A display device with a touchscreen is provided. The display device includes a display panel having an electrode layer in a display area and a non-display area thereof, and a panel ground layer in the non-display area, and a touchscreen over the display panel and including a touch ground layer having an area overlapping with at least one of the electrode layer and the panel ground layer.
|
1. A display device comprising:
a display panel having an electrode layer in a display area and a non-display area, a shift register in a non-display area adjacent to the display area and overlapping with the electrode layer, and a panel ground layer at a periphery of the non-display area, the panel ground layer on a same layer as the shift register; and
a touchscreen disposed over the display panel, the touchscreen including a touch ground layer having an area overlapping with at least one of the electrode layer and the panel ground layer.
14. A display device comprising:
a display panel having an electrode layer in a display area and a non-display area, a shift register in a non-display area adjacent to the display area and overlapping with the electrode layer, and a panel ground layer at a periphery of the non-display area, the panel ground layer on a same layer as the shift register;
a polarization plate on the display panel;
a lower optically clear adhesive layer on the polarization plate;
a touchscreen on the lower optically clear adhesive layer, the touchscreen including a touch ground layer having an area overlapping with at least one of the electrode layer and the panel ground layer;
an upper optically clear adhesive layer on the touchscreen; and
a cover substrate on the upper optically clear adhesive layer.
2. The display device according to
wherein the touchscreen has a base layer, and
wherein the touch ground layer is disposed at a first surface of the base layer or a second surface of the base layer.
3. The display device according to
wherein the width is measured in a direction that is parallel to a touch surface of the touchscreen.
4. The display device according to
the touchscreen has a base layer,
the touch ground layer comprises a first touch ground layer disposed at a first surface of the base layer, and a second touch ground layer disposed at a second surface of the base layer, and
the second surface of the base layer is a surface facing the display panel.
5. The display device according to
6. The display device according to
7. The display device according to
8. The display device according to
a polarization plate between the display panel and the touchscreen; and
an optically clear adhesive layer between the polarization plate and the touchscreen.
9. The display device according to
a polarization plate between the display panel and the touchscreen; and
an optically clear adhesive layer between the polarization plate and the touchscreen,
wherein the second touch ground layer does not overlap with the panel ground layer while overlapping with the electrode layer.
10. The display device according to
wherein the width is measured in a direction that is parallel to a touch surface of the touchscreen.
11. The display device according to
an optically clear adhesive layer on the touchscreen; and
a cover substrate on the optically clear adhesive layer.
12. The display device according to
13. The display device according to
15. The display device according to
the touchscreen has a base layer;
the touch ground layer comprises a first touch ground layer at a first surface of the base layer, and a second touch ground layer at a second surface of the base layer; and
the second surface of the base layer is a surface facing the display panel.
16. The display device according to
wherein the width is measured in a direction that is parallel to a touch surface of the touchscreen.
17. The display device according to
|
This application claims the benefit of Republic of Korea Patent Application No. 10-2019-0111732 filed on Sep. 9, 2019, which is hereby incorporated by reference as if fully set forth herein.
The present disclosure relates to a display device with a touchscreen.
In accordance with development of information technologies, the market for a display device as a medium connecting between a user and information is expanding. As such, use of display devices such as an organic light emitting display (OLED) device, a quantum dot display (QDD) device, a liquid crystal display (LCD) device and a plasma display panel (PDP) device is increasing.
A part of the above-mentioned display devices, for example, an LCD device or an OLED device, includes a display panel including a plurality of sub-pixels arranged in a matrix form, a driver configured to output a drive signal for driving the display panel, and a power supply configured to generate electric power to be supplied to the display panel or the driver. The driver includes a scan driver configured to supply scan signals (or gate signals) to the display panel, and a data driver configured to supply data signals to the display panel.
In addition, the above-mentioned display devices may be embodied not only as a portable information appliance such as a smart phone, but also as a notebook computer, a computer monitor, a home electronic appliance, or the like. Each display device included in such a product group includes a touchscreen (or touch sensors) as an input means for a user.
When drive signals, for example, scan signals and data signals, are supplied to sub-pixels formed at a display panel in a display device as mentioned above, selected ones of the sub-pixels transmit light or directly emit light and, as such, the display device may display an image. The display device may receive user input through operation of the user touching the display panel, and may perform hardware or software operation corresponding to the received user input.
Accordingly, the present disclosure is directed to a display device with a touchscreen that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An object of the present disclosure is to provide a display device capable of suppressing electrostatic charges from being diffused to a circuit (a transistor constituting a shift register, or the like) on a lower substrate of a display panel, thereby not only avoiding degradation in screen quality, but also reducing or avoiding adverse influence on the circuit (malfunction, reliability degradation, drivability degradation, etc.).
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the disclosure. The objectives and other advantages of the disclosure may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a display device includes a display panel having an electrode layer in a display area and a non-display area thereof and a panel ground layer in the non-display area, and a touchscreen over the display panel and including a touch ground layer having an area overlapping with at least one of the electrode layer and the panel ground layer.
The touch ground layer may be disposed at at least one of first and second surfaces of a base layer constituting the touchscreen.
The touch ground layer may have a width greater than that of the panel ground layer.
The touch ground layer may include a first touch ground layer disposed at the first surface of the base layer and a second touch ground layer disposed at the second surface of the base layer. The second surface of the base layer may be a surface facing the display panel.
The second touch ground layer may have an area spaced apart from the electrode layer and overlapping with the panel ground layer.
The second touch ground layer may have an area adjacent to the electrode layer and overlapping with the panel ground layer.
The second touch ground layer may have a first area overlapping with the electrode layer and a second area overlapping with the panel ground layer.
The display device may further include a polarization plate between the display panel and the touchscreen, and an optically clear adhesive layer between the polarization plate and the touchscreen.
Alternatively, the display device may further include a polarization plate between the display panel and the touchscreen, and an optically clear adhesive layer between the polarization plate and the touchscreen, and the second touch ground layer may not overlap with the panel ground layer while overlapping with the electrode layer.
The second touch ground layer may have a greater width than the panel ground layer while having a width equal to or greater than a width of the first touch ground layer.
The display device may further include an optically clear adhesive layer on the touchscreen, and a cover substrate on the optically clear adhesive layer.
The display panel has a lower substrate and an upper substrate, and at least one of the lower substrate and the upper substrate is formed of a plastic material.
In another aspect of the present disclosure, a display device includes a display panel having an electrode layer in a display area and a non-display area thereof and a panel ground layer in the non-display area, a polarization plate on one surface of the display panel, a lower optically clear adhesive layer on the polarization plate, a touchscreen on the lower optically clear adhesive layer and including a touch ground layer having an area overlapping with at least one of the electrode layer and the panel ground layer, an upper optically clear adhesive layer on the touchscreen, and a cover substrate on the upper optically clear adhesive layer.
The touch ground layer may include a first touch ground layer disposed at one surface of a base layer constituting the touchscreen, and a second touch ground layer disposed at the other surface of the base layer. The other surface of the base layer may be a surface facing the display panel.
The second touch ground layer may have a width greater than that of the panel ground layer, and a width equal to or greater than a width of the first touch ground layer.
The present disclosure may suppress diffusion of electric charges to a circuit (a transistor constituting a shift register) on a lower substrate of a display panel on the basis of a structure capable of efficiently discharging static electricity accumulated on a surface of a cover substrate or a side surface of the cover substrate and, as such, may have an effect of avoiding quality degradation of a screen. In addition, the present disclosure may avoid a problem of induction or diffusion of electric charges into the circuit on the lower substrate of the display panel and, as such, may have an effect of reducing or avoiding adverse influence on the circuit (malfunction, reliability degradation, drivability degradation, etc.).
It is to be understood that both the foregoing general description and the following detailed description of the present disclosure are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the disclosure and along with the description serve to explain the principle of the disclosure. In the drawings:
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
A display device with a touchscreen according to an exemplary embodiment of the present disclosure is embodied as a television, a navigation, an image player, a Blu-ray player, a personal computer (PC), a home theater, a tablet PC, a smart phone (mobile phone), etc.
In addition, for a display device with a touchscreen according to an exemplary embodiment of the present disclosure, a display panel such as a liquid crystal display (LCD) panel, an organic light emitting display (OLED) panel, a quantum dot display (QDD) panel or a plasma display panel (PDP) may be selected, but the present disclosure is not limited thereto.
As illustrated in
The timing controller 20 controls the data driving circuit 12 and the scan driving circuit 14. The timing controller 20 receives timing signals and digital video data RGB from a host circuit (not shown). The timing signals include a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, a data enable signal DE, and a main clock MCLK. The timing controller 20 controls the scan driving circuit 14 based on scan timing control signals such as a gate start pulse GSP, a gate shift clock GSC, and a gate output enable signal GOE. The timing controller controls the data driving circuit 12 based on data timing control signals such as a source sampling clock SSC and a source output enable signal SOE. The timing controller 20 may be embodied in the form of an integrated circuit (IC).
The data driving circuit 12 converts the digital video data RGB received from the timing controller 20 into an analog data voltage. The data driving circuit 12 supplies the data voltage to data lines D1 to Dm on the display panel DIS. The data driving circuit 12 may be embodiment in the form of an IC.
The scan driving circuit 14 sequentially generates scan signals (or gate signals) synchronizing with the data voltage. The scan driving circuit 14 supplies the scan signals to gate lines G1 to Gn on the display panel DIS. The scan driving circuit 14 outputs, as the scan signal, a gate-high voltage to turn on a switching transistor included in each sub-pixel of the display panel DIS and a gate-low voltage to turn off the switching transistor. The scan driving circuit 14 may include a level shifter and a shift register. The level shifter may be embodied as a separate IC. The shift register may be embodied in a non-display area of the display panel DIS. Such a shift register embodied in the non-display area may also be referred to as a “gate-in-panel.” This will be described later in more detail with reference to
The touchscreen driving circuit 30 senses whether or not touch has been generated and a touch position, using the touchscreen TSP. The touchscreen driving circuit 30 may include a driving circuit configured to generate a driving voltage for driving a touch sensor, and a sensing circuit configured to sense the driven touch sensor and to generate data for detecting whether or not touch has been generated, and coordinate information, etc. The driving circuit and the sensing circuit of the touchscreen driving circuit 30 may be integrated in the form of a single IC or may be separated from each other to be distinguished from each other in terms of functions. The touchscreen driving circuit 30 may be formed on an external substrate connected to the display panel DIS. The touchscreen driving circuit 30 is connected to the touchscreen TSP through sensing lines L1 to Li (i being a positive integer). The touchscreen driving circuit 30 may sense whether or not touch has been generated and a touch position, based on a capacity deviation among touch sensors formed at the touchscreen TSP, and may generate touch data according to sensed results.
The touchscreen TSP includes touch electrodes capable of sensing a position at which a finger of the user, a pen, or the like has touched the touchscreen TSP. The touchscreen TSP may be disposed inside or outside the display panel DIS. The touch electrodes of the touchscreen TSP are connected to the touchscreen driving circuit 20 through the sensing lines L1 to Li.
The display panel DIS displays an image based on scan signals supplied from the scan driving circuit 14 and data voltage supplied from the data driving circuit 12. The display panel DIS includes sub-pixels SP formed on substrate. The sub-pixels are defined by data lines D1 to Dm (m being an integer of 2 or greater) and gate lines G1 to Gn (n being an integer of 2 or greater). For the display panel DIS, a display panel such as a liquid crystal display (LCD) panel, an organic light emitting display (OLED) panel, a quantum dot display (QDD) panel or a plasma display panel (PDP) may be selected, but the following description will be given in conjunction with an example in which an OLED panel is used.
When an OLED panel is selected for the display panel DIS, as illustrated in
As illustrated in
The shift register GIP may operate based on the clock signals Gclk and the start signal Gvst output from the level shifter LS, and may output scan signals Scan[1] to Scan[m] capable of turning on or off transistors formed in each of the pixel circuit PCs of the display panel. The shift register GIP is formed on the display panel in a gate-in-panel manner in the form of a thin film. Accordingly, a portion of the scan driving circuit 14 formed on the display panel may be the shift register GIP. The level shifter LS may be formed in the form of an IC, different from the shift register GIP. Accordingly, as illustrated in
As illustrated in
As illustrated in
In the first embodiment illustrated in
A first optically clear adhesive layer OCA1 may be disposed between the touchscreen TSP and the cover substrate CG. A second optically clear adhesive layer OCA2 and a polarization plate POL may be disposed between the touchscreen TSP and the display panel DIS. The cover substrate CG covers both the display area AA and the non-display area NA and, as such, a transparent material is selected for the cover substrate CG.
The metal plate MPL and the cover substrate CG are provided to protect the display panel DIS and the touchscreen TSP. Accordingly, the metal plate MPL and the cover substrate CG may have sizes greater than those of the back plate BPL, the display panel DIS, the polarization plate POL, the second optically clear adhesive layer OCA2, the touchscreen TSP and the first optically clear adhesive layer OCA1, without being limited thereto. Meanwhile, the metal plate MPL and the cover substrate CG are greater than other configurations, as illustrated in
A common electrode covering all sub-pixels included in the display area AA is disposed in the display panel DIS. The common electrode is formed to occupy a large area such that the common electrode is electrically connected to all sub-pixels of the display area AA and, is named accordingly. The common electrode may be selected as anodes or cathodes of organic light emitting diodes included in the sub-pixels. However, the present disclosure will be described in conjunction with, for example, a cathode layer CAT. The cathode layer CAT may be formed on the display area AA and the non-display area NA. The cathode layer CAT may be formed even in an area adjacent to a periphery of the display panel DIS.
The touchscreen TSP may include touch sensors disposed in the display area AA and a touch ground layer GND disposed in the non-display area NA. The touch ground layer GND of the touchscreen TSP may be disposed adjacent to the cathode layer which is the common electrode of the display panel DIS. The touch ground layer GND may be disposed at four sides surrounding the display area AA, or may be disposed to correspond to the shift register GIP disposed in the non-display area NA. Accordingly, the touch ground layer GND may be defined as a ground line in accordance with the disposition size thereof or the area occupied thereby.
As seen from
As apparent from the above description, the first embodiment of the present disclosure has the static electricity path constituted by the touch ground layer GND and the cathode layer CAT and, as such, static electricity formed at the surface of the cover substrate CG may be easily discharged.
In the second embodiment illustrated in
A touchscreen TSP may include a base layer COP, a first passivation layer PAS1, and a second passivation layer PAS2. The first passivation layer PAS1 and the second passivation layer PAS2 cover an upper surface and a lower surface of the base layer COP, respectively. The first passivation layer PAS1 and the second passivation layer PAS2 serve to protect layers formed at the opposite surfaces of the base layer COP.
A first dummy touch electrode layer RDMY, a first touch routing electrode layer RXRL, and a first touch ground layer UGND may be disposed on the upper surface of the base layer COP. A second dummy touch electrode layer TDMY, a second touch routing electrode layer TXRL, and a second touch ground layer LGND may be disposed on the lower surface of the base layer COP.
The first dummy touch electrode layer RDMY and the second dummy touch electrode layer TDMY are disposed adjacent to the display area AA. The first touch ground layer UGND and the second touch ground layer LGND are disposed at the periphery of the non-display area NA. The first touch routing electrode layer RXRL is disposed between the first dummy touch electrode layer RDMY and the first touch ground layer UGND. The second touch routing electrode layer TXRL is disposed between the second dummy touch electrode layer TDMY and the second touch ground layer LGND.
At least one of the first touch ground layer UGND and the second touch ground layer LGND may be disposed to be spaced apart from the cathode layer CAT by a distance LD. At least one of the first touch ground layer UGND and the second touch ground layer LGND may have a greater width than a width of the panel ground layer PGND. At least one of the first touch ground layer UGND and the second touch ground layer LGND may be disposed adjacent to the panel ground layer PGND or may be disposed to overlap with the panel ground layer PGND at a portion thereof.
In the second embodiment of the present disclosure as described above, the first touch ground layer UGND of the touchscreen TSP, the second touch ground layer LGND of the touchscreen TSP, the cathode layer CAT of the display panel DIS, and the panel ground layer PGND of the display panel DIS constitute a static electricity path. Since the second embodiment of the present disclosure has the static electricity path constituted by the first touch ground layer UGND, the second touch ground layer LGND, the panel ground layer PGND, and the cathode layer CAT, it may be possible to more effectively avoid a problem of diffusion or induction of electric charges into a horizontal interface of the cover substrate CG or a vertical interface between the cover substrate CG and the metal plate MPL.
Meanwhile, the non-display area NA is mainly illustrated in
In the third embodiment illustrated in
A touchscreen TSP may include a base layer COP, a first passivation layer PAS1, and a second passivation layer PAS2. The base layer COP may include a first dummy touch electrode layer RDMY, a first touch routing electrode layer RXRL and a first touch ground layer UGND which are disposed on one surface of the base layer COP. The base layer COP may also include a second dummy touch electrode layer TDMY, a second touch routing electrode layer TXRL and a second touch ground layer LGND which are disposed on the other surface of the base layer COP.
The third embodiment of the present disclosure is similar or identical to the second embodiment in that the first touch ground layer UGND of the touchscreen TSP, the second touch ground layer LGND of the touchscreen TSP, the cathode layer CAT of the display panel DIS, and the panel ground layer PGND of the display panel DIS constitute a static electricity path. Accordingly, the second touch ground layer LGND may have a greater width than a width of the first touch ground layer UGND. At least one of the first touch ground layer UGND and the second touch ground layer LGND may be disposed adjacent to the panel ground layer PGND or may be disposed to overlap with the panel ground layer PGND at a portion thereof.
However, the third embodiment of the present disclosure differs from the second embodiment in that, when viewed in a vertical cross-section, one end of the cathode layer CAT (a portion extending to the non-display area) and one end of the second touch ground layer LGND (a portion disposed adjacent to the display area) are disposed to face each other (to be aligned with each other). In order to obtain such a structure, the third embodiment of the present disclosure may use a method of extending one end of the second touch ground layer LGND to one end of the cathode layer CAT.
Since the third embodiment of the present disclosure as described above has a static electricity path constituted by the first touch ground layer UGND, the second touch ground layer LGND, the panel ground layer PGND, and the cathode layer CAT, it may be possible to more effectively avoid a problem of diffusion or induction of electric charges into a horizontal interface of the cover substrate CG or a vertical interface between the cover substrate CG and the metal plate MPL.
In the fourth embodiment illustrated in
A touchscreen TSP may include a base layer COP, a first passivation layer PAS1, and a second passivation layer PAS2. The base layer COP may include a first dummy touch electrode layer RDMY, a first touch routing electrode layer RXRL, and a first touch ground layer UGND which are disposed on one surface of the base layer COP. The base layer COP may also include a second dummy touch electrode layer TDMY, a second touch routing electrode layer TXRL, and a second touch ground layer LGND which are disposed on the other surface of the base layer COP.
The fourth embodiment of the present disclosure is similar or identical to the second embodiment in that the first touch ground layer UGND of the touchscreen TSP, the second touch ground layer LGND of the touchscreen TSP, the cathode layer CAT of the display panel DIS, and the panel ground layer PGND of the display panel DIS constitute a static electricity path. Accordingly, the second touch ground layer LGND may have a greater width than the first touch ground layer UGND. At least one of the first touch ground layer UGND or the second touch ground layer LGND may be disposed adjacent to the panel ground layer PGND or may be disposed to overlap with the panel ground layer PGND at a portion thereof.
However, the fourth embodiment of the present disclosure differs from the second embodiment in that, when viewed in a vertical cross-section, one end of the cathode layer CAT (a portion extending to the non-display area) and one end of the second touch ground layer LGND (a portion disposed adjacent to the display area) are disposed to overlap with each other (OV). In order to obtain such a structure, the fourth embodiment of the present disclosure may use a method of extending one end of the second touch ground layer LGND to a portion of the cathode layer CAT.
Since the fourth embodiment of the present disclosure as described above has a static electricity path constituted by the first touch ground layer UGND, the second touch ground layer LGND, the panel ground layer PGND, and the cathode layer CAT, it may be possible to more effectively avoid a problem of diffusion or induction of electric charges into a horizontal interface of the cover substrate CG or a vertical interface between the cover substrate CG and the metal plate MPL.
Hereinafter, embodiments different from the second to fourth embodiments will be described.
In the fifth embodiment illustrated in
A touchscreen TSP may include a base layer COP, a first passivation layer PAS1, and a second passivation layer PAS2. The base layer COP may include a first dummy touch electrode layer RDMY, a first touch routing electrode layer RXRL and a first touch ground layer UGND which are disposed on one surface of the base layer COP. The base layer COP may also include a second dummy touch electrode layer TDMY, a second touch routing electrode layer TXRL and a second touch ground layer LGND which are disposed on the other surface of the base layer COP.
A polarization plate POL and a optically clear adhesive layer OCA may be disposed between the display panel DIS and the touchscreen TSP. The polarization plate POL may be attached to one surface (upper surface) of the display panel DIS, whereas the optically clear adhesive layer OCA may be attached to one surface (upper surface) of the polarization plate POL and the other surface (lower surface) of the touchscreen TSP.
Meanwhile, although the fifth embodiment of the present disclosure has a structure in which the polarization plate POL and the optically clear adhesive layer OCA are disposed between the display panel DIS and the touchscreen TSP, a configuration constituting a static electricity path in the fifth embodiment is similar or identical to that of the third embodiment of
In addition, when viewed in a vertical cross-section, one end of the cathode layer CAT (a portion extending to the non-display area) and one end of the second touch ground layer LGND (a portion disposed adjacent to the display area) are disposed to face each other (to be aligned with each other). Of course, this is only illustrative. A static electricity path may be configured in the same manner as the second embodiment or the fourth embodiment.
Since the fifth embodiment of the present disclosure as described above has a static electricity path constituted by the first touch ground layer UGND, the second touch ground layer LGND, the panel ground layer PGND, and the cathode layer CAT, it may be possible to more effectively avoid a problem of diffusion or induction of electric charges into a horizontal interface of the cover substrate CG or a vertical interface between the cover substrate CG and the metal plate MPL.
In the sixth embodiment illustrated in
A touchscreen TSP may include a base layer COP, a first passivation layer PAS1, and a second passivation layer PAS2. The base layer COP may include a first dummy touch electrode layer RDMY, a first touch routing electrode layer RXRL, and a first touch ground layer UGND which are disposed on one surface of the base layer COP. The base layer COP may also include a second touch ground layer LGND disposed on the other surface of the base layer COP.
A polarization plate POL and a optically clear adhesive layer OCA may be disposed between the display panel DIS and the touchscreen TSP. The polarization plate POL may be attached to one surface (upper surface) of the display panel DIS, whereas the optically clear adhesive layer OCA may be attached to one surface (upper surface) of the polarization plate POL and the other surface (lower surface) of the touchscreen TSP.
Meanwhile, although the sixth embodiment of the present disclosure has a structure in which the polarization plate POL and the optically clear adhesive layer OCA are disposed between the display panel DIS and the touchscreen TSP, as in the fifth embodiment, the sixth embodiment differs from the fifth embodiment in terms of disposition of the second touch ground layer LGND constituting a static electricity path. As illustrated in
In order to obtain such a structure, the sixth embodiment of the present disclosure may use a method of shifting the second touch ground layer LGND to the cathode layer CAT. In addition, it may be possible to constitute a touch electrode only by a single electrode layer disposed on one surface of the base layer COP without constituting the touch electrode by two electrode layers disposed at opposite surfaces of the base layer COP. Thus, this is only illustrative. For example, two electrode layers may be used. In this case, it may be possible to use a method of shifting only the second touch ground layer LGND to the cathode layer CAT under the condition that the second dummy touch electrode layer (not shown) and the second touch routing electrode layer (not shown) are maintained.
Since the sixth embodiment of the present disclosure as described above has a static electricity path constituted by the first touch ground layer UGND, the second touch ground layer LGND, the panel ground layer PGND, and the cathode layer CAT, it may be possible to more effectively avoid a problem of diffusion or induction of electric charges into a horizontal interface of the cover substrate CG or a vertical interface between the cover substrate CG and the metal plate MPL. Meanwhile, the sixth embodiment illustrates an example in which the second touch ground layer LGND is disposed to overlap with the cathode layer CAT at some or all portions thereof. However, the second touch ground layer LGND may be partially disposed in the non-display area NA such that the second touch ground layer LGND does not overlap with the panel ground layer PGND.
A simulation was conducted to identify potential distribution that can be exhibited when static electricity is applied to a cover substrate in each of different structures of the third embodiment, the fifth embodiment, the sixth embodiment and an experimental example 1, as shown in
In addition, to the third embodiment, the fifth embodiment, the sixth embodiment and the experimental example 1, an example in which a plastic material such as polyimide (PI) is selected for at least one of two substrates constituting a display panel is applied. This is because a plastic material such as polyimide (PI) is weaker against static electricity than a material such as glass.
As shown in
In addition, as seen from the simulation, all of the third embodiment, the fifth embodiment, and the sixth embodiment can avoid a problem of an increase in potential at the lower portion of the shift register GIP. However, the third embodiment and the fifth embodiment exhibit superior performance to the sixth embodiment.
Meanwhile, when it is impossible to easily discharge static electricity, electrical properties at the edge of the display panel (non-display area) may be varied. As a result, screen abnormality (a phenomenon that discoloration of the screen into a particular color, for example, a color having a bluish tint, occurs) may occur. This is because various problems such as migration or diffusion of charges of static electricity or collapse of charge neutrality balance caused by a diffused electric field may occur. A screen abnormality occurrence mechanism may be caused by drift of negative electric charges and discharge of negative electric charges into air. This will be described hereinafter.
When friction is applied to the cover substrate CG, for application of static electricity, the cover substrate CG is charged with negative electric charges (−). When this situation is continued, the cover substrate CG becomes a negative electrode and, as such, may form electric flux density of a vertical electric field together with positive electric charges (+) in the display panel DIS. The negative electric charges (−) increasing in kinetic energy due to frictional heat migrate to the edge of the cover substrate CG, and may then drift to an inside of the display panel DIS along a surface of the cover substrate CG within the vertical electric field.
In an embodiment shown in
In an experimental example shown in
When friction is applied to the cover substrate CG, for application of static electricity, the cover substrate CG is charged with negative electric charges (−). When this situation is continued, the cover substrate CG becomes a negative electrode and, as such, may form electric flux density of a vertical electric field together with positive electric charges (+) in the display panel DIS. The negative electric charges (−) increasing in kinetic energy due to frictional heat migrate to the edge of the cover substrate CG, and may then be induced to a side surface of the display panel DIS in accordance with irregular distribution of fringe effects in a vertical electric force field. The induced negative electric charges (−) may be continuously accumulated (in the form of wall electric charges and, as such, electrostatic potential in the inside of the display panel DIS may differ from electrostatic potential in the outside of the display panel DIS. As a result, negative electric charges (−) may be discharged into air.
In an embodiment shown in
In an experimental example shown in
As apparent from the above description, the present disclosure may suppress diffusion of electric charges to a circuit (a transistor constituting a shift register) on a lower substrate of a display panel on the basis of a structure capable of efficiently discharging static electricity accumulated on a surface of a cover substrate or a side surface of the cover substrate and, as such, may have an effect of avoiding quality degradation of a screen. In addition, the present disclosure may avoid a problem of induction or diffusion of electric charges into the circuit on the lower substrate of the display panel and, as such, may have an effect of minimizing or avoiding adverse influence on the circuit (malfunction, reliability degradation, drivability degradation, etc.).
Although the foregoing description has been given mainly in conjunction with embodiments, these embodiments are only illustrative without limiting the disclosure. Those skilled in the art to which the present disclosure pertains can appreciate that various modifications and applications illustrated in the foregoing description may be possible without changing essential characteristics of the embodiments. Therefore, the above-described embodiments should be understood as exemplary rather than limiting in all aspects. In addition, the scope of the present disclosure should also be interpreted by the claims below rather than the above detailed description. All modifications or alterations as would be derived from the equivalent concept intended to be included within the scope of the present disclosure should also be interpreted as falling within the scope of the disclosure.
Jeon, Chang-Hoon, Kim, Jong-Hoy
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10156948, | Sep 14 2010 | JAPAN DISPLAY INC | Display device with touch detection function, and electronic unit |
10386981, | Sep 14 2010 | Japan Display Inc. | Display device with touch detection function, and electronic unit |
10908654, | Sep 18 2018 | Apple Inc | Display grounding structures |
8583187, | Oct 06 2010 | Apple Inc.; Apple Inc | Shielding structures for wireless electronic devices with displays |
9313887, | Feb 06 2013 | ANHUI JINGZHUO OPTICAL DISPLAY TECHNOLOGY CO , LTD | Conductive film, manufacturing method thereof, and touch screen having the same |
9442608, | Sep 14 2010 | JAPAN DISPLAY INC | Display device with touch detection function, and electronic unit |
9665210, | Apr 17 2014 | LG Innotek Co., Ltd. | Touch panel and touch device including the same |
9952734, | Apr 17 2014 | LG Innotek Co., Ltd. | Touch panel and touch device including the same |
20070002192, | |||
20080095985, | |||
20120062511, | |||
20120127094, | |||
20120306357, | |||
20130169585, | |||
20130271675, | |||
20130271942, | |||
20140124746, | |||
20140253827, | |||
20150145814, | |||
20150301685, | |||
20160334907, | |||
20170090652, | |||
20170228067, | |||
20180321779, | |||
20190023860, | |||
20190064971, | |||
20190310730, | |||
20190350085, | |||
20200108587, | |||
ER2933712, | |||
KR1020070001818, | |||
KR1020120028217, | |||
KR1020120053855, | |||
KR1020120077451, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 18 2020 | KIM, JONG-HOY | LG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053234 | /0108 | |
Jun 18 2020 | JEON, CHANG-HOON | LG DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053234 | /0108 | |
Jul 16 2020 | LG Display Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 16 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 07 2025 | 4 years fee payment window open |
Dec 07 2025 | 6 months grace period start (w surcharge) |
Jun 07 2026 | patent expiry (for year 4) |
Jun 07 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 07 2029 | 8 years fee payment window open |
Dec 07 2029 | 6 months grace period start (w surcharge) |
Jun 07 2030 | patent expiry (for year 8) |
Jun 07 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 07 2033 | 12 years fee payment window open |
Dec 07 2033 | 6 months grace period start (w surcharge) |
Jun 07 2034 | patent expiry (for year 12) |
Jun 07 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |