A porous pavement system and a method of maintaining the porous pavement system are disclosed. A combination of porous and non-porous pavers are laid out to create a porous pavement. A receptacle or retainer for receiving a tool is in incorporated into the porous pavers, to facilitate lifting the pavers by means of the tool. A cradle may be used to hold multiple pavers.
|
1. A porous slab comprising:
a porous slab consisting solely of a porous concrete made with course aggregate, so as to allow water to pass through the porous slab; and
one or more retrieval means disposed within the porous slab.
2. The porous slab of
5. The porous slab of
7. The porous slab of
8. The porous slab of
9. The porous slab of
|
This application is a continuation of application Ser. No. 13/062,577, which is the National Stage of International Application No. PCT/US2010/037399, filed Jun. 4, 2010, which claims the benefit of U.S. Provisional Application No. 61/184,034, filed on Jun. 4, 2009, and U.S. Provisional Application No. 61/249,068, filed on Oct. 6, 2009, the disclosures of which is herein incorporated by reference.
The invention relates to a porous paver. More particularly, the invention relates to a porous paver and a method of providing a porous pavement.
It is known to use porous pavement to provide pavement that allows stormwater to infiltrate back into the ground naturally, rather than to run off. The porous pavement made with pavers typically includes a method of laying out non-porous pavers to provide a load-bearing pavement surface, with regularly dispersed void areas between the pavers. The non-porous pavers are typically concrete blocks, bricks, or reinforced plastic mats. The void areas are then filled with gravel, sand, or grass turf, which allow the stormwater to infiltrate into the ground.
Porous pavers or pavement serve their function only if the water can actually pass through the paver or pavement at a minimum specified rate. Porous pavement is known. With time, however, the porosity is substantially diminished, because the porous material becomes clogged with sediment, debris, or other materials that prevent the stormwater from flowing through the pavement. The construction of porous pavement also requires attention to certain temperature parameters. For example, if the porous pavement is laid down and then subjected to freeze-thaw cycles before it is cured, the pavement will crack and crumble. The remedy for clogged or cracked porous pavement is to dig it up and replace it, a costly undertaking.
What is needed, therefore, is a porous paving system that is readily cleanable, maintainable, or replaceable. What is further needed is such a system, the components of which can be manufactured under controlled conditions.
The invention is a porous pavement system that is based on a paver made of porous material, whereby a retrieval means is provided in the porous paver, so as to allow individual porous pavers to be removed from the pavement for cleaning, replenishing, or replacement, as needed. The invention also encompasses a paved surface that is made up of a combination of porous and non-porous pavers, and/or one that uses a hybrid paver.
The hybrid paver is a bi-material paver block that provides the desired load-bearing properties of conventional non-porous pavers and the desired filtration properties of porous pavement for allowing passage of stormwater through the pavement into the ground. The hybrid paver according to the invention comprises an outer portion that is non-porous and an inner portion that is porous. In other words, the hybrid paver has a donut-like non-porous outer portion and a donut-hole-like porous inner portion. The outer portion includes the entire perimeter of the hybrid paver, i.e., is a structural wall around the porous inner portion, the structural wall having the necessary strength characteristics to provide the desired load-bearing strength of the pavement.
The inner portion is constructed of a porous concrete that provides a specified filtration rate of water, typically stormwater. Additives may be mixed with the porous concrete to filter out specific pollutants. It may be desirable to be able to remove the inner portion from the outer portion for cleaning or replacement. For this reason, the hybrid paver may be constructed as a modular unit from which the inner portion may be readily removed or inserted. In this case, the inner portion is constructed as a cartridge or a modular piece that fits into a cavity in the outer portion. A means for inserting and retrieving the cartridge may be incorporated into the cartridge.
The inner portion and outer portion are made according to conventional industry standards, such as, for example, ASTM standards, if the paver is made of concrete. Each portion of the paver provides the desired load-bearing capability. The inner portion may also be used as a stand-alone porous paver, that is, does not have to be inserted into an outer portion, but may instead be inserted into a cavity that is created by a particular layout configuration of other porous and non-porous pavers.
The pavers used in the porous pavement system according to the invention may be any suitable shape and size. Thus, for example, pavers may be constructed as large slabs, as small regularly shaped blocks, or as decoratively shaped elements. Depending on the size and shape of the pavers, the retrieval means may also be adapted to be coupled to a lifting means that is incorporated into a vehicle that is equipped with some type of hoisting or lifting mechanism, to assist in lifting the paver from the pavement surface or, in the case of large slab-like pavers, also to install the paver.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. The drawings are not drawn to scale.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be complete and will fully convey the scope of the invention to those skilled in the art.
In the embodiment shown in the figures, the porous paver 20 is shown as a porous cartridge that is selectively insertable into and removable from the non-porous paver 10. The porous paver 20, being constructed according to industry standards, may also serve as a paver without the non-porous paver 10.
In the embodiment shown, the retrieval means 30 is illustrated together with the porous paver 20 and the non-porous paver 10. It is understood, however, that the porous paver 20 does not have to be used as a cartridge, but can be used as a stand-alone paver.
In this embodiment, a cradle 40 is provided to hold the non-porous paver 10 and the porous paver 20 together as a single unit. The cradle 40 facilitates handling and placement of the pavers. The cradle 40 may also serve to ensure proper spacing between pavers 100 when they are laid out. In the embodiment shown in
In the embodiments described herein, the non-porous paver 10 and the porous paver 20 are constructed of concrete. It is understood, however, that other suitable materials may be used, for the non-porous paver, for the porous paver, for both. Also, the non-porous paver and the porous paver may be made of different materials. Thus, it is possible to make the non-porous paver of brick or a manufactured stone, and the porous paver of pervious or porous concrete, or any suitable porous material, such as recycled glass, tires, asphalt, and combinations of material.
The hybrid paver 100 has been illustrated as a two-component paver. It is considered within the scope of this invention to also provide the paver 100 as a unitary paving block having an outer non-porous paver portion 10 and an inner porous paver portion 20.
The shape of the pavers 100 is irrelevant. A rectangular hybrid paver 100 is shown in the drawings herein, but it is understood that any suitable shape, whether the shape be chosen for ornamental or functional reasons, may be used.
It is understood that the embodiments described herein are merely illustrative of the present invention. Variations in the construction of the hybrid paver and/or the porous paved surface may be contemplated by one skilled in the art without limiting the intended scope of the invention herein disclosed and as defined by the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2315732, | |||
3590538, | |||
4000591, | Aug 04 1975 | Superior Concrete Accessories, Inc. | Holder adapted for supporting an anchor insert to be embedded in a concrete slab |
4179151, | Jan 23 1974 | Superior Concrete Accessories, Inc. | Anchor insert for embedment in a concrete slab |
5242249, | Aug 12 1991 | Meadow Burke, LLC | Pre-cast panel lifting insert |
5281048, | Oct 06 1989 | SF-Vollverbundstein-Kooperation GmbH | Plate-shaped concrete block and process and device for the manufacture of the same |
6293065, | Feb 16 1998 | Sumitomo Osaka Cement Co., Ltd. | High strength porous concrete structure and method of manufacturing the high strength porous concrete structure |
6688808, | Jun 12 2002 | Prefabricated cement concrete slab for road pavement | |
7425106, | Sep 13 2004 | ANCHOR WALL SYSTEMS, INC | Concrete pavers positioned in a herringbone pattern |
8875471, | Aug 24 2012 | Method and apparatus for lifting and leveling a concrete panel | |
20010019684, | |||
20060032807, | |||
20060034652, | |||
20060159517, | |||
20070269265, | |||
20080279626, | |||
20090180833, | |||
20090238646, | |||
20100047016, | |||
20110064517, | |||
20110193267, | |||
EP610612, | |||
KR1008924190000, | |||
KR1020080073633, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 11 2018 | NOVICK, GREGG | Porous Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045603 | /0515 | |
Apr 18 2018 | VERRILL, GARY | Porous Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045603 | /0515 |
Date | Maintenance Fee Events |
Apr 18 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 10 2018 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Jun 28 2025 | 4 years fee payment window open |
Dec 28 2025 | 6 months grace period start (w surcharge) |
Jun 28 2026 | patent expiry (for year 4) |
Jun 28 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2029 | 8 years fee payment window open |
Dec 28 2029 | 6 months grace period start (w surcharge) |
Jun 28 2030 | patent expiry (for year 8) |
Jun 28 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2033 | 12 years fee payment window open |
Dec 28 2033 | 6 months grace period start (w surcharge) |
Jun 28 2034 | patent expiry (for year 12) |
Jun 28 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |