A live facial recognition method includes capturing a zoom-out image of a face of a subject under recognition; and detecting a frame outside the face of the subject under recognition on the zoom-out image. The subject under recognition is determined to be a living subject when the zoom-out image includes no frame outside the face.
|
1. A live facial recognition method, comprising:
(a) capturing a first image of a face of a subject under recognition and capturing a zoom-out image of the face of the subject under recognition, the zoom-out image being captured by a camera with a field of view greater than the first image; and
(b) detecting a frame outside the face of the subject under recognition on the zoom-out image;
wherein the subject under recognition is determined to be a living subject when the zoom-out image includes no frame outside the face;
wherein the step (b) comprises:
obtaining a contour image according to the zoom-out image, the contour image including a first contour corresponding to the face of the subject under recognition and a second contour corresponding to an area outside the face; and
detecting the frame outside the face of the subject under recognition according to the second contour of the contour image;
wherein the contour image is obtained by comparing pixels of the zoom-out image with a predetermined threshold.
9. A live facial recognition system, comprising:
an image capture device comprising at least one camera and being configured to capture a first image of a face of a subject under recognition and capture a zoom-out image of the face of the subject under recognition, the zoom-out image being captured by a camera with a field of view greater than the first image;
at least one processor being coupled to the image capture device and comprising a frame recognition module and an output module to perform the following:
detecting a frame outside the face of the subject under recognition on the zoom-out image by obtaining a contour image according to the zoom-out image, the contour image including a first contour corresponding to the face of the subject under recognition and a second contour corresponding to an area outside the face, and detecting the frame outside the face of the subject under recognition according to the second contour of the contour image; and
determining the subject under recognition to be a living subject when the zoom-out image includes no frame outside the face;
wherein the contour image is obtained by comparing pixels of the zoom-out image with a predetermined threshold.
2. The method of
3. The method of
transforming pixels of the zoom-out image to obtain a transformed image; and
comparing pixels of the transformed image with the predetermined threshold to obtain the contour image.
4. The method of
5. The method of
calculating a sum of squares or root mean square of color difference between neighboring pixels of the zoom-out image to obtain the contour image.
7. The method of
8. The method of
capturing at least one image of the face of the subject under recognition;
extracting at least one feature data according to the at least one image; and
comparing the feature data with a facial feature database.
10. The system of
11. The system of
a facial recognition module configured to receive at least one image of the face of the subject under recognition, extract at least one feature data according to the at least one image, and compare the feature data with a facial feature database.
12. The system of
13. The system of
an image transformation device configured to transform pixels of the zoom-out image to obtain a transformed image;
a binary thresholding device configured to compare pixels of the transformed image with the predetermined threshold to obtain the contour image; and
a frame detection device configured to detect the frame outside the face of the subject under recognition according to the contour image.
14. The system of
an energy analysis device that analyzes energy distribution of the zoom-out image to obtain the predetermined threshold.
15. The system of
an image transformation device configured to calculate a sum of squares or root mean square of color difference between neighboring pixels of the zoom-out image to obtain the contour image; and
a frame detection device configured to detect the frame outside the face of the subject under recognition according to the contour image.
17. The system of
|
This application claims priority under 35 U.S.C. 119 to Taiwan Patent Application No. 108145048, filed on Dec. 10, 2019, the entire contents of which are herein expressly incorporated by reference.
The present invention generally relates to facial recognition, and more particularly to a live facial recognition method and system.
Facial recognition is computer image processing capable of identifying facial features from a digital image or a video frame, and could be used as a security measure. Facial recognition is one of biometrics such as fingerprint or eye iris recognition. Facial recognition may be adapted to electronic devices such as computers, mobile phones and card readers. Particularly, as mobile devices are becoming more popular, the security measure is in high demand.
A conventional facial recognition system uses a two-dimensional (2D) camera to capture an image, from which facial features are extracted and compared with a database. However, the conventional facial recognition system usually cannot distinguish a real person from a picture while performing recognition, becoming a security loophole to be exploited.
In order to enhance reliability of the security measure, a facial recognition system is proposed to ask a user to act according to a given instruction such as swinging or rotating head, opening mouth or closing eyes. Further, some images may be captured while the user is acting on instruction, and accordingly depth information may be obtained and used to identify a real person. Nevertheless, those schemes take time and cause inconvenient.
A need has thus arisen to propose a novel facial recognition scheme capable of maintaining or enhancing reliability of the security measure, and accelerating facial recognition with convenience.
In view of the foregoing, it is an object of the embodiment of the present invention to provide a live facial recognition method and system capable of quickly recognizing a face accurately and conveniently.
According to one embodiment, a zoom-out image of a face of a subject under recognition is captured. A frame outside the face of the subject under recognition on the zoom-out image is detected. The subject under recognition is determined to be a living subject when the zoom-out image includes no frame.
In the embodiment, the system 100 may include an image capture device 11, such as a camera, configured to capture at least one image of a face of a subject under recognition (step 21) at a frame rate, for example, of 30 frames per second (FPS). The camera of the embodiment may be a two-dimensional (2D) camera or a three-dimensional (3D) camera (e.g., a 3D camera composed of two lenses or a 3D camera composed of a 2D camera and a depth detection device).
In the embodiment, the system 100 may include a facial recognition module 12 configured to extract at least one feature data (step 22) according to the image. In step 23, an output module 13 of the system 100 may compare the extracted feature data with a facial feature database (database hereinafter). If the extracted feature data does not conform to the database (i.e., difference therebetween is not less than a predetermined threshold, indicating that facial features therebetween are distinct), the output module 13 then determines that the recognition fails (step 24). If the extracted feature data conforms to the database, the flow of the method 200 then goes to step 25.
According to one aspect of the embodiment, the system 100 may include a frame recognition module 14 coupled to receive a zoom-out image captured by the image capture device 11, and configured to detect a frame outside the face of the subject under recognition on the zoom-out image by processing the zoom-out image (step 25). In one embodiment, the image capture device 11 may include one camera, and the zoom-out image is captured after adjusting a field of view (FOV) of the camera. In another embodiment, the image capture device 11 may include a first camera and a second camera, where the second camera has a field of view (FOV) larger than the first camera. The image captured by the first camera may be provided to the facial recognition module for extracting the feature data, while the zoom-out image captured by the second camera may be provided to the frame recognition module 14 for detecting the frame. Frame detecting may be performed by using ordinary edge detection technique. In step 26, if no frame is detected outside the face on the zoom-out image, the output module 13 may determine that the recognition succeeds (step 27). If a frame is detected outside the face on the zoom-out image, indicating that the subject captured by the image capture device 11 may be a photo or a display screen (i.e., non-living subject), the output module 13 may determine that the recognition fails (step 24).
Y=0.299R+0.587G+0.114B
In the embodiment, the frame recognition module 14 may include a binary thresholding device 142 configured to compare pixels of the transformed image with a predetermined threshold to obtain a contour image (step 252). Specifically, if a pixel value of the transformed image is greater than the threshold, a pixel value of a corresponding pixel of the contour image is set an assertive value (e.g., “1”); otherwise a pixel value of a corresponding pixel of the contour image is set a nonassertive value (e.g., “0”). The threshold for the binary thresholding device 142 may be obtained by analyzing energy distribution of the zoom-out image (step 253) by an energy analysis device 143. Therefore, the threshold may be dynamically obtained according to background and lighting of the image.
In another embodiment, the image transformation device 141 may calculate a sum of squares (or root mean square) of color difference (e.g., of red, green or blue) between neighboring pixels of the zoom-out image, thereby obtaining the contour image. In this embodiment, the frame recognition module 14 need not include the binary thresholding device 142 and the energy analysis device 143.
In the embodiment, the frame recognition module 14 may include a frame detection device 144 configured to detect a frame outside the face of the subject under recognition (step 254). In one embodiment, if a contour (detected on the contour image) outside the face is substantially closed and the contour is approximately a quadrilateral (e.g., square, rectangle or parallelogram), the contour is determined to be a frame, indicating that the subject captured by the image capture device 11 may be a photo or a display screen (i.e., non-living subject). In another embodiment, if a contour outside the face is not closed but includes at least two edges of a quadrilateral, and such at least two edges and boundaries of the contour image (or zoom-out image) may construct a closed quadrilateral, the contour is determined to be a frame, indicating that the subject captured by the image capture device 11 may be a photo or a display screen (i.e., non-living subject).
Although specific embodiments have been illustrated and described, it will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the present invention, which is intended to be limited solely by the appended claims.
Chang, Yao-Tsung, Kao, Chuan-Yen, Hung, Chih-Yang
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10635894, | Oct 13 2016 | T STAMP INC | Systems and methods for passive-subject liveness verification in digital media |
20140321752, | |||
20150138606, | |||
20160335483, | |||
20190026544, | |||
20200257914, | |||
20200349731, | |||
CN109376608, | |||
CN110363087, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 30 2019 | CHANG, YAO-TSUNG | Wistron Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051761 | /0365 | |
Dec 30 2019 | KAO, CHUAN-YEN | Wistron Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051761 | /0365 | |
Dec 30 2019 | HUNG, CHIH-YANG | Wistron Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051761 | /0365 | |
Jan 30 2020 | Wistron Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 30 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Apr 26 2025 | 4 years fee payment window open |
Oct 26 2025 | 6 months grace period start (w surcharge) |
Apr 26 2026 | patent expiry (for year 4) |
Apr 26 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2029 | 8 years fee payment window open |
Oct 26 2029 | 6 months grace period start (w surcharge) |
Apr 26 2030 | patent expiry (for year 8) |
Apr 26 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2033 | 12 years fee payment window open |
Oct 26 2033 | 6 months grace period start (w surcharge) |
Apr 26 2034 | patent expiry (for year 12) |
Apr 26 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |