 24 and an electrostatic capacitance Cb between the membrane 22 and the outer fixed electrode 26. The sensor controller 50 further includes a storage 54 to store a plurality of correction formulae Eq1 to Eq3 used to calculate the output pressure values Pout based on the electrostatic capacitances detected by the electrostatic capacitance detector 52. The sensor controller 50 further includes a pressure calculator 56 to correct the electrostatic capacitances detected by the electrostatic capacitance detection section 52 to the output pressure values Pout (to calculate the output pressure values Pout) using the correction formulae stored in the storage 54.
The electrostatic capacitance detector 52 includes an electrostatic capacitance sensor or a capacitor defining a portion of circuitry to detect the electrostatic capacitances Ca and Cb between the membrane terminal 30 and each of the fixed electrodes (central and outer fixed electrodes) 24 and 26. In response to changes in the pressure received by the membrane 22 (real pressure value Pin), the electrostatic capacitances Ca and Cb detected by the electrostatic capacitance detector 52 also change.
One example of the storage 54 may be memory that stores the plurality of correction formulae Eq1 to Eq3 to correct the electrostatic capacitances Ca and Cb detected by the electrostatic capacitance detector 52 to the output pressure values Pout (to calculate the output pressure values Pout). The correction formulae Eq1 to Eq3 to calculate the output pressure values Pout are functions for electrostatic capacitances, and examples thereof may be, for example, higher order polynomials. The reason for preparing the plurality of correction formulae Eq1 to Eq3 will be described below.
One example of the pressure calculator 56 may preferably be a processor capable of obtaining the electrostatic capacitances Ca and Cb detected by the electrostatic capacitance detector 52, obtaining the correction formulae Eq1 to Eq3 (correction formula data) from the storage 54, and calculating the output pressure values Pout based on the electrostatic capacitance signals and the correction formula data. One example of the processor may preferably calculate the output pressure value Pout by executing a program to correct the electrostatic capacitances Ca and Cb to the output pressure values Pout using the correction formulae Eq1 to Eq3.
More specifically, the sensor controller 50 uses the electrostatic capacitance between the membrane 22 and either one of the plurality of fixed electrodes (central and outer fixed electrodes) 24 and 26 to calculate the output pressure value Pout. That is, the sensor controller 50 uses an appropriate fixed electrode of the plurality of fixed electrodes 24 and 26 to calculate the output pressure value Pout the same or substantially the same as the real pressure value Pin with high accuracy. This is described more specifically below.
In previous behavior, when the pressure receiving surface 22a starts receiving pressure, the membrane 22 starts deforming at its central portion. Then, when the pressure increases, the pressure receiving surface 22a is bowed inwardly, the membrane 22 comes into contact with the dielectric film 28 on the central fixed electrode 24, and finally, also comes into contact with the dielectric film 28 on the outer fixed electrode 26.
When the real pressure value Pin of the pressure received by the membrane 22 increases from zero, first, the central portion of the membrane 22 approaches the central fixed electrode 24. Thus, in response to that pressure rise, the distance between the central portion of the membrane 22 and the central fixed electrode 24 substantially linearly decreases, and the electrostatic capacitance Ca between the membrane 22 and the central fixed electrode 24 substantially linearly increases. At this time, the distance between the membrane 22 and the outer fixed electrode 26 also decreases, but that decrease is smaller than that of the decrease in the distance between the membrane 22 and the central fixed electrode 24. Therefore, the electrostatic capacitance Cb between the membrane 22 and the outer fixed electrode 26 substantially linearly increases slightly.
The “linear” changes in B in response to changes in A (changes with high “linearity”) in the present specification mean changes in which the shape of a curve whose horizontal axis is A and vertical axis is B becomes a linear or an approximately linear shape in broad perspective.
When the real pressure value Pin of the pressure received by the membrane 22 further increases and reaches P1, the central portion of the membrane 22 comes into contact with the central fixed electrode 24 with the dielectric film 28 interposed therebetween. At this time, the outer fixed electrode 26, which is positioned outside the central fixed electrode 24, does not come into contact with the membrane 22 yet.
When the real pressure value Pin of the pressure received by the membrane 22 increases from P1, in response to that pressure rise, the area of contact between the membrane 22 and the dielectric film 28 on the central fixed electrode 24 substantially nonlinearly increases. As a result, the linearity of changes in the electrostatic capacitance Ca between the membrane 22 and the central fixed electrode 24 decreases (that is, the changes become nonlinear), in comparison with the linearity before the membrane 22 comes into contact with the dielectric film 28 on the central fixed electrode 24 (in comparison with the linearity before the real pressure value Pin reaches P1). At this time, the outer fixed electrode 26 does not come into contact with the membrane 22 yet, the distance to the membrane 22 in response to the pressure rise linearly decreases, and the electrostatic capacitance Cb linearly increases.
When the real pressure value Pin of the pressure received by the membrane 22 further increases and reaches P2, the membrane 22 comes into contact with the outer fixed electrode 26 with the dielectric film 28 interposed therebetween. Then, when the real pressure value Pin further increases from P2, in response to that pressure rise, the area of contact between the membrane 22 and the dielectric film 28 on the outer fixed electrode 26 substantially nonlinearly increases. As a result, the linearity of changes in the electrostatic capacitance Cb between the membrane 22 and the outer fixed electrode 26 decreases (that is, the changes become nonlinear), in comparison with the linearity before the membrane 22 comes into contact with the dielectric film 28 on the outer fixed electrode 26 (in comparison with the linearity before the real pressure value Pin reaches P2).
As described above, before the membrane 22 comes into contact with the dielectric film 28 on the fixed electrodes (central and outer fixed electrodes) 24 and 26, the electrostatic capacitances Ca and Cb increase in response to pressure changes with relatively high linearity in accordance with the decrease in the distance between the fixed electrodes (central and outer fixed electrodes) 24 and 26 and the membrane 22. In contrast, after the contact with the membrane 22, the electrostatic capacitances Ca and Cb increase in response to pressure changes with relatively low linearity (nonlinearly) in accordance with the increase in the area of contact between the dielectric film 28 on the fixed electrodes (central and outer fixed electrodes) 24 and 26 and the membrane 22. In particular, immediately after the contact with the membrane 22, the linearity is considerably low.
As illustrated in
In consideration of the above-described circumstances, the pressure measurement range for the pressure sensor module 10 is divided into a plurality of pressure segments SA, SB, and SC (first to third pressure segments). In measurement (calculation) of pressure within the pressure segments SA, SB, and SC, a fixed electrode with an electrostatic capacitance that changes in response to pressure changes more linearly (in which changes in electrostatic capacitance with higher linearity occur) than that of the other fixed electrode is used in each of the pressure segments.
The pressure segment SA is the range in which the real pressure value Pin of the pressure received by the membrane 22 is zero to P1, as illustrated in
Next, the pressure segment SB is the range in which the real pressure value Pin of the pressure received by the membrane 22 is P1 to P2, as illustrated in
The pressure segment SC is the range in which the real pressure value Pin of the pressure received by the membrane 22 is P2 to the upper limit pressure of measurement by the pressure sensor module 10, as illustrated in
In the pressure segment SC, the electrostatic capacitance Ca between the membrane 22 and the central fixed electrode 24 remains virtually unchanged. This is because the membrane 22 is in contact with all or approximately all of the electrode surface 24a of the central fixed electrode 24 with the dielectric film 28 interposed therebetween. In contrast, the electrostatic capacitance Cb between the membrane 22 and the outer fixed electrode 26 substantially nonlinearly changes in response to pressure changes. However, in an outer portion of the membrane 22 in contact with the outer fixed electrode 26 (portion near the spacer 38), because the amount of displacement caused by the pressure rise is small, the degree of changes in the electrostatic capacitance Cb is small (for example, in comparison with the degree of changes in the electrostatic capacitance Ca in the pressure segment SB). Accordingly, each of the electrostatic capacitances Ca and Cb has low sensitivity to pressure changes in the pressure segment SC.
Thus, as illustrated in
In this manner, the pressure measurement range is divided into the plurality of pressure segments, and one or both of the central fixed electrode 24 and the outer fixed electrode 26 are used appropriately, depending on the pressure segment. The central fixed electrode 24 and the outer fixed electrode 26 are aligned substantially in the direction from the center of the membrane 22 toward its outer portion. In addition, the correction formulae used in the pressure segments are different from each other. Thus, the pressure sensor module 10 is able to have desired pressure-electrostatic capacitance characteristics in which the electrostatic capacitance linearly changes in response to pressure changes over all or substantially all of the pressure measurement range (desired linearity) without providing a recessed portion in the dielectric film 28 on each of the fixed electrodes.
As a result, the pressure sensor module 10 according to the first preferred embodiment is able to calculate the output pressure value Pout in which the difference from the real pressure value Pin is approximately zero over all or substantially all of the pressure measurement range, as illustrated in
The broken line illustrated in
The pressure sensor module according to the comparative example is able to measure the pressure with high accuracy in a range in which the real pressure value is large, as illustrated in
This is because the single correction formula enabling the electrostatic capacitance to be corrected to the output pressure value that is the same or substantially the same as the real pressure value in the range in which the real pressure value is large is used in the range in which the real pressure value is small, that range in which the linearity of changes in the electrostatic capacitance in response to pressure changes is low. That is, in the case in which the single fixed electrode is used, there is a portion in which the linearity in changes of the electrostatic capacitance in response to pressure changes is, to one degree to another, low. For example, for the electrostatic capacitance Ca in the pressure segment SB illustrated in
Accordingly, a pressure sensor module that uses a single fixed electrode, that is, a single correction formula, such as the pressure sensor module in the comparative example, has a narrower measurement range for pressure measurement with high accuracy (in comparison with the pressure sensor module 10 in the first preferred embodiment, which selectively uses the plurality of fixed electrodes and uses the correction formula corresponding to each of the fixed electrodes).
As described above, according to the first preferred embodiment, the pressure sensor device 20 capable of obtaining desired linearity of changes in the electrostatic capacitance between the membrane 22 and the fixed electrode in response to changes in the pressure to the membrane 22 and, thus, capable of measuring pressure with high accuracy and the pressure sensor module 10 including the pressure sensor device 20 is able to be provided.
The present invention, which has been described with reference to the first preferred embodiment, is not restricted to the above-described preferred embodiment.
For example, in the above-described first preferred embodiment, as illustrated in
The float electrode 240 is not electrically connected to the central fixed electrode 24 or the outer fixed electrode 26, and may be connected to, for example, a ground pattern (not illustrated) on the substrate 36, and have a ground potential.
The float electrode 240 includes an electrode surface 240a opposed to the membrane 22 and overlaid with an insulating film. This reduces or prevents cases in which the membrane 22 comes into contact with the float electrode 240 and becomes the ground potential.
That is, the float electrode is disposed between neighboring fixed electrodes of a plurality of fixed electrodes and not electrically connected to the neighboring electrodes and reduces or prevents the occurrence of a leak current between the neighboring fixed electrodes.
In the previously described first preferred embodiment, as illustrated in
Furthermore, in the above-described first preferred embodiment, as illustrated in
That is, the plurality of fixed electrodes are merely required to be aligned substantially in the direction from the center of the membrane toward its outer portion.
Accordingly, a pressure sensor device according to a preferred embodiment of the present invention includes a membrane that is conductive and deformable under pressure, a plurality of fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film disposed on the electrode surface of each of the plurality of fixed electrodes, and the plurality of fixed electrodes are disposed in a direction from a center of the membrane toward its outer portion.
A pressure sensor module according to a preferred embodiment of the present invention includes a pressure sensor device including a membrane that is conductive and deformable under pressure, a plurality of fixed electrodes each including an electrode surface opposed to the membrane, and a dielectric film disposed on the electrode surface of each of the plurality of fixed electrodes, the plurality of fixed electrodes being disposed in a direction from a center of the membrane toward its outer portion, and a sensor controller to calculate pressure to the membrane based on an electrostatic capacitance between the membrane and one of the plurality of fixed electrodes and to output the calculated value as an output pressure value therefrom. A pressure measurement range is divided into a plurality of pressure segments. In calculation of the pressure in at least one of the pressure segments, the sensor controller uses a fixed electrode with an electrostatic capacitance that changes in response to pressure changes in the pressure segment more linearly than that in the other fixed electrode(s).
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Patent | Priority | Assignee | Title |
11604111, | May 16 2018 | Murata Manufacturing Co., Ltd. | Pressure sensor enabling high linearity of change in electrostatic capacitance |
Patent | Priority | Assignee | Title |
4823230, | Mar 04 1988 | General Electric Company | Pressure transducer |
5186054, | Nov 29 1989 | Kabushiki Kaisha Toshiba | Capacitive pressure sensor |
5528452, | Nov 22 1994 | Case Western Reserve University | Capacitive absolute pressure sensor |
9791340, | Jul 22 2015 | NXP USA, INC | Self test for capacitive pressure sensors |
20070209443, | |||
20130118265, | |||
20140338459, | |||
20160305836, | |||
CN104848970, | |||
CN105899924, | |||
JP10509241, | |||
JP2005331328, | |||
JP2005351744, | |||
JP2007303922, | |||
JP2008070124, | |||
JP2013104797, | |||
JP2014115099, | |||
JP2014174060, | |||
JP6046049, | |||
WO2010125601, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 29 2019 | HAMAZAKI, RYOHEI | MURATA MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048884 | /0572 | |
Apr 15 2019 | Murata Manufacturing Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 15 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 22 2025 | 4 years fee payment window open |
Sep 22 2025 | 6 months grace period start (w surcharge) |
Mar 22 2026 | patent expiry (for year 4) |
Mar 22 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 22 2029 | 8 years fee payment window open |
Sep 22 2029 | 6 months grace period start (w surcharge) |
Mar 22 2030 | patent expiry (for year 8) |
Mar 22 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 22 2033 | 12 years fee payment window open |
Sep 22 2033 | 6 months grace period start (w surcharge) |
Mar 22 2034 | patent expiry (for year 12) |
Mar 22 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |