A surgical access assembly includes a cannula including an elongated shaft having a proximal end portion including an anchor inflation port and a distal end portion including an expandable anchor. The elongated shaft includes an inner tube and an outer tube disposed over the inner tube. The inner tube includes at least one groove defined in an outer surface thereof that forms an inflation channel with an inner surface of the outer tube. The inflation channel is in communication with the anchor inflation port and the expandable anchor.

Patent
   11376037
Priority
May 08 2020
Filed
May 08 2020
Issued
Jul 05 2022
Expiry
Aug 29 2040
Extension
113 days
Assg.orig
Entity
Large
0
179
currently ok
1. A surgical access assembly comprising:
a cannula including an elongated shaft having a proximal end portion including an anchor inflation port and a distal end portion including an expandable anchor, the elongated shaft including an inner tube and an outer tube disposed over the inner tube, the inner tube including at least one groove defined in an outer surface thereof that forms an inflation channel with an inner surface of the outer tube, the at least one groove including first and second walls disposed in substantially parallel relationship relative to each other and a third wall interconnecting first ends of the first and second walls within a notched section of the at least one groove, the first wall extending outwardly beyond the second wall and radially beyond the notched section of the at least one groove with second ends of the first and second walls adjoining the outer surface of the inner tube, the inflation channel in communication with the anchor inflation port and the expandable anchor.
20. A cannula comprising:
an elongated shaft including a proximal end portion including an anchor inflation port and a distal end portion including an expandable anchor, the elongated shaft including:
an inner tube including an outer surface including at least one groove defined therein, the at least one groove including first and second walls disposed in substantially parallel relationship relative to each other and a third wall interconnecting first ends of the first and second walls within a notched section of the at least one groove, the first wall extending outwardly beyond the second wall and radially beyond the notched section of the at least one groove with second ends of the first and second walls adjoining the outer surface of the inner tube; and
an outer tube disposed over the inner tube, an inner surface of the outer tube and the at least one groove in the outer surface of the inner tube defining an inflation channel, the inflation channel in communication with the anchor inflation port and the expandable anchor.
2. The surgical access assembly of claim 1, wherein the at least one groove of the inner tube includes a proximal end in fluid communication with the anchor inflation port.
3. The surgical access assembly of claim 2, wherein the anchor inflation port includes a housing defining a cavity therein, and the proximal end of the at least one groove is disposed within the cavity of the anchor inflation port.
4. The surgical access assembly of claim 3, wherein the anchor inflation port includes a collar extending from the housing and disposed around the elongated shaft.
5. The surgical access assembly of claim 2, wherein a proximal end of the outer tube is disposed distal to the proximal end of the at least one groove of the inner tube.
6. The surgical access assembly of claim 2, wherein the at least one groove of the inner tube includes a distal end in fluid communication with the expandable anchor.
7. The surgical access assembly of claim 6, wherein the expandable anchor is coupled to the outer tube, and the outer tube includes an opening in communication with the distal end of the at least one groove of the inner tube and the expandable anchor.
8. The surgical access assembly of claim 1, wherein the at least one groove of the inner tube extends longitudinally along a length of the inner tube.
9. The surgical access assembly of claim 8, wherein the at least one groove of the inner tube has a substantially rectangular shape.
10. The surgical access assembly of claim 1, wherein the inner surface of the outer tube abuts the outer surface of the inner tube.
11. The surgical access assembly of claim 1, wherein the at least one groove of the inner tube includes two grooves defined in the outer surface of the inner tube.
12. The surgical access assembly of claim 11, wherein the two grooves of the inner tube extend longitudinally along a length of the inner tube in spaced relation relative to each other.
13. The surgical access assembly of claim 12, wherein the two grooves are disposed on opposed sides of the third wall.
14. The surgical access assembly of claim 12, wherein the first walls of the two grooves are axially aligned.
15. The surgical access assembly of claim 1, wherein the expandable anchor is a balloon.
16. The surgical access assembly of claim 1, further comprising an instrument housing coupled to the proximal end portion of the cannula, the instrument housing disposed proximally of the anchor inflation port.
17. The surgical access assembly of claim 1, further comprising a retention collar movably positioned along the elongated shaft of the cannula.
18. The surgical access assembly of claim 1, wherein the inner tube of the cannula includes an access lumen defined by an inner surface of the inner tube.
19. The surgical access assembly of claim 1, wherein the at least one groove is open to the outer surface of the inner tube between the second ends of the first and second walls.

The present disclosure relates generally to surgical access devices. In particular, the present disclosure relates to a dual lumen cannula of a surgical access device for inflating and deflating an expandable anchor of the surgical access device.

In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity or opening. A surgical access device (e.g., a cannula or an access port) is introduced through an opening in tissue (e.g., a naturally occurring orifice or an incision) to provide access to an underlying surgical site in the body. The opening is typically made using an obturator having a blunt or sharp tip that may be inserted through a passageway of the surgical access device. For example, a cannula has a tube of rigid material with a thin wall construction, through which an obturator may be passed. The obturator is utilized to penetrate a body wall, such as an abdominal wall, or to introduce the surgical access device through the body wall, and is then removed to permit introduction of surgical instruments through the surgical access device to perform the surgical procedure.

Minimally invasive surgical procedures, including both endoscopic and laparoscopic procedures, permit surgery to be performed on organs, tissues, and vessels far removed from an opening within the tissue. In laparoscopic procedures, the abdominal cavity is insufflated with an insufflation gas, e.g., CO2, to create a pneumoperitoneum thereby providing access to the underlying organs. A laparoscopic instrument is introduced through a cannula into the abdominal cavity to perform one or more surgical tasks. The cannula may incorporate a seal to establish a substantially fluid tight seal about the laparoscopic instrument to preserve the integrity of the pneumoperitoneum. The cannula, which is subjected to the pressurized environment, e.g., the pneumoperitoneum, may include an anchor to prevent the cannula from backing out of the opening in the abdominal wall, for example, during withdrawal of the laparoscopic instrument from the cannula.

This disclosure generally relates to a cannula for inflating and deflating an expandable anchor of a surgical access device. The cannula includes an inner tube having grooves defined in an outer surface thereof, and an outer tube disposed around the inner tube. Together, the grooves of the inner tube and an inner surface of the outer tube define lumens extending through the cannula. By incorporating the grooves in the outer surface of the inner tube, instead of forming a separate lumen between the inner and outer tubes, the number of components and assembly steps required to form the cannula is reduced, as well as the assembly time and/or material costs. Additionally, the grooves minimize the occurrence of the lumen and/or expandable anchor collapsing, for example, during deflation, and closing the fluid flow pathway, as compared to cannulas having the separate lumen formed between the inner and outer tubes.

In one aspect, the disclosure provides a surgical access assembly including a cannula having an elongated shaft including a proximal end portion including an anchor inflation port and a distal end portion including an expandable anchor. The elongated shaft includes an inner tube and an outer tube disposed over the inner tube. The inner tube includes at least one groove defined in an outer surface thereof that forms an inflation channel with an inner surface of the outer tube. The inflation channel is in communication with the anchor inflation port and the expandable anchor.

The at least one groove of the inner tube may include a proximal end in fluid communication with the anchor inflation port. The anchor inflation port may include a housing defining a cavity therein, and the proximal end of the at least one groove may be disposed within the cavity of the anchor inflation port. The anchor inflation port may include a collar extending from the housing and disposed around the elongated shaft. A proximal end of the outer tube may be disposed distal to the proximal end of the at least one groove of the inner tube.

The at least one groove of the inner tube may include a distal end in fluid communication with the expandable anchor. The expandable anchor may be coupled to the outer tube, and the outer tube may include an opening in communication with the distal end of the at least one groove of the inner tube and the expandable anchor.

The at least one groove of the inner tube may extend longitudinally along a length of the inner tube. The at least one groove may have a substantially rectangular shape. The at least one groove may include first and second walls disposed in substantially parallel relationship relative to each other, and a third wall interconnecting the first and second walls within a notched section of the at least one groove. The first wall may extend outwardly beyond the second wall, radially beyond the notched section of the at least one groove.

The inner surface of the outer tube may abut the outer surface of the inner tube.

The inner tube may include two grooves defined in the outer surface of the inner tube. The two grooves of the outer tube may extend longitudinally along a length of the inner tube in spaced relation relative to each other.

The expandable anchor may be a balloon.

The surgical access assembly may further include an instrument housing coupled to the proximal end portion of the cannula. The instrument housing may be disposed proximally of the anchor inflation port.

The surgical access assembly may further include a retention collar movably positioned along the elongated shaft of the cannula.

In another aspect, the disclosure provides a cannula including an elongated shaft including a proximal end portion including an anchor inflation port and a distal end portion including an expandable anchor. The elongated shaft includes an inner tube and an outer tube disposed over the inner tube. The inner tube includes an outer surface having at least one groove defined therein. An inner surface of the outer tube and the at least one groove in the outer surface of the inner tube define an inflation channel. The inflation channel is in communication with the anchor inflation port and the expandable anchor.

The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the aspects described in this disclosure will be apparent from the description and drawings, and from the claims.

FIG. 1 is a perspective view of a surgical access assembly in accordance with an aspect of the disclosure;

FIG. 2 is cross-sectional view of the surgical access assembly of FIG. 1, taken along section line 2-2 of FIG. 1;

FIG. 3 is a perspective view of an inner tube of a cannula of the surgical access assembly of FIG. 1;

FIG. 4 is a perspective view of a portion of the inner tube of FIG. 3;

FIG. 5 is a cross-sectional view of the surgical access assembly of FIG. 1, taken along section line 5-5 of FIG. 1; and

FIG. 6 is a side view of the surgical access assembly of FIG. 1, shown secured to tissue.

Aspects of the disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed aspects are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.

Like reference numerals refer to similar or identical elements throughout the description of the figures. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.

Surgical access assemblies with obturators, known as trocar assemblies, are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The surgical access assemblies of the present disclosure include an instrument housing mounted on a cannula. An obturator (not shown) is insertable through the instrument housing and the cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end, and can be used to incise and/or separate tissue of the abdominal wall so that the surgical access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument housing of the surgical access assembly.

Trocar assemblies are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the anatomical structure or by passing through an existing opening through the anatomical structure. Once the surgical access assembly with the obturator has tunneled through the anatomical structure, the obturator is removed, leaving the surgical access assembly in place. The instrument housing of the surgical access assembly includes valves and/or seals that prevent the escape of insufflation fluid from the body cavity, while also allowing surgical instruments to be inserted into the body cavity.

In various aspects, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other aspects, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of the trocar obturator. The bladeless trocar obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.

Various trocar obturators suitable for use with the surgical access assembly of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to PCT Publication No. WO 2016/186905, the entire content of which is hereby incorporated by reference herein.

FIGS. 1 and 2 illustrates a surgical access assembly 10 including a surgical access device 100 and a retention collar 150 supported on the surgical access device 100. The surgical access assembly 10 will further be described to the extent necessary to disclose aspects of the disclosure. For a detailed description of the structure and function of exemplary surgical access devices and/or retention collars, reference may be made to U.S. Pat. Nos. 7,300,448; 7,691,089; and 8,926,508, the entire content of each of which is hereby incorporated by reference herein. Accordingly, it should be understood that a variety of surgical access assemblies may be utilized with a cannula of the present disclosure.

The surgical access device 100 includes a cannula 110 and an instrument housing 120 secured to the cannula 110. The cannula 110 generally includes an elongated shaft 112 extending along a longitudinal axis “X” and defining an access lumen 111 for reception and passage of a surgical instrument (not shown) therethrough. The elongated shaft 112 includes an inner tube 114 and an outer tube 116 coaxially mounted over the inner tube 114. A proximal end portion 110a of the cannula 110 supports the instrument housing 120 thereon and a distal end portion 110b of the cannula 110 supports an expandable anchor 118 (e.g., an inflatable anchor, such as a balloon, or a contractable anchor, such as a collapsible flange). More particularly, the expandable anchor 118 is operably coupled to the outer tube 116. The expandable anchor 118 secures the cannula 110 against an inner surface of a body wall, such as an abdominal wall (see FIG. 6).

The retention collar 150 is supported on the elongated shaft 112 of the cannula 110. The retention collar 150 is releasably engageable with the elongated shaft 112, and slidable therealong to adjust the longitudinal position of the retention collar 150 on the elongated shaft 112. The retention collar 150 secures the cannula 110 against an outer surface of a body wall (see e.g., FIG. 6). The retention collar 150 may be formed from a compressible material to aid in sealing the opening into the tissue of the body wall. The retention collar 150 may include any known retention mechanism used on cannulas and/or trocars, such as foam collars and/or suture ties.

The instrument housing 120 includes an upper housing section 122 and a lower housing section 124, and defines a cavity 121 therein that communicates with the access lumen 111 of the elongated shaft 112 of the cannula 110. The upper housing section 122 may be selectively attachable to, and detachable from, the lower housing section 124, or the upper housing section 122 may be permanently attached to the lower housing section 124 (e.g., via welding, adhesives, etc.). The lower housing section 124 may be releasably or permanently attached to the elongated shaft 112 (e.g., the inner tube 114) of the cannula 110. In aspects, either or both of the upper and lower housing sections 122, 124 of the instrument housing 120 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a user.

The instrument housing 120 supports a seal assembly 126 and a valve assembly 130 therein. The seal assembly 126 is disposed proximally of the valve assembly 130. The seal assembly 126 generally includes an instrument seal 128 for sealing around surgical instruments (not shown) inserted into the cannula 110, and the valve assembly 130 generally includes a zero-closure seal 132 for sealing the access lumen 111 of the cannula 110 in the absence of a surgical instrument inserted through the cannula 110. The seal assembly 126 and the valve assembly 130 prevent the escape of the insufflation fluid therefrom, while allowing surgical instruments to be inserted therethrough and into the body cavity. The instrument seal 128 may include any known instrument seal used in cannulas and/or trocars, such as septum seal. The zero-closure seal 132 may be any known zero-closure seal for closing off the passageway into the access lumen 111, such as a duckbill seal or flapper valve.

The instrument housing 120 includes an insufflation port 134 coupled to the lower housing section 124. The insufflation port 134 defines an opening 135 therethrough that is in fluid communication with the cavity 121 of the instrument housing 120 which, in turn, is in fluid communication with the access lumen 111 of the cannula 110 to insufflate a body cavity, such as abdominal cavity (e.g., create a pneumoperitoneum). The opening 135 of the insufflation port 134 is disposed distally of the valve assembly 130 to maintain insufflation pressure within the body cavity. The insufflation port 134 is connectable to a source of insufflation fluid (not shown) for delivery of the insufflation fluid (e.g., gases) into the body cavity. The insufflation port 134 is configured and dimensioned to receive a valve 136 in a substantially fluid-tight manner. In aspects, and as shown, the valve 136 is a stopcock valve for controlling the flow of the insufflation fluid. The valve 136, however, may be any known valve for directing fluid flow and, in some aspects, regulating fluid flow.

The cannula 110 includes an anchor inflation port 138 coupled to the elongated shaft 112 (e.g., via adhesives or solvent bond). The anchor inflation port 138 includes a housing 140 and a collar 142 extending from the housing 140. The collar 142 secures the housing 140 to the elongated shaft 112. The collar 142 extends around the elongated shaft 112 and is engaged with the elongated shaft 112 in a manner that fixes (e.g., longitudinally and rotationally) the anchor inflation port 138 relative to the elongated shaft 112. More particularly, the collar 142 is engaged with the inner tube 114 of the elongated shaft 112 by snap fit connection, and is further seated over a proximal end 116a of the outer tube 116, for example, in a friction fit manner. It should be understood that other mating structures and relationships may be utilized to secure the anchor inflation port 138 to the elongated shaft 112.

The anchor inflation port 138 is in fluid communication with the expandable anchor 118. The housing 140 of the anchor inflation port 138 defines a cavity 141 therein that is in fluid communication with inflation lumens or channels 143 (FIG. 5) of the cannula 110 which, in turn, is in fluid communication with the expandable anchor 118, as described in detail below. The housing 140 is connectable to a fluid source (not shown) for delivery of a fluid (e.g., gases) into the expandable anchor 118. The anchor inflation port 138 includes an inlet valve 144 and an outlet valve 146 operably coupled to the housing 140 in a substantially fluid-tight manner. In aspects, and as shown, the inlet valve 144 is a check valve that allows the fluid to flow into the expandable anchor 118 and prevents reverse flow of the fluid therefrom, and the outlet valve 146 is a release valve that allows the escape of the fluid from the expandable anchor 118. The inlet and outlet valves 144, 146, however, may be any known valves for controlling fluid flow and, in some aspects, the anchor inflation port 138 may include a single valve for delivery and removal of fluid into and out of the expandable anchor 118. For example, a syringe (not shown) may be coupled to the inlet valve 144 (e.g., a tip of the syringe may be positioned through the inlet valve) to deliver air into the expandable anchor 118 or to remove air from the expandable anchor 118. In some aspects, the anchor inflation port 138 may further include a relief valve (not shown) to limit the pressure that can build up in the expandable anchor 118.

Turning now to FIGS. 3 and 4, the inner tube 114 of the cannula 110 has a cylindrical body 113 includes an inner surface 113a defining the access lumen 111 of the elongated shaft 112 and an outer surface 113b having a generally annular shape with grooves 115 defined therein. The grooves 115 extend longitudinally along a length “L” of the inner tube 114 between a proximal end 115a and a distal end 115b. The grooves 115 are disposed in radial spaced relation relative to each other.

Each groove 115 is substantially rectangular in shape and includes first and second walls 117a, 117b that are substantially planar and disposed in substantially parallel relationship relative to each other. A third wall 117c interconnects the first and second walls 117a, 117b. The third wall 117c is substantially planar and disposed substantially orthogonal to the first and second walls 117a, 117b. Together, the first, second, and third walls 117a, 117b, 117c define a notched section 117 of the groove 115. The first wall 117a extends outwardly beyond the second wall 117c, radially outwardly of the notched section 117. The grooves 115 may be formed by cutting the outer surface 113b of the inner tube 114, or the inner tube 114 may be molded to include the grooves 115.

It should be understood that the grooves 115 may have other sizes and/or shapes. It should be further understood that the number of grooves 115 defined in the outer surface 113b of the inner tube 114 may vary. In some aspects, the inner tube 114 may include a plurality of grooves 115 or sets of grooves 115 radially dispersed around the inner tube 114.

As shown in FIGS. 2 and 5, the outer tube 116 has a cylindrical body 119 including an inner surface 119a abutting the outer surface 113b of the inner tube 114 and an outer surface 119b configured to engage tissue. Together, the inner and outer tubes 114, 116 form the inflation channels 143 through the cannula 110. More particularly, the inflation channels 143 are defined between the grooves 115 (FIG. 3) of the inner tube 114 and the inner surface 119a of the outer tube 116.

The inflation channels 143 provide a pathway for fluid flow from the fluid source (not shown) to the expandable anchor 118. The grooves 115 define a rigid fluid pathway in contrast to the use of a separate lumen (e.g., a catheter tube) that is susceptible to collapsing or becoming constricted. The proximal end 115a of each groove 115 is disposed within the cavity 141 of the housing 140 of the anchor inflation port 138 to provide an inlet from the fluid source (not shown) during inflation and an outlet into the cavity 141 during deflation. The distal end 115b of each groove 115 is disposed within the expandable anchor 118 and in communication therewith via, for example, an opening 116b extending through the outer tube 116, to provide an inlet into the expandable anchor 118 during inflation and an outlet from the expandable anchor 118 during deflation. It should be understood that the outer tube 116 and the expandable anchor 118 are secured (e.g., glued and/or welded) together to create hermetic contact therebetween, or may be formed (e.g., blow molded) as a single piece.

To inflate the expandable anchor 118, a fluid source (not shown) is releasably attached to the anchor inflation port 138 and pressurized fluid is introduced into the anchor inflation port 138, through the inflation channels 143, and into the expandable anchor 118 causing the expandable anchor 118 to expand. To deflate the expandable anchor 118, the outlet valve 146 of the anchor inflation port 138 is actuated to depressurize the fluid and allow it to escape therethrough causing the expandable anchor 118 to retract or collapse.

FIG. 6 illustrates the surgical access assembly 10 disposed within tissue “T,” e.g., an abdominal wall. The elongated shaft 112 of the cannula 110 is received through the tissue “T” (e.g., by utilizing an obturator (not shown) to facilitate entry of the cannula 110 through the tissue “T”), and the expandable anchor 118 is inflated within a body cavity “C” to prevent the cannula 110 from being withdrawn through the tissue “T.” The retention collar 150 is slid distally along the elongated shaft 112 of the cannula 110 until the retention collar 150 abuts or presses on the tissue “T.” The tissue “T” is thus sandwiched between the expandable anchor 118 and the retention collar 150 to prevent the cannula 110 from being withdrawn from or over-inserted into the tissue “T.” In this manner, the surgical access assembly 10 is secured to the tissue “T” and longitudinal movement of the cannula 110 relative to the tissue “T” is prevented or minimized throughout insertion, withdrawal, and/or manipulation of a surgical instrument (not shown) through the cannula 110. Following the surgical procedure, the expandable anchor 118 is deflated to permit the withdrawal of the surgical access assembly 10 from the tissue “T.”

While aspects of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Mickus, Jason, Desjardin, Kevin, Lobo, Astley C., Tokarz, Christopher A., Buyda, Oksana, Pattison, Douglas M., Adinolfi, Amanda M.

Patent Priority Assignee Title
Patent Priority Assignee Title
1213005,
2912981,
2936760,
3039468,
3050066,
3253594,
3397699,
3545443,
3713447,
3774596,
3800788,
3882852,
3896816,
3961632, Dec 13 1974 Stomach intubation and catheter placement system
397060,
4083369, Jul 02 1976 Surgical instruments
4217889, Sep 15 1976 Mentor Corporation Flap development device and method of progressively increasing skin area
4243050, Dec 13 1977 LITTLEFORD,ELIZABETH H Method for inserting pacemaker electrodes and the like
4276874, Nov 15 1978 DATASCOPE INVESTMENT CORP A CORP OF NEW JERSEY Elongatable balloon catheter
4312353, May 09 1980 Mayfield Education and Research Fund Method of creating and enlarging an opening in the brain
4327709, Mar 06 1978 DATASCOPE INVESTMENT CORP A CORP OF NEW JERSEY Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body
4345606, Dec 13 1977 LITTLEFORD,ELIZABETH H Split sleeve introducers for pacemaker electrodes and the like
4398910, Feb 26 1981 JOHNSON & JOHNSON MEDICAL, INC , A CORP OF NJ Wound drain catheter
4411654, Apr 30 1981 Baxter Travenol Laboratories, Inc. Peelable catheter with securing ring and suture sleeve
4416267, Dec 10 1981 Method and apparatus for treating obesity
4490137, Sep 30 1982 Surgically implantable peritoneal dialysis apparatus
4496345, Aug 30 1982 Ballooned cannula
4574806, Oct 01 1984 BIO NOVA NEO TECHNICS PTY LTD Tunnelling device for peripheral vascular reconstruction
4581025, Nov 14 1983 Cook Incorporated Sheath
4596554, Apr 19 1985 Colo-rectal evacuator
4596559, Nov 02 1984 Break-away handle for a catheter introducer set
4608965, Mar 27 1985 ANSPACH, WILLIAM E , JR Endoscope retainer and tissue retracting device
4644936, Nov 19 1982 ARROW INTERVENTIONAL, INC Percutaneous intra-aortic balloon and method for using same
4654030, Feb 24 1986 Endotherapeutics Corporation Trocar
4685447, Mar 25 1985 PMT Corporation Tissue expander system
4701163, Nov 05 1984 Ballard Medical Products Gastrostomy feeding device
4738666, Jun 11 1985 Genus Catheter Technologies, Inc. Variable diameter catheter
4769038, Mar 18 1986 C. R. Bard, Inc. Prostheses and techniques and repair of inguinal and femoral hernias
4772266, May 04 1987 Catheter Technology Corp. Catheter dilator/sheath assembly and method
4779611, Feb 24 1987 Disposable surgical scope guide
4784133, Jan 28 1987 Working well balloon angioscope and method
4793348, Nov 15 1986 VACTRONIX SCIENTIFIC, LLC Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
4798205, May 08 1986 Allergan, Inc Method of using a subperiosteal tissue expander
4800901, Sep 09 1987 Balloon-type Tissue expansion device
4802479, Oct 31 1986 C R BARD, INC Hand-held instrument for implanting, dispensing, and inflating an inflatable membrane
4813429, May 12 1986 Biodan Medical Systems Ltd. Catheter and probe
4840613, Apr 27 1988 CARDINAL HEALTH SWITZERLAND 515 GMBH Protective sheath for catheter assembly
4854316, Oct 03 1986 Apparatus and method for repairing and preventing para-stomal hernias
4861334, Jun 24 1988 Self-retaining gastrostomy tube
4865593, Jun 25 1987 Sherwood Services AG; TYCO GROUP S A R L Splittable cannula
4869717, Apr 25 1988 Gas insufflation needle with instrument port
4888000, Jun 04 1987 FEMCARE LIMITED, BAR LANE INDUSTRIAL PARK, BAR LANE, BASFORD, NOTTINGHAM NG6 OJA, ENGLAND A BRITISH COMPANY Apparatus for the insertion of catheters
4899747, Dec 10 1981 Method and appartus for treating obesity
4917668, Mar 18 1988 B.. Braun Melsungen AG Valve for permanent venous cannulae or for catheter insertion means
4931042, Oct 26 1987 United States Surgical Corporation Trocar assembly with improved latch
4955895, Dec 23 1986 Terumo Kabushiki Kaisha Vasodilating catheter
5002557, Apr 06 1989 Laparoscopic cannula
5009643, Aug 09 1989 RICHARD WOLF MEDICAL INSTRUMENTS CORP Self-retaining electrically insulative trocar sleeve and trocar
5030206, Oct 17 1986 United States Surgical Corporation Trocar
5030227, Jun 02 1988 Boston Scientific Scimed, Inc Balloon dilation catheter
5074871, Dec 07 1989 EVI Corporation Catheter atherotome
5098392, Jun 28 1991 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Locking dilator for peel away introducer sheath
5104383, Oct 17 1989 United States Surgical Corporation Trocar adapter seal and method of use
5116318, Jun 06 1989 Cordis Corporation Dilatation balloon within an elastic sleeve
5116357, Oct 11 1990 Cook Incorporated Hernia plug and introducer apparatus
5122122, Nov 22 1989 Tyco Healthcare Group LP Locking trocar sleeve
5122155, Mar 11 1991 Cook Incorporated Hernia repair apparatus and method of use
512456,
5137512, Mar 17 1989 Boston Scientific Scimed, Inc Multisegment balloon protector for dilatation catheter
5141494, Feb 15 1990 DANFORTH BIOMEDICAL, INC Variable wire diameter angioplasty dilatation balloon catheter
5141515, Oct 11 1990 Cook Incorporated Apparatus and methods for repairing hernias
5147302, Apr 21 1989 Boston Scientific Scimed, Inc Method of shaping a balloon of a balloon catheter
5147316, Nov 19 1990 Laparoscopic trocar with self-locking port sleeve
5147374, Dec 05 1991 FLARED PATCH, INC Prosthetic mesh patch for hernia repair
5158545, May 02 1991 TRUDELL, LEONARD; WHITTEMORE, ANTHONY D Diameter expansion cannula
5159925, Sep 09 1988 GYNELAB, INC , ORGANIZED UNDER THE LAW OF FL Cauterizing apparatus and method for laparoscopic cholecystostomy, gallbladder ablation and treatment of benign prostate hypertrophy
5163949, Mar 02 1990 General Surgical Innovations, Inc Fluid operated retractors
5176692, Dec 09 1991 Method and surgical instrument for repairing hernia
5176697, Apr 16 1989 Laparoscopic cannula
5183463, Feb 03 1989 Apparatus for locating a breast mass
5188596, Sep 27 1990 COLOPLAST A S Transparent prostate dilation balloon and scope
5188630, Mar 25 1991 Surgical Inventions & Innovations, Inc Christoudias endospongestick probe
5195507, Nov 06 1990 ETHICON, INC , A CORPORATION OF OHIO Endoscopic surgical instrument for displacing tissue or organs
5201742, Apr 16 1991 Support jig for a surgical instrument
5201754, May 02 1985 Medtronic Ave, Inc Balloon dilatation catheter with varying radiopacity
5209725, Apr 11 1991 Prostatic urethra dilatation catheter system and method
5215526, Jul 06 1988 Ethicon, Inc. Safety trocar
5222970, Sep 06 1991 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
5226890, Nov 13 1991 United States Surgical Corporation Tissue gripping device
5232446, Oct 30 1991 SciMed Life Systems, Inc.; SCIMED LIFE SYSTEMS, INC A CORPORATION OF MN Multi-sinus perfusion balloon dilatation catheter
5232451, Nov 22 1989 Tyco Healthcare Group LP Locking trocar sleeve
5234454, Aug 05 1991 AKRON CITY HOSPITAL A NON-PROFIT CORP OF OH Percutaneous intragastric balloon catheter and method for controlling body weight therewith
5250025, Aug 15 1990 INTRAMED LABORATORIES A CORPORATION OF CA Percutaneous access catheter and method of use
5258026, Feb 06 1992 DAVIS, LANA LEA Endoscopic augmentation mammoplasty and instruments therefor
5269753, Jul 14 1992 WILK PATENT DEVELOPMENT CORP Method for use in laparoscopic hernia repair
5290249, Oct 09 1990 Cook Medical Technologies LLC Surgical access sheath
5308327, Nov 25 1991 Conmed Corporation Self-deployed inflatable retractor
5309896, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Retraction methods using endoscopic inflatable retraction devices
5314443, Jun 25 1990 Boston Scientific Scimed, Inc Prostate balloon dilatation catheter
5318012, Jul 15 1991 Method for lifting abdominal wall during laparoscopic surgery
5330497, Nov 22 1989 Tyco Healthcare Group LP Locking trocar sleeve
5342307, Apr 21 1989 Boston Scientific Scimed, Inc Dilatation catheter with tri-fold balloon
5346504, Nov 19 1992 Ethicon, Inc Intraluminal manipulator with a head having articulating links
5359995, Feb 04 1991 Method of using an inflatable laparoscopic retractor
5361752, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Retraction apparatus and methods for endoscopic surgery
5370134, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Method and apparatus for body structure manipulation and dissection
5383889, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Tethered everting balloon retractor for hollow bodies and method of using
5397311, Sep 09 1992 Cordis Corporation Bloodless splittable introducer
5402772, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic expandable retraction device
5407433, Feb 10 1993 Applied Medical Resources Corporation Gas-tight seal accommodating surgical instruments with a wide range of diameters
5431173, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Method and apparatus for body structure manipulation and dissection
5445615, Nov 06 1991 Surgical instrument stabilizer
5468248, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic inflatable retraction devices for separating layers of tissue
5514091, Jul 22 1988 Expandable multifunctional manipulating instruments for various medical procedures
5514153, Mar 02 1990 General Surgical Innovations, Inc Method of dissecting tissue layers
5540658, Jun 27 1994 Tyco Healthcare Group LP Transcervical uterine access and sealing device
5540711, Jun 02 1992 General Surgical Innovations, Inc Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
5607441, Mar 24 1995 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical dissector
5607443, Sep 20 1993 General Surgical Innovations, Inc Expansible tunneling apparatus for creating an anatomic working space with laparoscopic observation
5632761, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Inflatable devices for separating layers of tissue, and methods of using
5656013, Jul 22 1988 Method of using an expandable multifunctional manipulating instrument for various medical procedures
5667479, Jun 01 1994 ARCHIMEDES SURGICAL, INC Method for resection of an anatomic structure
5667520, Mar 02 1990 General Surgical Innovations, Inc Method of performing balloon dissection
5704372, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic inflatable retraction devices for separating layers of tissue, and methods of using
5707382, Mar 24 1995 Ethicon Endo Surgery, Inc. Surgical dissector
5713869, Mar 08 1995 Trocar assembly
5722986, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Inflatable devices for separating layers of tissue, and methods of using
5728119, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Method and inflatable chamber apparatus for separating layers of tissue
5730748, May 19 1995 General Surgical Innovations, Inc Methods and devices for blood vessel harvesting
5730756, Jun 02 1992 General Surgical Innovations, Inc Method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
5738628, Mar 24 1995 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical dissector and method for its use
5755693, Sep 09 1992 CARDINAL HEALTH SWITZERLAND 515 GMBH Bloodless splittable introducer
5762604, Jun 01 1994 Archimedes Surgical, Inc. Surgical instrument permitting endoscopic viewing and dissecting
5772680, Jun 02 1992 General Surgical Innovations, Inc Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
5779728, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Method and inflatable chamber apparatus for separating layers of tissue
5797947, May 19 1995 General Surgical Innovations, Inc. Methods and devices for harvesting blood vessels with balloons
5803901, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Inflatable devices for separating layers of tissue and methods of using
5810867, Apr 28 1997 Medtronic, Inc. Dilatation catheter with varied stiffness
5814060, Jun 29 1994 General Surgical Innovations, Inc. Extraluminal balloon dissection
5836913, May 02 1997 Covidien LP Device and method for accessing a body cavity
5836961, Jun 02 1992 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
5865802, Jul 22 1988 Expandable multifunctional instruments for creating spaces at obstructed sites endoscopically
5893866, May 22 1995 General Surgical Innovations, Inc Balloon dissecting instruments
5925058, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Method and inflatable chamber apparatus for separating layers of tissue
6361543, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Inflatable devices for separating layers of tissue, and methods of using
6368337, Jun 02 1992 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
6375665, May 22 1995 General Surgical Innovations, Inc. Apparatus and method for dissecting and retracting elongate structures
6379372, Sep 12 1996 W L GORE & ASSOCIATES, INC Endovascular delivery system
6432121, Jun 02 1992 General Surgical Innovations, Inc Apparatus and method for guiding placement of a minimally invasive surgical instrument
6447529, Jun 29 1994 General Surgical Innovations, Inc. Extraluminal balloon dissection
6468205, Mar 20 1996 General Surgical Innovations, Inc. Method and apparatus for combined dissection and retraction
6506200, Jul 13 1995 MAQUET CARDIOVASCULAR LLC Tissue separation cannula and method
6514272, Jun 02 1992 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic hernia repair and patch for use therewith
6517514, Oct 03 1997 Boston Scientific Scimed, Inc Balloon catheterization
6527787, May 19 1995 General Surgical Innovations, Inc. Methods and devices for blood vessel harvesting
6540764, Jun 02 1992 General Surgical Innovations, Inc. Apparatus and method for dissecting tissue layers
6796743, Jun 27 2001 Alcatel Internal line for fastening cables in a waste-water pipe
6796960, May 04 2001 WIT IP Corporation Low thermal resistance elastic sleeves for medical device balloons
7066903, May 22 2002 Surgimark, Inc. Aspirator sleeve and tip
8454645, Oct 04 2002 Covidien LP Balloon dissector with cannula
20050288639,
20180021489,
20180271557,
20190150982,
20200022726,
EP480653,
EP610099,
EP880939,
RE29207, Jan 24 1975 Family Health International Dispensing method and apparatus
WO126724,
WO2096307,
WO2004032756,
WO9206638,
WO9218056,
WO9221293,
WO9221295,
WO9309722,
WO9721461,
WO9912602,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 23 2020LOBO, ASTLEY C Covidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
Mar 23 2020DESJARDIN, KEVINCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
Mar 23 2020PATTISON, DOUGLAS M Covidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
Mar 30 2020MICKUS, JASONCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
Apr 03 2020BUYDA, OKSANACovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
May 08 2020ADINOLFI, AMANDA M Covidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
May 08 2020Covidien LP(assignment on the face of the patent)
May 08 2020TOKARZ, CHRISTOPHER A Covidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0526080784 pdf
Sep 12 2022ASTLEY COLLIN LOBOL&T TECHNOLOGY SERVICES LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0632460488 pdf
Feb 17 2023L&T TECHNOLOGY SERVICES LIMITEDMEDTRONIC ENGINEERING AND INNOVATION CENTER PRIVATE LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0632460565 pdf
Mar 29 2023MEDTRONIC ENGINEERING AND INNOVATION CENTER PRIVATE LIMITEDCovidien AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0632460605 pdf
Mar 31 2023Covidien AGCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0632470184 pdf
Date Maintenance Fee Events
May 08 2020BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Jul 05 20254 years fee payment window open
Jan 05 20266 months grace period start (w surcharge)
Jul 05 2026patent expiry (for year 4)
Jul 05 20282 years to revive unintentionally abandoned end. (for year 4)
Jul 05 20298 years fee payment window open
Jan 05 20306 months grace period start (w surcharge)
Jul 05 2030patent expiry (for year 8)
Jul 05 20322 years to revive unintentionally abandoned end. (for year 8)
Jul 05 203312 years fee payment window open
Jan 05 20346 months grace period start (w surcharge)
Jul 05 2034patent expiry (for year 12)
Jul 05 20362 years to revive unintentionally abandoned end. (for year 12)