A polymer injection molding system in one embodiment includes a manifold comprising internal flow conduits configured for conveying polymer in a fluidic state. The manifold may be part of a hot or cold runner type molding unit. An injection nozzle fluidly coupled to the flow conduits interfaces with a mold cavity and is configured to inject polymer therein to form a molded article. The nozzle has a tubular valve body defining a central axial passage which receives a movable elongated valve pin. The valve pin is linearly movable to change the nozzle between open and closed positions for discharging or stopping polymer flow therefrom. The valve pin is further rotatable about its axis to induce shear on the polymer. This maintains the polymer in its flowable fluidic state between molding cycles to prevent polymer cold slug formation within the nozzle which can disrupt the flow resulting in incompletely formed articles.
|
1. A polymer injection molding system comprising:
a manifold comprising a plurality of internal flow conduits configured for conveying polymer in a fluidic state;
an injection nozzle fluidly coupled to the flow conduits, the injection nozzle configured to interface with a mold cavity and changeable between open and closed positions;
the injection nozzle comprising a tubular valve body defining a pin axis, a central axial passage extending along the pin axis and configured to dispense polymer into the mold cavity, and an elongated valve pin movably disposed in the central axial passage;
wherein the valve pin is rotatably movable and configured to induce shear on the polymer;
wherein the valve pin is continuously rotatable when the injection nozzle is in the closed position to prevent polymer cold slug formation.
17. An injection nozzle assembly for a polymer molding system comprising:
an injection nozzle configured to receive polymer in a fluidic state, the injection nozzle configured to interface with a mold cavity and changeable between open and closed positions;
the injection nozzle comprising a tubular valve body defining a pin axis, a central axial passage extending along the pin axis and configured to dispense polymer into the mold cavity, and an elongated valve pin movably disposed in the central axial passage;
the valve pin being axially translatable between a projected position when the injection nozzle is in the closed position, and a retracted position when the injection nozzle is in the open position; and
the valve pin further being continuously rotatably movable and operable to induce shear on the polymer when the injection nozzle is in the closed and open positions.
2. The system according to
3. The system according to
4. The system according to
5. The system according to
6. The system according to
7. The system according to
8. The system according to
9. The system according to
10. The system according to
11. The system according to
12. The system according to
13. The system according to
15. The system according to
18. The injection nozzle according to
19. The injection nozzle according to
|
This application claims the benefit of U.S. Provisional Application No. 63/036,909 filed Jun. 9, 2020, and further claims the benefit of U.S. Provisional Application No. 63/093,908 filed Oct. 20, 2020; which are incorporated herein by reference in their entireties.
The present invention relates generally to polymer injection molding systems, and more particularly to an improved system and apparatuses thereof configured to modify the viscosity of the polymer melt to prevent or minimize cold slug within the molding system.
The polymer product industry worldwide is very large and relies upon efficient and successful conversion of raw polymer base materials (i.e. resins usually in the form of liquid or pellets) into fully formed finished plastic products in order to minimize production costs. In hot runner type injection molding systems, this requires precise control of viscosity throughout the manufacturing process to maintain the polymer melt in a molten and flowable fluidic state. This is most often attempted via temperature control. Hot runner systems generally employ heated manifold plates which contain internal flow conduits (“hot runners”) to deliver the hot polymer melt to the mold cavities. But in many cases, polymer temperature cannot be controlled accurately at all locations in the material flow path and also cannot typically be changed rapidly.
In a large majority of cases where products are made via hot runner injection molding, the goal is to produce multiple products of either a single type or multiple types in cavities of a single mold at the same time for efficiency and cost-effectiveness. Examples of products made in this way include electrical connectors, medical syringes, communication device (i.e. cell phone) components, automotive components, and others. In these multi-cavity injection molding processes, precise relative control of the polymer material state is critical to ensure continuous polymer flow progression through all portions of the hot runner manifold and importantly the “hot drop” injection nozzles which form the movable interface with the mold cavities. The need to provide these conditions throughout the entire hot runner molding system is critical to fully fill all of the mold cavities necessary to produce fully formed plastic parts.
In addition, with hot runner based injection molding systems, the processing of some materials such as liquid crystal polymers (LCP) or materials containing colorants can be extremely difficult. LCP materials can change viscosity dramatically in regions such as the tips of hot drop injection nozzles where precise temperature control can be challenging. This can result in “cold slug” polymer formation comprised of partially or fully solidified polymer which can in turn partially or fully occlude the hot runner flow conduits in the manifold, flow channels in the product cavity, and most particularly the small diameter flow passages of the hot drop injection nozzles which are particularly susceptible to this problem. This results in incomplete filling of the mold cavities and wasted defectively molded articles. Moreover, present day colorant additives mixed with the raw polymer can also yield inconsistent product coloration results if the material is kept too hot for too long during the manufacturing process by heating the nozzles and hot runner manifold adding another concern to the problem.
Accordingly, there remains a need for an improved hot runner injection molding systems which minimizes or prevents the foregoing problems.
The present application discloses an injection molding system and related process configured for the imposition of controlled localized shear on the polymer melt inside the injection nozzles which interface with the mold cavities. In one non-limiting embodiments, the molding system may be a hot runner type injection molding system with “hot drop” injection nozzles. The shear rate is selected to maintain the polymer melt in a molten and fluidic state. Inducing shear on the polymer advantageously reduces its viscosity to avoid the foregoing cold slug formation problem (i.e. partially or completely solidified polymer) within the narrow polymer flow passages particularly of the hot drop injection nozzles. This ensures complete filling of the mold cavities with each injection molding cycle thereby producing fully formed end products or articles.
In lieu of past approaches relying upon heating the polymer melt alone to keep the polymer melt in a flowable fluidic state or condition, inducing shear on the polymer melt according to the present disclosure without reliance upon temperature control advantageously avoids cold slug formation while overcoming the foregoing problems associated with solely temperature controlled injection molding systems. However, it bears noting that the present shear-inducing injection molding system is versatile and compatible with temperature control injection molding. Accordingly, shear-inducing components of the present system may be used alone or in conjunction with temperature control in various embodiments.
In one non-limiting implementation, the localized shear strain may be imposed on the polymer melt by a rotatable or otherwise movable shear-inducing element disposed inside the hot drop injection nozzle. The shear-inducing element can be a component that traditionally exists in the hot drop nozzles or a new component that is added to enable the imposition of motion or shear on the polymer melt. In one embodiment, such a shear-inducing element may be the axially movable valve pin that resides inside hot drop nozzle which shuts off polymer flow through the nozzle to the mold cavities between molding cycles. In addition to linearly translating between open and closed positions of the nozzle, the valve pin can additionally be rotated at a desired rotational speed (RPM/revolutions per minute) about its centerline axis in a controlled fashion to induce shear on the polymer melt and maintain a minimum viscosity value selected to prevent polymer solidification and cold slug formation. In one embodiment, a mechanical drive mechanism may be provided to rotate the valve pin, as further described herein. Other methods however are possible to rotate the valve pin shear-inducing element.
In one aspect, a polymer injection molding system comprises: a manifold comprising a plurality of internal flow conduits configured for conveying polymer in a fluidic state; an injection nozzle fluidly coupled to the flow conduits, the injection nozzle configured to interface with a mold cavity and changeable between open and closed positions; the injection nozzle comprising a tubular valve body defining a pin axis, a central axial passage extending along the pin axis and configured to dispense polymer into the mold cavity, and an elongated valve pin movably disposed in the central axial passage; wherein the valve pin is rotatably movable and configured to induce shear on the polymer. A rotary drive mechanism coupled to the valve pin is operable to rotate the valve pin. The valve pin may be rotated when the injection nozzle is in the closed and/or open positions.
In another aspect, an injection nozzle assembly for a polymer molding system comprises: an injection nozzle configured to receive polymer in a fluidic state, the injection nozzle configured to interface with a mold cavity and changeable between open and closed positions; the injection nozzle comprising a tubular valve body defining a pin axis, a central axial passage extending along the pin axis and configured to dispense polymer into the mold cavity, and an elongated valve pin movably disposed in the central axial passage; the valve pin being axially translatable between a projected position when the injection nozzle is in the closed position, and a retracted position when the injection nozzle is in the open position; and the valve pin further being rotatably movable and operable to induce shear on the polymer.
In yet another aspect, a method for operating a polymer injection molding system comprises: providing an injection nozzle fluidly coupled to a source of fluidic polymer, the injection nozzle being in a closed position; coupling the injection nozzle to a mold cavity; changing the injection nozzle to an open position by moving a valve pin inside the injection nozzle to a retracted position; injecting the fluidic polymer into the mold cavity; changing the injection nozzle to the closed position by moving the valve pin to a projected position; and rotating the valve pin about its axis to impart a shear force on the fluidic polymer.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein like elements are labeled similarly and in which:
All drawings are schematic and not necessarily to scale. Features shown numbered in certain figures which may appear un-numbered in other figures are the same features unless noted otherwise herein. A general reference herein to a figure by a whole number which includes related figures sharing the same whole number but with different alphabetical suffixes shall be construed as a reference to all of those figures unless expressly noted otherwise.
The features and benefits of the invention are illustrated and described herein by reference to non-limiting exemplary (“example”) embodiments. This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. Accordingly, the disclosure expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features.
In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
As used throughout, any ranges disclosed herein are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, any references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
Hot runner manifold plate 21 comprises a plurality of flow conduits 23 (e.g., “runners”) configured to convey polymer P from polymer inlet coupling 24 to eventually the mold cavities 27 via the runner system components. Inlet coupling 24 defines the sprue 24a which is fluidly coupled to the branched runner system. Flow conduits 23 form a multi-branched flow network to distribute and supply molten polymer (“polymer melt”) from a single source via the inlet coupling to each of the flow cavities. In the present hot runner system, manifold plate 21 is coupled to a heat source 23 configured and operable to heat the manifold and maintain the polymer in a flowable fluidic state or condition. Manifold plate 21 may be heated electrically via one or more electric resistance heating elements 23a in one non-limiting embodiment (represented schematically in
Referring now generally to
Each injection nozzle 100 is fluidly coupled to the polymer flow conduits 22 in the hot runner manifold plate 21. The injection nozzle is configured to interface with one of the mold cavities 27 of mold cavity plate 25 for injecting the flowable fluidic polymer into its respective cavity. Injection nozzles 100 are configured to acts as valves to regulate the flow of fluidic polymer (i.e. polymer melt) to the mold cavities and are changeable between open and closed positions for that purpose.
Each injection nozzle 100 comprises an elongated tubular nozzle body 104 defining a pin axis PA, a central axial passage 102 extending along the pin axis, and an elongated valve pin 101 movably disposed in the central axial passage. Passage 102 is configured to convey and dispense polymer through the nozzle in the annulus 103 formed between the pin and inner walls of the nozzle axial passage and into the mold cavity. The axial passage 102 has a cylindrical shape with circular cross section in one embodiment. The nozzle body 104 includes an open proximal end 104a and open distal end 104b each of which communicate with the axial passage 102. In one embodiment, the proximal end portion of the nozzle body 104 may be diametrically enlarged in comparison to the adjoining middle and lower distal end portions of the body.
Working pin member 106 includes a diametrically enlarged proximal end 106b and terminal distal end 106a. Operating pin member 105 includes a distal end 105a and proximal end 105d defined by an extension key 105c engageable with the rotary drive mechanism. An annular retention flange 105b extends radially outwards between the proximal and distal ends as shown. The key and retention flange are described later herein with respect to the rotary drive mechanism and actuating mechanism for the valve pin 100 which collectively provide two degrees of motion of the valve pin.
The operating and working pin members 105, 106 may be coupled or joined together into a single unit by coupler 107. Coupler 107 has a tubular sleeve-like body comprising distal end 111, proximal end 112, and an axial through passage 107a extending between and through these opposite ends of the body. The proximal end 112 of coupler body is bifurcated defining laterally open transverse key slot 107c which also axially penetrates the proximal end forming top opening 107g (best shown in
Coupler 107 further defines an internal annular ledge or lip 107f located within through passage 107a in a diametrically enlarged recess 107h to retain valve pin working pin member 106 (see, e.g.
Advantageously, the foregoing two-piece valve assembly allows either the operating and/or working pin members 105, 106 to be readily replaced as needed or formed of different materials. The working pin member 106 which is projected through and retracted from the discharge orifice or opening 110 of the injection nozzle 100 with each molding cycle is particularly prone to frictional wear which can lead to nozzle polymer melt leakage between cycles. The two-piece construction allows the operating pin member 105 which mechanically interfaces with the rotary drive mechanism and actuating mechanism for the valve pin 100 to have a more robust construction (e.g., larger diameter, etc.) since these mechanisms impart great degree of mechanical tensile and shear stress on this component than the working pin member. In addition, the two-piece valve pin is also more cost-effective and easier to fabricate; particularly the very thin and small diameter working pin member 106. In other possible embodiments, however, valve pin 100 may be one piece having a monolithic unitary structure without need for coupler 107.
Other types of coupling mechanisms and devices may be used to couple the operating and working pin members 105, 106 together. One example includes threadably coupling the pin members together either directly or through an intermediate threaded coupler. Brazing or welding may be used in other examples depending on the type of pin materials used. Other possible methods include interference/frictional fitting or shrink fitting to join the pin members. Accordingly, the invention is not limited by the type of mechanical method used to coupled the pin members together.
Returning now to injection nozzles 100 with continuing general reference to
Valve pin 101 is axially movable between a retracted position in which the distal end of the pin (e.g., end 106a of the distal working pin member 106) is withdrawn into the nozzle tip member 108 and through passage 108a thereof, and a projected position in which the distal end projects and extends outwards beyond the discharge opening 110 of the injection nozzle 100 (see, e.g.
Although injection nozzles 100 may use shear imposed on the polymer melt alone according to the present disclosure to lower viscosity and maintain the melt in a flowable molten or fluidic condition, certain embodiments may further incorporate and add heating elements 23a to the nozzles for additional viscosity control via elevated polymer temperatures (see, e.g.
The rotary drive mechanism 120 and actuating mechanism 140 for operation of the valve pins 100 of injection nozzles 100 will now be further described. These mechanisms collectively operate to provide two degrees of motion to the valve pin. The rotary mechanism is configured to impart rotational motion to the valve pin 100 in which the pin rotates about its pin axis PA. The actuating mechanism is configured to impart linear motion or translation of the pin 100 relative to the nozzle body 104 for opening and closing the nozzles. The rotary and actuating mechanisms may be configured and operated to impart the foregoing motions to the valve pin 100 either sequentially in series, or concurrently.
Referring initially in general to
Gear assembly 130 in one non-limiting embodiment includes drive gear 131 and driven gear 132. Drive gear is coupled to motor drive shaft 122 and rotates with the shaft to impart rotation to driven gear 132. The drive and driven gears may be angled bevel gears oriented 90 degrees (perpendicularly) to each other as shown.
Accordingly, in one preferred embodiment, an angled rotary drive mechanism is provided as shown. Motor 121 and its drive shaft 122 defining shaft axis PM are oriented perpendicularly (90 degrees) to the valve pin 101 of injection nozzle 100 and the pin axis PA (best shown in
Valve pin 101 is slideably coupled to driven gear 132 for linear motion along pin axis PA, but rotationally locked to the driven gear for rotating the pin to induce a shear force on the polymer melt to maintain its molten fluidic state. To achieve this dual functionality, extension key 101b of valve pin 101 and keyhole 133 of driven gear 132 may have complementary configured non-circular cross-sectional shapes (see, e.g.
To provide the linear motion to valve pin 101, actuating mechanism 140 in one embodiment may comprise a piston-operated pneumatic or hydraulic actuator 141 including a piston cylinder 142 and a piston 143 movably disposed in the cylinder and fixedly coupled to the valve pin 101 (see, e.g.
Any suitable type of pneumatic actuator 140 may be used including for example without limitation a double acting actuator as shown or a single acting actuator. The double acting actuator includes a proximal fluid connection or port 145 and distal fluid connection or port 146. A piston seal ring 144 seals the piston 143 to the inside walls of the cylinder 142.
In operation to shut off polymer melt flow into the mold cavity 27, pressurized air is introduced into the proximal end of cylinder 142 above the piston 143 via port 145 while air in the cylinder is exhausted/vented through the distal port. This forces the piston 143 and valve pin 101 downwards in a linear motion along the pin axis PA towards the mold cavity 27 to close the injection nozzle 100. The distal end 106a of the valve pin (i.e. working pin member 106) is projected through the discharge opening 110 of the nozzle 100.
Other embodiments may use a single acting pneumatic actuator having a single fluid port for moving the piston in one direction, and a spring-return to move the piston in the reverse direction. Such single acting pneumatic actuators are well known in the art. Any suitable commercially-available single or double acting actuator (or variations thereof) may be used.
To inject polymer melt into the mold cavity, the foregoing process is reversed. Pressurized air introduced below the piston 143 via the distal port 146 raises the piston and valve pin to open the injection nozzle 100. The distal end 106a of the valve pin (i.e. working pin member 106) is retracted inside discharge opening 110 of the nozzle 100, thereby opening the orifice to permit polymer to be injected into the mold cavity 27.
In other embodiments, an electrically-operated motorized lift may be coupled to the valve pin 101 in lieu of the pneumatic lift described above for raising and lowering the valve pin.
Polymer Cold Slug Prevention
The shear-inducing rotatable valve pin 101 and rotary drive mechanism previously described herein operates to create shear motion within the polymer injection nozzles 100 to beneficially control the spatial and temporal rheological state of the polymer being processed into molded products in a manner. The polymer is kept in a fluidic flowable state by imposition of shear force thereon which prevents or minimizes polymer cold slug formation. The viscosity of the polymer melt is kept below a maximum viscosity limit or value by the shear force which is associated with the onset of polymer solidification.
As previously described herein, injection molding is a manufacturing process in which molten material (usually polymer) is forced through a nozzle of an injection molding machine into a mold containing the desired product cavities. The system of pathways in the mold that connects the nozzle to the product cavities is called the runner system. There are two types of injection molding system in use today.
Cold runner based injection molding systems are those in which the entire mold including the region containing the runner system is kept at a temperature below the material's melting temperature throughout the process. Once the product cavities are filled, the polymer material cools and eventually solidifies throughout the entire mold including the runner system. The desired products as well as solidified polymer in the shape of the runner system are then removed or ejected from the mold prior to the next manufacturing cycle. The molded articles are then separated from the solid runners.
With hot runner based injection molding as described previously herein, the runner portion of the mold assembly is heated continuously with the goal of keeping the material in the runner in a molten state at all times. If done appropriately, this leads to both material savings and a shorter cycle time compared to traditional cold runner injection molding.
The present injection molding system 90 with shear-inducing valve pin 100 described herein is amenable for use with either cold or hot runner type systems to avoid cold slug formation.
The injection nozzles 100 are most susceptible to polymer solidification and cold slug formation when the nozzles are in the closed position and not injecting polymer melt into the mold cavities 27. When closed, there is no flow of polymer through the nozzle. This stagnant state between mold cycles creates a greater potential for cold slug formation than when the polymer is flowing through the nozzle. The cold slug prevents filling the mold cavity completely resulting in a defective, partially formed molded article.
A process or method for operating injection molding system 90 to prevent polymer cold slug formation which can yield the foregoing fully formed article in
The method includes fluidly coupling at least one injection nozzle 100 to a mold cavity 27. The nozzle is initially in the closed position and valve pin 101 is in the projected position which seals off the discharge opening 110 of the nozzle, as previously described herein. Actuating mechanism 140 is actuated to raise the valve pin to the retracted position (
At the highest experimental melt temperature (240 degrees C.), both conventional and Rheo drop produced fully formed and acceptable molded articles. At the lower melt temperatures of 210 and 220 degrees C., incomplete articles were molded using the convention heated nozzle approach with significantly more defects occurring as the melt temperature drops. This may be attributed to solidification and cold slug formation in the injection nozzle. By stark contrast, however, the Rheo drop process yielded fully formed articles at these lower polymer melt temperatures. Accordingly, it is possible to prevent cold slug formation and/or insufficient flow due to high viscosity levels. As shown it is also possible to produce fully formed articles at lower melt temperatures which can prevent undesired material degradation and advantageously results in energy savings.
While the foregoing description and drawings represent some example systems, it will be understood that various additions, modifications, and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes described herein may be made. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or embodiments. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6824379, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus for utilizing an actuator for flow control valve gates |
8016581, | Apr 21 1998 | Synventive Molding Solutions, Inc. | Injection molding flow control apparatus |
8282388, | May 06 2009 | Synventive Molding Solutions, Inc. | Apparatus for coupling and uncoupling an injection valve pin |
9492959, | Mar 23 2012 | MEIBAN INTERNATIONAL PTE LTD | Self-balancing hot runner with independent flow and pressure control |
20200147863, | |||
JP1142683, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 18 2020 | COULTER, JOHN P | Lehigh University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056481 | /0833 | |
Jun 09 2021 | Lehigh University | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 09 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 17 2021 | MICR: Entity status set to Micro. |
Date | Maintenance Schedule |
Oct 18 2025 | 4 years fee payment window open |
Apr 18 2026 | 6 months grace period start (w surcharge) |
Oct 18 2026 | patent expiry (for year 4) |
Oct 18 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 18 2029 | 8 years fee payment window open |
Apr 18 2030 | 6 months grace period start (w surcharge) |
Oct 18 2030 | patent expiry (for year 8) |
Oct 18 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 18 2033 | 12 years fee payment window open |
Apr 18 2034 | 6 months grace period start (w surcharge) |
Oct 18 2034 | patent expiry (for year 12) |
Oct 18 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |