A vitrectomy apparatus is provided, including a pressure source, a cut valve connected to the pressure source, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a vitrectomy cutting device, a sensor configured to sense pressure provided from the cut valve, and a controller configured to control operation of the cut valve based on pressure sensed by the sensor. The controller is configured to monitor pressures encountered and alter cut valve timing based on pressure conditions previously encountered.
|
6. A vitrectomy apparatus, comprising:
a pressure source;
a cut valve connected to the pressure source, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a vitrectomy cutting device;
a sensor configured to sense pressure provided from the cut valve; and
a controller configured to control operation of the cut valve based on pressure sensed by the sensor;
wherein the cut valve is pneumatically connected to the sensor and electronically connected to the controller, wherein the controller is configured to monitor pressures encountered and alter cut valve timing based on pressure conditions previously encountered, and the controller is configured to monitor and maintain a peak pressure value and trough pressure value encountered, wherein peak pressure encountered represents a maximum pressure encountered and trough pressure comprises a minimum pressure encountered, wherein the controller is further configured to monitor and measure a time between sending a command to the cut valve and acquisition of at least one of the peak pressure value and the trough pressure value.
1. A vitrectomy apparatus, comprising:
a pressure source;
a cut valve connected to the pressure source, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a vitrectomy cutting device;
a sensor configured to sense pressure provided from the cut valve; and
a controller configured to control operation of the cut valve based on pressure sensed by the sensor;
wherein the cut valve is pneumatically connected to the sensor and electronically connected to the controller, wherein the controller is configured to monitor pressures encountered and alter cut valve timing based on pressure conditions previously encountered, and the controller is configured to monitor and maintain a peak pressure value and trough pressure value encountered, wherein peak pressure encountered represents a maximum pressure encountered and trough pressure comprises a minimum pressure encountered, wherein the peak pressure value is updated with a most recently encountered peak pressure value if the most recently encountered peak pressure value is greater than the peak pressure value, and the trough pressure value is updated with a most recently encountered trough pressure value if the most recently encountered trough pressure value is less than the trough pressure value.
2. The vitrectomy apparatus of
3. The vitrectomy apparatus of
4. The vitrectomy apparatus of
5. The vitrectomy apparatus of
7. The vitrectomy apparatus of
8. The vitrectomy apparatus of
|
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/354,204, filed Nov. 17, 2016, which is a divisional of and claims priority to U.S. patent application Ser. No. 13/717,021, filed Dec. 17, 2012, the entire contents of which are incorporated herein by reference.
U.S. patent application Ser. No. 13/717,021 was filed concurrently with the following applications, both of which are incorporated herein by reference:
“Vitrectomy Surgical Apparatus”, inventors Fred Lee, et al., U.S. application Ser. No. 13/717,071, and issued on Nov. 8, 2016 as U.S. Pat. No. 9,486,358; and
“Vitrectomy Surgical Apparatus with Regulating of Material Processed”, inventors Kyle Lynn, et al., U.S. application Ser. No. 13/717,044, and issued on Mar. 1, 2016 as U.S. Pat. No. 9,271,867.
The present invention relates generally to the field of surgical repair of retinal disorders, and more specifically to pneumatic vitrectomy operation during ophthalmic surgical procedures.
The present invention relates generally to the field of surgical repair of retinal disorders, and more specifically to pneumatic vitrectomy operation during ophthalmic surgical procedures.
Vitrectomy surgery has been successfully employed in the treatment of certain ocular problems, such as retinal detachments, resulting from tears or holes in the retina. Vitrectomy surgery typically involves removal of vitreous gel and may utilize three small incisions in the pars plana of the patient's eye. These incisions allow the surgeon to pass three separate instruments into the patient's eye to affect the ocular procedure. The surgical instruments typically include a vitreous cutting device, an illumination source, and an infusion port.
Current vitreous cutting devices may employ a “guillotine” type action wherein a sharp-ended inner rigid cutting tube moves axially inside an outer sheathing tube. When the sharp-ended inner tube moves past the forward edge of a side port opening in the outer sheathing tube, the eye material (e.g. vitreous gel or fibers) is cleaved into sections small enough to be removed through the hollow center of the inner cutting tube. Vitreous cutters are available in either electric or pneumatic form. Today's electric cutters may operate within a range of speeds typically between 750-2500 cuts-per-minute (CPM) where pneumatic cutters may operate over a range of speeds between 100-2500 CPM. The surgeon may make adjustments to control the pneumatic vitrectomy surgical instrument cutting speed, i.e. controlling the cutting device within the handpiece, in order to perform different activities during the corrective procedure. Corrective procedures may include correction of macular degeneration, retinal detachment, macular pucker, and addressing eye injuries.
The cutting device within a pneumatic handpiece requires precise control of applied pressure to overcome the internal spring return mechanism to assure the quality of each cutting stroke. Today's systems typically employ a constant opening signal time to open the valve at low cutting speeds. As the selected cutting speed increases, reducing the amount of time the valve is opened is often necessary to prevent constant over-pressurizing of the handpiece at the forward end of the cutting stroke. The frequency of opening and closing the pneumatic valve, i.e. the time interval between each opening cycle of the valve, is varied to achieve the desired cutting speed.
Although most designs use variable valve opening timing and variable timing between valve openings for pneumatic vitrectomy cutter control, certain advanced designs vary the input pneumatic supply pressure as vitrectomy cutter speed changes. Such operation can enhance the quality and efficiency of material processed by the vitrectomy cutter during each cut cycle. The fundamental limitation of a variable input supply pressure vitrectomy cutter control is the shortest amount of time that the air volume in the cutter body and the associated tube set may be pressurized to reach the minimum peak pressure required to advance the cutter to a cut position and then vent to reach the minimum residual pressure to allow the spring-loaded cutter to return to a retracted position. Again, current pneumatic designs are limited to cutting speeds within a range of approximately 100 to 2500 CPMs.
Further, current vitrectomy systems typically compensate for mechanical delays by providing excess pressure to extend the cutter and/or allocating excess time to retract the cutter. This type of operation is based on historical performance and some conjecture that the present situation is similar to past situations. Such operation and use of power and/or timing buffers are not optimal. Further, a certain amount of material is typically brought into the cutter based on the aspiration rate and the amount of time the cutter is open or closed, which is related to the pressure supplied to the cutter during each cut cycle. Such designs cut based on scheduled timing, resulting in more or less material cut than desired.
Today's vitrectomy surgical systems require a wide range of selectable cutting speeds and highly accurate control of the amount of pressure supplied is desirable to ensure proper instrument handpiece control and safe use in an operating theater. It may be beneficial in certain circumstances to offer the surgeon enhanced accuracy in cutting speeds, cutting efficiency, controllability, and other attributes related to performance of the vitrectomy procedure. Further, in certain circumstances benefits may be obtained by adjusting operation based on conditions encountered rather than establishing and employing operational parameters irrespective of such conditions, including altering operational parameters such as cut rate, amount of material cut, and other critical vitrectomy parameters.
Based on the foregoing, it would be advantageous to provide a system that enables pneumatic cutting functionality at cutting speeds at or higher than those achievable with today's vitrectomy surgical instrument systems. Such a design would benefit from options offered that provide more effective and efficient cutting parameters as compared with prior designs.
Thus according to one aspect of the present invention, there is provided a vitrectomy apparatus including a pressure source, a cut valve connected to the pressure source, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a vitrectomy cutting device, a sensor configured to sense pressure provided from the cut valve, and a controller configured to control operation of the cut valve based on pressure sensed by the sensor. The controller is configured to monitor pressures encountered and alter cut valve timing based on pressure conditions previously encountered.
Other features and advantages of the present invention should be apparent from the following description of exemplary embodiments, which illustrate, by way of example, aspects of the invention.
The following description and the drawings illustrate specific embodiments sufficiently to enable those skilled in the art to practice the system and method described. Other embodiments may incorporate structural, logical, process and other changes. Examples merely typify possible variations. Individual components and functions are generally optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others.
The present design provides a system and method for high-speed pneumatic vitrectomy control and operation that employs parameters encountered to more accurately and efficiently cut the vitreous material.
The present design is directed to accurate, reliable, and efficient control of the forward and backward reciprocating motion cutting speed of the blade in a pneumatic vitrectomy handpiece used in a medical instrument system. The present design will be discussed herein with a particular emphasis on a medical or hospital environment, where a surgeon or health care practitioner performs. For example, an embodiment of the present design is a phacoemulsification surgical system that comprises an integrated high-speed control module for the vitrectomy handpiece. The surgeon may adjust or set the cutting speed via a graphical user interface (GUI) module or a foot pedal switch to control the high-speed pneumatic vitrectomy handpiece.
System
Current designs are generally configured to cyclically inflate and deflate bladder 130 to move blade 110 in a forward direction 180 and backward direction 190, thus producing the desired cutting action. A combination input pressurized air supply and output air venting valve mechanism 195, or valve, is represented in
In order to control the speed of blade 110, currently available pneumatic designs typically use a control signal to open and close valve 195. Valve 195 may be configured to provide a pressurized airburst when the valve is open, filling bladder 130 and venting the air within bladder 130 when the valve is closed to empty the bladder. Increasing the frequency of the control signal cycling rate, which produces a shorter pressurized air burst time, generally results in an increased cutting speed, or an increased number of cuts-per-minute as observed at the knife. A subsequent decrease in control signal cycling rate generally produces a slower or decreased cutting speed.
Previous designs have employed control signals to drive the cutter. One example control signal to instruct the opening and closing of valve 195 associated with air passage 140 is shown in
Pneumatic cutter designs have been configured with a speed control device to select and vary the rate the blade mechanism moves forward and backward to effectuate cutting. In these designs, changing the speed of the blade may involve varying the time or duration of the control signal provided to the valve. By increasing the open period and closed period of valve 195, the resultant blade speed is reduced. Likewise, decreasing the amount of time valve 195 is open and closed causes the blade speed to increase.
An example of a control signal for controlling the filling and emptying of air in bladder 130 with an increase in cycle time is illustrated in
The pneumatic vitrectomy handpiece is used in connection with a phaco-vitrectomy module and may be part of a phacoemulsification machine. Such a handpiece may include a “guillotine” type cutter pneumatically driven to either an open or closed position. Opening and closing occurs via air pressure provided via a flexible line or delivery line between the cutter and a pneumatic driver. The pneumatic driver may include a pressure source, such as a pump, configured to fill a small reservoir with compressed air at its maximum pressure capacity. The output of this reservoir is connected to a pressure regulator that may regulate the air pressure down to the level required by the cutter, as shown by peak PP and residual PR pressure in
The electronic controller may be connected to the delivery valve and may provide instructions to produce a pulse width (in time) of pressurized air when the valve is open. The controller may be arranged to provide fixed pulses of pressurized air within the flexible line in a manner that drives the cutter. The electronic controller may use a fixed pulse timing control signal to instruct the delivery valve to open and close. The fixed timing, or fixed duration, control signal instructs the delivery valve to open and close in a constant cyclical manner. When the flexible line is at zero or near zero pressure, for example refer to residual pressure PR shown in
The foregoing description generally discloses the components and control functionality of prior vitrectomy devices. Such control functionality can be characterized as “open-loop,” or without any type of feedback. Cutting speeds, etc. are simply set by a surgeon or user and effectuated, and changes in conditions or parameters in the environment are unaccounted for.
As used herein, the term “pressure source” or the “Compressed Air Source” means any device or arrangement that is configured to provide a source of pressure or vacuum, including but not limited to a pump or venturi device, compressed air supply, compressed air inlet supply, or any device provided within a vitrectomy machine or originating from an external source that provides pressure or vacuum, such as a pressure source provided through a wall of a building, e.g. via a wall mounted nozzle or device, an external pressure source such as an external pump, or otherwise. The terms are therefore intended to be interpreted broadly.
Pre-Regulator 312 may provide a workable steady air pressure stream from which Compressed Air Source 310 may supply air pressure for Pressure Regulator 313 via Delivery Line 302. Pressure Regulator 313 may be preset to a desired pressure and may be configured to provide air to Accumulator 314 at a low, -steady, and safe operating pressure. Pressure Regulator 313 may connect directly to Compressed Air Source 310, typically a pump but alternately a high pressure chamber, by a delivery line and take input high pressure and regulate the air pressure to a lower value consistent with the operating pressure of the cutter handpiece.
Accumulator 314 may operate as a working pressure chamber, and may receive pressurized air at specific pressure and volume from Pressure Regulator 313 via Delivery Line 303. Accumulator 314 may provide a specific amount of air pressure at a predetermined volume to Cut Valve 316 via Delivery Line 304 such that no excess pressure is forced into the Delivery Line 317.
Controller 320, which may provide a graphical user interface, computes a cut rate based on physician input and electronically provides a desired or computed cut rate to Cut Valve 316 via communications Control Line 306. The Controller 320 may take different forms, including comprising a PCBA (printed circuit board assembly), or may be part of a PCBA, ASIC, or other hardware design. A storage unit (not shown) may be provided to store certain values used by the Controller 320 during the vitrectomy procedure, including settings desired by the surgeon and other relevant data. Cut Valve 316 may open and close in response to the control signal provided from Controller 320. Controller 320 electronically controls the valves operating the regulated pressure and/or vacuum air sent to the cutter. The handpiece blade motion may move in a forward and backward reciprocating motion in response to the pressure waveform provided via Cutter Tubing 317.
Sensor 315 may monitor the pressure coming from Cut Valve 316 via Delivery Line 317. Sensor 315 may operate to determine the pressure in Delivery Line 317, and as shown is located between Cut Valve 316 and the cutter (not shown).
During operation, Controller 320 may operate Cut Valve 316 to deliver a pulse of regulated air pressure to Delivery Line 317, sensor 315, Cutter Tubing 318, and cutter (not shown). While the surgeon or practitioner may select variations in the pulse repetition frequency, once the selection is made, the system seeks to attain the desired cutting rate, subject to the discussions herein relating to optimizing cutting operation.
Cut Valve 316 is electronically controlled by Controller 320 to transmit pressure, and Cut Valve 316 opens and closes at a precise time to allow air at a specific pressure and volume to fill the Cutter Tubing 317 and operate the cutter. Cut Valve 316 may connect to atmospheric pressure for purposes of venting air received from Cutter Tubing 317. Controller 320 may provide an electronic indication to Cut Valve 316 that originates with a user selected switch, such as a switch on the handpiece, graphical user interface, or a foot switch.
Of particular note in the present design is the connection between Sensor 315 and Controller 320 shown as Line 307. This connection enables use of sensed pressure from Cut Valve 316 to be employed to determine precise commands transmitted to Cut Valve 316. Controller 320 may employ pressure sensed, and/or changes in pressure over periods of time, and/or pressure thresholds being exceeded to accurately control overall performance of the system.
The present design employs feedback of various parameters and operation specifically tailored to operation under the specified conditions encountered based on the parameters fed back and values thereof. The present description is divided into three general sections: Regulating and optimizing vitrectomy cut pressure, monitoring amount of material cut to optimize the cutting process, and determining peak and trough pressures to accurately control vitrectomy cutting.
Determination of Cut Pressure
As noted, the vitrectomy system includes a pneumatic pressure supply, a cut valve, and a vitrectomy cutter. In operation, previous designs have provided a desired cut speed, translated into a desired on and off timing of a valve used to provide pressure and vent pressure applied to the bladder. Operation can vary due to pressure issues and mechanical issues, and to compensate for inherent mechanical issues, a certain amount of additional pressure had been applied, and/or additional time allocated to retracting the cutter. This compensation based on conjecture tended, in certain circumstances, to produce inefficient cuts.
The present design addresses the cutting inefficiencies by introducing a pressure sensing arrangement and a pressure feedback control arrangement. The present design includes a pressure sensor/transducer and a pressure controller that provide closed-loop operation and further provide an ability to sense pressure and alter performance based on desired performance criteria.
The combination sensor and pressure transducer in this arrangement provides closed loop monitoring of the actual delivery pressure encountered, allowing compensation for variations in cut valve performance and supply pressures. In short, the combination sensor and pressure transducer receives and determines the pressure in the line and determines when to turn the cut valve on and off.
With respect to the printed circuit board 508, the functionality required is fairly straightforward in that the circuitry must monitor the pressure coming though nozzle 507 and convert received pressure into an electronic signal or value, such as a number of psi (pounds per square inch) or other value. Based on the desired performance, such as the performance described below, the printed circuit board illustrated or another electronic device, such as another printed circuit board, provides signals to turn on and off cut valve 503. The inputs monitored and the logic implemented in the printed circuit board arrangement, including printed circuit board 508, is discussed below.
The arrangement of
Thus the present design includes a vitrectomy apparatus having a pump, a cut valve connected to the pump, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a vitrectomy cutting device, a sensor configured to sense pressure provided from the cut valve, and a controller configured to control the cut valve based on pressure sensed by the sensor.
Monitoring of Material Processed
Using the foregoing apparatus, the surgeon or user may wish to monitor the amount of vitreous material brought into the cutter. The inability to monitor the amount of material provided to the cutter can result in more or less material cut than is desired. Failure to cut sufficient material decreases the efficiency of the vitrectomy procedure, while cutting too much material can harm the patient.
The present design also monitors two thresholds, the opening pressure threshold and the closing pressure threshold. Monitoring of opening pressure ensures that the opening pressure threshold has been achieved and the cutter is open, while monitoring of the closing pressure ensures that the closing pressure threshold has been achieved such that the vitrectomy cutter is closed. While the cutter is open, aspiration takes place and material is drawn into the central lumen of the cutter.
The present design also monitors the pressure supplied to the vitrectomy cutter to determine when the cut pressure is between the opening pressure threshold and the closing pressure threshold. Once the cut pressure goes below the opening pressure threshold, the system determines the amount of time elapsed for the cut pressure being between the opening pressure threshold and the closing pressure threshold, called the dwell time parameter. The dwell time parameter corresponds to the amount of material brought into the cutter during each cut cycle. The dwell time and aspiration rates are used to regulate the amount of material processed by the cutting device. For example, a high aspiration rate in the presence of a given dwell time indicates more material is being processed, while a low aspiration rate in the presence of the same given dwell time results in less material being processed. The design therefore takes these parameters (opening pressure threshold, closing pressure threshold, cut pressure, dwell time, and aspiration) and determines the amount of material processed based on these values. Such monitoring and information may be provided to the user or surgeon, resulting in excision of a desired amount of material processed.
The values determined may be employed to control vitrectomy cutting. For example, if more material needs to be cut where the system is operating at a given aspiration rate and a given dwell time, aspiration rate or cut rate may be increased as long as safe operation is maintained and risks of such controlled or automatic changes are acceptable.
Determination and Use of Specific Pressure Values
As noted, previous designs have operated open loop, without any type of pressure feedback. Such systems typically used control algorithms employing assumptions of errors encountered during the cutting procedure, and in certain instances provided excess pressure to extend the cutting blade and/or excess time to retract the cutting blade. Such operation represents a “best guess” as to expected cutting operation, including buffers seeking to compensate for pressure and/or timing uncertainties encountered in the cutting operation.
The present design illustrated in
To perform an accurate cutting, the present system maintains two pressures, namely peak pressure and trough pressure. Peak pressure is the maximum pressure attained after the command has been given to retract the blade, and represents a maximum expected pressure that will be encountered. An initial peak pressure may be provided or programmed into the vitrectomy device, or the maximum pressure may be employed when the first retraction occurs and changed as necessary at a later time. If the peak pressure measured during a given retraction of the cutting blade is greater than the peak pressure maintained by the system, the system replaces the maintained peak pressure value with the most recently encountered peak pressure value. In this manner the highest peak pressure encountered will always be maintained.
Conversely, trough pressure is the minimum pressure encountered after the command has been given to advance the blade. An initial trough pressure may be provided or the first trough pressure encountered may be stored as the baseline trough pressure. If the trough pressure measured during a given extension period is less than the trough pressure maintained by the system, the system replaces the maintained trough pressure value with the most recently encountered trough pressure value. Such operation ensures that the lowest trough pressure encountered during a procedure is employed.
The system also operates a timer such that the time between sending the command to extend or retract the cutting blade and acquisition of the peak or trough pressure can be measured. The time between a command and the system attaining either peak or trough pressure may also be maintained in the system.
With the highest encountered peak pressure and lowest encountered trough pressure, the system can act to accurately initiate cut blade extension and retraction times. As an example, assume that the peak pressure encountered during a current procedure is X psi and the time between the command and the system attaining this peak pressure is Y milliseconds. If the desired cut rate is Z cuts per second, the system anticipates that after a command to retract the blade, it will take Y milliseconds to reach a peak pressure X psi. The system thus alters the timing of the retract command such that the system will retract the blade at the time when peak pressure will occur.
Alternately, the system may monitor current pressure and may use the maintained peak pressure and trough pressure as triggers. In this embodiment, if the command has not been given by the time the peak pressure or trough pressure has been attained, the system issues the retract or extend command.
As a further option, the system may, for example, determine a maximum pressure of X psi occurs Y milliseconds after issuing a retract command. The system may monitor the pressure encountered when the command issues, which may be, for example, 0.9*X. Should the system encounter this 0.9*X pressure at a time after an extend command has been given, the system may issue the retract command, seeking to obtain the maximum maintained pressure at a desired time.
Such variations give the operator the ability to have a higher level of confidence that cuts (extensions and retractions of the blade) will occur at or near an optimal time based on the commanded cut rate. Thus the present system includes a vitrectomy apparatus having a pump, a cut valve connected to the pump, the cut valve configured to be turned on and off to provide pressure to selectively extend and retract a cutting device, a sensor configured to sense pressure provided from the cut valve, and a controller configured to control the cut valve based on pressure sensed by the sensor, wherein the controller monitors encountered pressures and alters cut valve timing based on pressure conditions previously encountered.
Those of skill in the art will recognize that any step of a method described in connection with an embodiment may be interchanged with another step without departing from the scope of the invention. Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed using a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Lee, Fred C., Zhang, Zheng, Hickey, Lauren M., Gerg, James B., Lynn, Kyle E.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10758411, | Feb 27 2017 | Alcon Inc | Reciprocating surgical tool with inertial damper |
3559970, | |||
3882872, | |||
4314560, | Nov 28 1979 | Powered handpiece for endophthalmic surgery | |
4768506, | Sep 26 1985 | ALCON MANUFACTURING, LTD | Handpiece drive apparatus for powered surgical scissors |
5279547, | Jan 03 1991 | COSTIN, JOHN A | Computer controlled smart phacoemulsification method and apparatus |
5403276, | Feb 16 1993 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Apparatus for minimally invasive tissue removal |
5417246, | Oct 27 1989 | American Cyanamid Company | Pneumatic controls for ophthalmic surgical system |
5549139, | Oct 30 1989 | Bausch & Lomb Incorporated | Pneumatic controls for ophthalmic surgical system |
5788667, | Jul 19 1996 | Fluid jet vitrectomy device and method for use | |
5857485, | Sep 27 1993 | Bausch & Lomb Incorporated | Pneumatic controls for ophthalmic surgical system |
5979494, | Oct 30 1989 | Bausch & Lomb Surgical, Inc.; Storz Instrument Company | Pneumatic controls for ophthalmic surgical system |
6010496, | Aug 29 1996 | Bausch & Lomb Incorporated | Vitrectomy timing device with microcontroller with programmable timers |
6258111, | Oct 03 1997 | ENGO CORP | Apparatus and method for performing ophthalmic procedures |
6290690, | Jun 21 1999 | Alcon Inc | Simultaneous injection and aspiration of viscous fluids in a surgical system |
6506176, | Feb 17 1999 | Neomedix Corporation | Methods, apparatus and system for removal of lenses from mammalian eyes |
6575990, | Oct 21 1999 | MEDICAL INSTRUMENT DEVELOPMENT LABORATORIES, INC | High speed vitreous cutting system |
6599271, | Apr 13 1999 | Syntec, Inc. | Ophthalmic flow converter |
6599277, | Nov 30 2001 | Bausch & Lomb Incorporated | Aspiration flow meter and control |
6689089, | Apr 26 1997 | Convergenza AG | Therapeutic catheter having sensor for monitoring distal environment |
7335217, | Oct 21 1999 | Medical Instrument Development Laboratories, Inc. | High-speed vitreous cutting system |
8460324, | Apr 15 2008 | JOHNSON & JOHNSON SURGICAL VISION, INC | High speed pneumatic vitrectomy control |
8818564, | Aug 31 2009 | Alcon Inc | Pneumatic pressure output control by drive valve duty cycle calibration |
8986332, | Apr 15 2009 | JOHNSON & JOHNSON SURGICAL VISION, INC | High speed pneumatic vitrectomy control |
20010029335, | |||
20020173814, | |||
20030195538, | |||
20050096682, | |||
20050113715, | |||
20070078506, | |||
20070088376, | |||
20080114372, | |||
20080146988, | |||
20080154292, | |||
20080208207, | |||
20080208233, | |||
20090143734, | |||
20090259242, | |||
20100156646, | |||
20110054508, | |||
20110077626, | |||
20110144675, | |||
20110295293, | |||
20110295296, | |||
20120053486, | |||
20120157879, | |||
20120157906, | |||
20120158029, | |||
20120158030, | |||
20120165724, | |||
20120310146, | |||
20130060210, | |||
20130144317, | |||
20130158578, | |||
20140114336, | |||
20140171991, | |||
20140171993, | |||
20150148836, | |||
WO2008079526, | |||
WO2011149621, | |||
WO2014099982, | |||
WO2014099993, | |||
WO2014105531, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 26 2009 | RAINFOREST ACQUISITION INC | Abbott Medical Optics Inc | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 051713 | /0006 | |
Feb 26 2009 | Advanced Medical Optics, INC | Abbott Medical Optics Inc | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 051713 | /0006 | |
Jan 11 2013 | LEE, FRED C | JOHNSON & JOHNSON SURGICAL VISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0518 | |
Jan 14 2013 | LYNN, KYLE E | JOHNSON & JOHNSON SURGICAL VISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0518 | |
Jan 15 2013 | HICKEY, LAUREN M | JOHNSON & JOHNSON SURGICAL VISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0518 | |
Jan 24 2013 | GERG, JAMES B | JOHNSON & JOHNSON SURGICAL VISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0518 | |
Feb 09 2018 | Abbott Medical Optics Inc | JOHNSON & JOHNSON SURGICAL VISION, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 051713 | /0199 | |
May 29 2019 | Johnson & Johnson Surgical Vision, Inc. | (assignment on the face of the patent) | / | |||
Jan 21 2020 | ZHANG, ZHENG | JOHNSON & JOHNSON SURGICAL VISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0518 |
Date | Maintenance Fee Events |
May 29 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jul 05 2025 | 4 years fee payment window open |
Jan 05 2026 | 6 months grace period start (w surcharge) |
Jul 05 2026 | patent expiry (for year 4) |
Jul 05 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 05 2029 | 8 years fee payment window open |
Jan 05 2030 | 6 months grace period start (w surcharge) |
Jul 05 2030 | patent expiry (for year 8) |
Jul 05 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 05 2033 | 12 years fee payment window open |
Jan 05 2034 | 6 months grace period start (w surcharge) |
Jul 05 2034 | patent expiry (for year 12) |
Jul 05 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |