A memory device is disclosed, in which node contacts extend into a substrate, where they are come into electrical connection with active areas. This allows greater contact areas between the node contacts and the active areas and electrical connection of the node contacts with high ion concentration portions of the active areas. As a result, even when voids are formed in the node contacts, the node contacts can still possess desired connection performance. For node contacts allowed to contain voids, this enables them to be fabricated faster with lower difficulty, thus increasing manufacturing throughput of the memory device.
|
1. A memory device, comprising:
a substrate, the substrate having a plurality of active areas and a trench isolation structure disposed therein;
a plurality of bit-line structures disposed on the substrate;
a plurality of node contact windows disposed between each adjacent two of the bit-line structures, wherein each of the node contact windows has a lower portion extending into the substrate, the lower portion comprises a first groove and a second groove, and bottoms of the second grooves may be lower than bottoms of the first grooves; and
a plurality of node contacts filled in the node contact windows respectively.
19. A memory device, comprising:
a substrate, the substrate having a plurality of active areas and a trench isolation structure disposed therein;
a plurality of bit-line structures disposed on the substrate;
a plurality of node contact windows disposed between each adjacent two of the bit-line structures, wherein each of the node contact windows has an upper portion, and a lower portion extending into the substrate to partially expose each of the active areas and the trench isolation structure, and a diameter of the lower portion extending into the substrate is greater than a diameter of the upper portion; and
a plurality of node contacts filled in the node contact windows respectively.
10. A memory device, comprising:
a substrate, the substrate having a plurality of active areas and a trench isolation structure disposed therein;
a plurality of bit-line structures disposed on the substrate;
a plurality of node contact windows disposed between each adjacent two of the bit-line structures, wherein each of the node contact windows has an upper portion extending into the substrate to partially expose the active areas and the trench isolation structure; and
a plurality of node contacts filled in the node contact windows respectively, wherein at least one of the node contacts comprises a void and at least a top of the void is not lower than a bottommost surface of the bit-line structures.
2. The memory device accordingly to
3. The memory device accordingly to
4. The memory device according to
a plurality of spacers disposed between the bit-line structures and the node contacts, wherein the spacers are partially exposed from the first groove and second groove.
5. The memory device according to
6. The memory device according to
7. The memory device according to
8. The memory device according to
9. The memory device according to
11. The memory device according to
12. The memory device according to
13. The memory device accordingly to
14. The memory device according to
a plurality of spacers disposed between the bit-line structures and the node contacts, wherein the spacers are partially exposed from the first groove and second groove.
15. The memory device according to
16. The memory device according to
17. The memory device according to
18. The memory device according to
20. The memory device according to
|
This application is a Continuation of application Ser. No. 16/635,197 filed Jan. 30, 2020, and included herein by reference.
The present invention relates to the field of semiconductor technology and, in particular, to a memory device.
A memory device, such as a dynamic random access memory (DRAM) device, typically includes storage capacitors and storage transistors electrically connected to the storage capacitors. The storage capacitors are adapted to hold charges representative of information stored thereon, and the storage transistors may be electrically coupled to the storage capacitors via node contacts.
In the state of the art, the existing memory devices are still faced with a number of challenges including difficult and tedious fabrication. For example, in order to form a node contact ensured to be electrically connected with good quality to a storage transistor, the processes used must meet very stringent requirements, such as a deposition process with good filling performance. These strict requirements inevitably slow down the node contact's fabrication, leading to a low manufacturing throughput and low utilization of the involved semiconductor processing equipment.
It is an objective of the present invention to provide a memory device which can be fabricated in an easier and faster manner, thus helping in increasing manufacturing throughput thereof.
To this end, the provided memory device includes:
a substrate in which a plurality of active areas are formed;
a plurality of bit-line structures formed on the substrate, adjacent ones of the plurality of bit-line structures defining therebetween node contact windows, each of the node contact windows having a lower portion extending into the substrate and exposing at least part of a corresponding one of the plurality of active areas; and
a plurality of node contacts filled in the respective node contact windows and electrically connected to the plurality of active areas, wherein at least one void is formed in the plurality of node contacts, the at least one void having a top not lower than a bottom of any adjacent one of the plurality of bit-line structures.
In this memory device, the node contacts can be embedded in the substrate and therein come into electrical connection with the active areas. This can, on the one hand, result in greater contact areas between the node contacts and the active areas, and on the other hand, bring the node contacts into contact with high ion concentration portions of the active areas. As a result, contact resistances between the node contacts and the active areas can be improved. Consequently, the memory device allows formation of voids in the node contacts, which in turn allows the node contacts to be fabricated faster using a rapid deposition process, thereby speeding up the fabrication of the memory device, efficiently increasing its manufacturing throughput and enhancing the utilization of the used semiconductor processing equipment. In other words, for the memory device of the invention, even when the node contacts contain voids, electrical connection between the node contacts and the active areas can be efficiently compensated for by embedding the node contacts in the substrate, thus ensuring good electrical conductance quality of the node contacts. This can result in an additional increase in manufacturing throughput of the memory device.
Further, the lower portions of the node contact windows defined by the bit-line structures extend in the substrate so that their bottoms are located below a top surface of the substrate. Additionally, since the top of each of the voids in the node contacts is located not lower than the bottom of any adjacent one of the bit-line structures (e.g., the voids in the node contacts each have a portion above the top surface of the substrate), it can be ensured that the connection quality of the node contacts with the active areas will not be affected due to closeness of the voids to the active areas.
Furthermore, the lower portions of the node contact windows that extend in the substrate may, for example, include respective first grooves formed in trench isolation structures and respective second grooves formed in the active areas and located deeper than the first grooves. In this way, even larger areas of the active areas can be exposed in the node contact windows, resulting in accordingly increased contact areas between the node contacts and the active areas.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Specific embodiments of the memory device proposed in this invention will be described in greater detail below with reference to the accompanying drawings. Features and advantages of the invention will be more apparent from the following detailed description. Note that the accompanying drawings are provided in a very simplified form not necessarily presented to scale, with their only intention to facilitate convenience and clarity in explaining the embodiments.
With combined reference to
Specifically, in the substrate 100, there are formed a plurality of active areas AA, in which first source/drain regions 101 and second source/drain regions 102 are formed to constitute storage transistors. Every two adjacent ones of the active areas AA may be isolated from each other, for example, by a trench isolation structure 110.
Additionally, a plurality of word lines WL (not shown) may be formed in the substrate 100, which extend in a first direction (X direction) and cross the respective active areas AA. The portions of the word lines WL where they cross the active areas AA are located between the first source/drain regions 101 and the second source/drain regions 102 and form gate structures of the storage transistors.
With continued reference to
It would be appreciated that each of the bit-line structures 300 has one of the bit line contacts and a bit-line junction that connects two corresponding adjacent ones of the bit line contacts and is situated on a top surface of the substrate 100.
With particular reference to
It will be appreciated that when the bit-line structures 300 extend in the second direction (Y direction), every two adjacent ones of the bit-line structures 300 provide the node contact window 200a defined by them with respective side walls that oppose each other along the first direction (X direction).
With continued reference to
With particular reference to
As such, the node contact 200 is filled in the node contact window 200a, and a bottom portion of the node contact 200 extends within the substrate 100 and comes into electrical connection with the active area AA. According to this embodiment, the bottom portion of the node contact 200 is electrically connected to the first source/drain region 101 in the active areas AA. Furthermore, for example, a top portion of the node contact 200 is adapted to connect a storage capacitor (not shown).
With particular reference to
Of course, it is also possible that the bottom of the void 200G in the node contact 200 is lower than the top surface of the substrate 100, as long as it is ensured that the void 200G in the node contact 200 does not extend to an inner wall of the node contact window 200a.
It is to be noted that, according to this embodiment, despite the void 200G formed within the node contact 200, an enlarged contact area can be ensured between the node contact 200 and the active area AA since the node contact 200 is embedded in the substrate 100. Moreover, since the active area AA is typically implanted with ions in such a manner that a portion thereof deeper in the substrate has a higher ion concentration than a portion thereof close to the substrate surface, the extension of the node contact 200 within the substrate 100 allows the node contact 200 to be electrically connected to a portion of the active area AA with a higher ion concentration. As a result, a lower contact resistance can be obtained between the node contact 200 and the active area AA.
The greater contact area between the node contact 200 and the active area AA and the electrical connection of the node contact 200 with a higher ion concentration portion of the active area AA impart improved connection quality between the node contact 200 and the active area AA. For this reason, the performance of the node contact 200 will not be considerably affected by the presence of the void 200G formed in the node contact portion 200.
It is to be also noted that since the presence of the void 200G is allowed in the node contact 200, the node contact 200 may be formed faster using a rapid deposition process, which can increase the speed and throughput of the fabrication of the memory device as well as the utilization rate of the involved semiconductor processing equipment.
With continued reference to
Further, according to this embodiment, the bottoms of the bit line contacts in the bit-line structure 300, which are located within the substrate 100, are lower than the bottoms of the node contacts 200, which are also located within the substrate 100.
Specifically, bit line contact windows for accommodating the bit line contacts may be formed in the substrate 100. The bit line contact windows may have bottoms, which are located at a predetermined depth of the substrate 100 and from which the second source/drain regions 102 in the active areas AA are exposed. Additionally, the bit line contacts in the bit-line structures 300 may fill up the bit line contact windows so as to come electrical connection with the second source/drain regions 102. Accordingly, the bottoms of the bit line contact windows may be located lower than the bottoms of the node contact windows 200a.
With particular reference to
Specifically, the aligned portions of the adjacent bit-line structures 300 refer generally to the portions of the bit-line structures 300 that are higher than the top surface of the substrate. For example, the node contact window 200a between the adjacent bit-line structures 300 is defined by a portion of one of the bit-line structures corresponding to its bit-line junction (formed on the top surface of the substrate) and a portion of the other of the bit-line structures corresponding to its bit line contact (embedded in the substrate). Therefore, the aligned portion of each of the adjacent bit-line structures 300 corresponds to its portion extending from the bottom of its bit-line junction to its top.
According to this embodiment, the bottoms of the bit-line junctions are located at a first height H1. Therefore, the aligned portions of the adjacent bit-line structures 300 both have a lower boundary corresponding to the first height H1, and the top of the first void 210G is located above the first height H1. According to this embodiment, the first void 210G may also has a bottom that is located below the first height H1.
With continued reference to
Specifically, each of the bit lines 310 may include a first conductive layer 311, a second conductive layer 312 and a third conductive layer 313, which are stacked one on another. Materials from which the first conductive layer 311 can be fabricated may include, for example, doped polysilicon. Materials from which the second conductive layer 312 can be fabricated may include, for example, titanium nitride. Materials from which the third conductive layer 313 can be fabricated may include, for example, tungsten. According to this embodiment, the first conductive layer 311 in the bit-line junction of the bit-line structure 300 may have a bottom located at the first height H1, and the aligned portions of the adjacent bit-line structures 300, between which the top of the first void 210G is located, may correspond to the first conductive layers 311 in the bit-line structure 300.
With continued reference to
Further, the recesses 300a in the void between every two adjacent ones of the bit-line structures 300 may be aligned with each other. Furthermore, according to this embodiment, the aligned portions of the adjacent bit-line structures 300, between which the top of the first void 210G in the node contacts 200 is located, may correspond to the recesses 300a.
With continued reference to
With particular reference to
According to this embodiment, grooves may be formed in the substrate 100, including first grooves in the trench isolation structures 110 and second grooves in the active areas AA. Additionally, bottoms of the second grooves may be located lower than the bottoms of the first grooves. In this way, the second grooves allow the exposure of greater areas of the active areas (i.e., of the first source/drain regions 101) and extension of the node contacts to high ion concentration portions of the active areas.
On basis of the above, according to this embodiment, the lower boundaries of the recesses 300a formed in the lower sections of the bit-line structures 300 may merge with respective adjacent boundaries of the first and second grooves so that they together define the first openings in the bit line contact windows 200a.
As discussed above, in each of the bit-line structures 300, the bottom of the bit line contact is lower than the bottoms of the bit-line junction since the bit-line junction connecting the adjacent bit line contacts resides on the top surface of the substrate 100, with the bit line contact being embedded in the substrate 100. Therefore, the bottom of the recess 300a in the bit-line junction stops at the top surface of the substrate 100, and the recess 300a in the bit-line junction is smoothly with the respective adjacent groove in the substrate 100 at the top surface of the substrate. The bottom of the recess 300a in the bit-line junction is lower than the top surface of the substrate, and the recess 300a in the bit-line junction is smoothly connected with the respective adjacent groove in the substrate 100 within the substrate.
Further, since the bit-line junction in the bit-line structure 300 is situated above the trench isolation structure 110 with its later sides aligned with the active areas AA (i.e., first source/drain regions 101), the recess 300a in the bit-line junction is joined to the second groove in the active area. Moreover, since the bit line contact in the bit-line structure 300 is formed on the active area (i.e., the second source/drain region 102) and laterally extends into the corresponding trench isolation structure 110, the recess 300a in the bit-line junction is joined to the first groove in the trench isolation structure 110.
With continued reference to
It is a matter of course that, in alternative embodiments, the first void 210G may extend downward so that its bottom is located within one of the grooves in the substrate 100, i.e., the bottom the first void 210G is below the top surface of the substrate 100.
With continued reference to
More specifically, according to this embodiment, the location of the second groove in the active area AA may be deeper than that of the first groove in the trench isolation structure 110. Thus, a vertical centerline of the first void 210G is closer to the second groove than the first groove.
With continued reference to
It is to be noted that the aligned portions of the adjacent bit-line structures 300 refer to their portions above the top surface of the substrate, i.e., the portions of the adjacent bit-line structures 300 higher than the first height H1. In other words, the second void 220G, as a whole, is located higher than the first height H1.
According to this embodiment, the second void 220G is specifically located in the aligned portions of the adjacent bit-line structures 300 corresponding to their third conductive layers 313. More specifically, bottoms of the third conductive layers 313 are located at a third height H3, and tops of the third conductive layers 313 are situated at a fourth height H4, the second void 220G may be located at a height from the third height H3 to the fourth height H4.
It is to be noted that, according to this embodiment, in addition to the first openings in the bit line contact windows 200a, which are defined by the recesses 300a in the lower sections of the bit-line structures 300 together with the grooves in the substrate 100, smaller second openings may be defined also in the bit line contact windows 200a by the portions of the bit-line structures 300 above the recesses 300a. That is, the portions of the bit-line structures 300 above the recesses 300a are configured to define the second openings.
It would be appreciated that, according to this embodiment, each of the node contact windows 200a may have a first opening and a second opening, which are one above another and communicate with each other. The first opening is defined by both the recesses 300a in the respective adjacent bit-line structures 300 and the grooves in the substrate 100 between the bit-line structures 300 and thus has its bottom located within the substrate 100 and its top above the top surface of the substrate 100. The second opening is joined to the top of the first opening and aligned with portions of the bit-line structures 300 above the recesses 300a.
Accordingly, the first opening has a maximum opening size that is greater than that of the second opening. That is, in this embodiment, each of the node contact windows 200a has a structure that is narrower at the top and broader at the bottom. Since the first opening extends into the substrate 100 and has a greater opening size, a greater area of the active area AA is exposed in the node contact window 200a, enabling a greater contact area between the node contact 200 and the active area AA.
According to this embodiment, the second void 220G may be formed in the second opening and the first void 210G may have a maximum width over two times greater than that of the second void 220G.
With continued reference to
As discussed above, the bit line contacts in the bit-line structures 300 fill up the respective bit line contact windows. Thus, according to this embodiment, a width of the bit lines 310 in the bit line contacts in the direction in which the bit-line structures extend may be smaller than the opening size of the bit line contact windows so that bit lines 310 are separated from side surfaces of the bit line contact windows. Based on this, the gaps between the bit lines 310 and the bit line contact windows can be further filled by the spacers 330.
According to this embodiment, the recesses 300a in the lower sections of the bit-line structures 300 may be formed in the spacers 330. Specifically, the recesses 300a may laterally extend from the outer surfaces of the spacers 330 toward the bit lines and stop within the spacers 300 in order to avoid exposure of the bit lines 310.
Each of the spacers 330 may include a stack of layers. For example, according to this embodiment, each of the spacer 330 may include, stacked from the bit line 310 outward, a first isolation layer 331, a second isolation layer 332 and a third isolation layer 333. The first isolation layers 331 may fit over the outer side surfaces of the bit lines 310 and extend into the bit line contact windows to also cover inner side surfaces thereof. The second isolation layers 332 may reside on the respective first isolation layers 331 and fill up the gaps between the bit lines 310 and the bit line contact windows. The third isolation layers 333 may cover the respective second isolation layers 332.
It is to be noted that the first, second and third isolation layers 331, 332, 333 may be either made of the same material or different materials. According to this embodiment, the first and third isolation layers 331, 333 are, for example, silica layers and the second isolation layers 332 are, for example, silicon nitride layer so that each of the spacers 330 is an O—N—O structure.
On the basis of the above, according to this embodiment, in particular, the recesses 300a in the bit-line structures 300 may extend from the third isolation layers 333 toward the second isolation layers 332 and stop in the second isolation layers 332, and the upper boundaries of the recesses 300a in the bit-line structures 300 may be located not higher than tops of the first conductive layers 311.
In the embodiment shown in
However, in other embodiments, the tops and bottoms of the first voids in the node contacts 200 may be both located between the aligned portions of the bit-line structures 300.
For example, as shown in
Further, in alternative embodiments, each of the node contacts 200 may contain only one void 200G. For example, as schematically shown in
In summary, in the memory device according to this embodiment, the node contacts extend into the substrate, where they are come into electrical connection with the active areas. This allows greater contact areas between the node contacts and the active areas and electrical connection of the node contacts with high ion concentration portions of the active areas and is thus helpful in improving connection performance of the node contacts. As a result, even when voids are formed in the node contacts, they can still possess desired performance. For node contacts allowed to contain voids, this allows them to be fabricated with lower difficulty at a higher speed, thus increasing manufacturing throughput of the memory device as well as the utilization rate of the used semiconductor processing equipment.
It is noted that while the invention has been described with reference to several preferred embodiments, it is not intended to be limited to these embodiments in any way. In light of the above teachings, any person of skill in the art may make various possible variations and changes to the subject matter of the present invention or modify it to equivalent alternatives without departing from the scope of the invention. Accordingly, any and all such simple variations, equivalent alternatives and modifications made without departing from the scope of the invention are intended to fall within this scope.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Guo, Peng, Li, Baoyu, Wang, Jianfang, Wang, Yuanbao
Patent | Priority | Assignee | Title |
11374010, | Apr 29 2020 | FUJIAN JINHUA INTEGRATED CIRCUIT CO , LTD | Memory device and method of fabricating same |
Patent | Priority | Assignee | Title |
10056288, | Jul 28 2017 | United Microelectronics Corp.; Fujian Jinhua Integrated Circuit Co., Ltd. | Semiconductor device and fabrication method thereof |
10347640, | Jul 12 2018 | United Microelectronics Corp.; Fujian Jinhua Integrated Circuit Co., Ltd. | Method for forming semiconductor device |
10453677, | Jun 16 2017 | FUJIAN JINHUA INTEGRATED CIRCUIT CO , LTD | Method of forming oxide layer |
11074965, | Jul 22 2019 | Fujian Jinhua Integrated Circuit Co., Ltd. | Memory device |
5930623, | Nov 25 1997 | United Microelectronics, Corporation | Method of forming a data storage capacitor with a wide electrode area for dynamic random access memory using double spacers |
6037217, | Nov 16 1998 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method of fabricating a capacitor electrode structure in a dynamic random-access memory device |
6472268, | Nov 01 2001 | Hynix Semiconductor, Inc | Method for forming storage node contact |
6781181, | Jul 13 2000 | Nanya Technology Corporation | Layout of a folded bitline DRAM with a borderless bitline |
9245893, | Nov 19 2014 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor constructions having grooves dividing active regions |
20030201481, | |||
20060284225, | |||
20060286796, | |||
20110104862, | |||
20120276711, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 20 2021 | Fujian Jinhua Integrated Circuit Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 20 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 29 2025 | 4 years fee payment window open |
Sep 29 2025 | 6 months grace period start (w surcharge) |
Mar 29 2026 | patent expiry (for year 4) |
Mar 29 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 29 2029 | 8 years fee payment window open |
Sep 29 2029 | 6 months grace period start (w surcharge) |
Mar 29 2030 | patent expiry (for year 8) |
Mar 29 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 29 2033 | 12 years fee payment window open |
Sep 29 2033 | 6 months grace period start (w surcharge) |
Mar 29 2034 | patent expiry (for year 12) |
Mar 29 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |