The present disclosure relates to a mounting press for hot mounting a sample, comprising: a mounting cylinder for receiving the sample, having a main cylinder axis and a cylinder opening, the main cylinder axis extending inside the mounting cylinder and out through the cylinder opening, a sliding closure with a sliding carriage, an upper piston and a closing lever that is operatively connected to the upper piston, wherein the sliding carriage is configured so as to be displaceable in a direction transverse to the main cylinder axis, for example by means of the closing lever, and wherein in a position of use of the sliding carriage the upper piston can be driven to or into the cylinder opening of the mounting cylinder, wherein the closing lever has at least one open position and one closed position and can be transferred from the open position into the closed position, and wherein the closing lever cooperates with the upper piston such that the upper piston closes the cylinder opening when guiding the closing lever from the open position into the closed position when the sliding carriage is in the position of use.
|
4. A sliding closure for a mounting press that comprises a mounting cylinder with a cylinder opening and a main cylinder axis extending through the mounting cylinder, the sliding closure comprising:
an upper piston and a closing lever operatively connected to the upper piston;
a sliding carriage configured to be displaceable in a direction transverse to the main cylinder axis, which allows to drive the upper piston to or into the cylinder opening of the mounting cylinder in a position of use of the sliding carriage;
wherein the upper piston has at least one open position and one closed position and can be transferred from the open position to the closed position; and
wherein the closing lever has a closure shaft that extends transversely to the main cylinder axis and the closing lever cooperates with the upper piston such that by pivoting the closing lever about the closure shaft the upper piston is moved from the open position to the closed position and closes the cylinder opening when the sliding carriage is in the position of use.
1. A mounting press for hot mounting a sample, comprising:
a mounting cylinder for receiving the sample, having a main cylinder axis and a cylinder opening, with the main cylinder axis extending inside the mounting cylinder and out of the cylinder opening;
a sliding closure comprising a sliding carriage, an upper piston, and a closing lever operatively connected to the upper piston;
wherein the sliding carriage is configured to be displaceable in a direction transverse to the main cylinder axis, and wherein in a position of use of the sliding carriage the upper piston can be driven to or into the cylinder opening of the mounting cylinder;
wherein the closing lever has at least one open position and one closed position and can be transferred from the open position to the closed position; and
wherein the closing lever has a closure shaft the extends transverse to the main cylinder axis and the closing lever cooperates with the upper piston such that by pivoting the closing lever about the closure shaft the upper piston is moved from the open position to the closed position and closes the cylinder opening when the sliding carriage is in the position of use.
2. The mounting press of
wherein the main cylinder axis is the central axis of the cylinder; and
wherein in the position of use of the sliding carriage, the main cylinder axis extends centrally through the upper piston.
3. The mounting press as claimed in
further comprising a carriage support,
wherein the cylinder opening is recessed in the carriage support; and
wherein the sliding closure is displaceable along the carriage support and can be positioned over the cylinder opening.
5. The sliding closure according to
wherein the closure shaft has an eccentric component; or
wherein the closure shaft is an eccentric shaft; or
wherein the closure shaft has a variable cross section.
6. The sliding closure as claimed in
wherein the closure shaft is arranged adjacent to the upper piston such that the closure shaft acts directly on the upper piston during the transferring of the upper piston from the open position into the closed position to move it in such a way that it closes the cylinder opening.
7. The sliding closure as claimed in
wherein the closure shaft has a flattened area and wherein the at least one flexible element engages the flattened area of the closure shaft and exerts a retaining force on the closing lever.
8. The sliding closure as claimed in
wherein the upper piston has a dead center position between the open position and the closed position, and wherein the upper piston is reliably held in the respective open position or closed position when the piston is driven to a position beyond the dead center position by means of the closing lever.
9. The sliding closure as claimed in
wherein the sliding carriage furthermore has a service position in which the cylinder opening is completely cleared, and wherein in the service position the sliding carriage can be tilted about a service axis and can be locked in the tilted position.
10. The sliding closure as claimed in
further comprising a sensor device for detecting the position of the sliding carriage.
11. The sliding closure as claimed in
further comprising a carriage support along which the sliding carriage is displaceable and which has a carriage seat or a sliding guide for receiving and guiding the sliding carriage.
12. The sliding closure as claimed in
further comprising a granular material compartment;
wherein excess granular material is conveyed into the granular material compartment by the displacement of the sliding carriage towards the position of use.
13. The sliding closure of
wherein the granular material compartment is configured so as to be removable, wherein the granular material compartment has a magnetic holder for being attached to the carriage support, for easily emptying the excess granular material collected in the granular material compartment.
|
The present disclosure relates to a mounting press with a closure device and to a closure device for mounting presses.
Mounting presses, in particular for hot mounting samples are known per se, they are widely used in metallographic or materialographic analysis for the preparation of workpieces for characterizing microstructures of, for example, metallic materials by microscopic methods. However, mounting presses are also used for the preparation of analyses of composite materials or ceramic materials, for preparing a sample or workpiece by means of which, for example, a microsection can be prepared and being examined by light or electron microscopy.
The hot mounting is basically intended to allow for a better handling of the samples and for supporting the edge zone or for infiltration of cracks, pores, or corrosion coatings. Mounting aids may be used for this purpose to fix samples, for example in an upright position.
Due to the steadily increasing interest in materialographic analysis of materials, for example for the investigation of material failure or, more generally for quality control, and for extending the range of applications of mounting presses from pure metallography to materialography and the associated increase in the sample volume and the more intensive use of mounting presses, there is a continuing interest in improving mounting presses technically, for example with regard to user ergonomics. Also, work safety when using a mounting press is subject to constant improvement in order to avoid dangerous or health-impairing impacts.
The present disclosure provides a mounting press for mounting a sample, for example for hot mounting a sample, which provides for a more comfortable handling of the mounting press. For example, the present disclosure provides for one-handed operation of the mounting press, which makes the work easier for the user and moreover allows to increase work safety for the user. It is inexpensive, reliable, and durable.
Another aspect of the present disclosure provides a closure for a mounting press which is, for example, also suitable for being retrofitted to existing mounting presses.
In accordance with the present disclosure, the subject matter is provided in the independent claims. Embodiments of the present disclosure are defined in the dependent claims.
The present disclosure relates to a mounting press for hot mounting a sample in embedding material, typically in granular material. One or more samples can be processed simultaneously in the mounting press.
The mounting press comprises a mounting cylinder or pressing cylinder for receiving the sample. The mounting cylinder has a main cylinder axis and a cylinder opening, with the main cylinder axis extending inside the mounting cylinder and out of the cylinder opening.
The mounting press furthermore comprises a sliding closure with a sliding carriage, an upper piston and a closing lever operatively connected to the upper piston. The sliding carriage is configured so as to be displaceable in a direction transverse relative to the main cylinder axis, for example perpendicular relative to the main cylinder axis, it is preferably displaced using the closing lever. In other words, the closing lever is designed to be manually actuated so that the sliding carriage of the sliding closure can be easily displaced in a direction transverse relative to the main cylinder axis when gripping the closing lever. In this way, the sliding carriage can be brought into a position of use of the sliding carriage, in which the upper piston can be driven to or into the cylinder opening of the mounting cylinder.
The closing lever has at least one open position and one closed position and can be transferred from the open position into the closed position, for example manually. In a preferred embodiment, the transferring of the closing lever from the open position to the closed position and back is only possible in the position of use of the carriage. In this case, a detent or closing lever lock may be provided to block the closing lever when the sliding carriage occupies a position other than the position of use. The sliding carriage can then be moved freely by means of the closing lever, for example along a carriage support, however, the closing lever will preferably be blocked from being transferred from the open position to the closed position and only released when the sliding carriage is in the position of use. The closing lever may as well be configured so as to be in a detent position in a way so that the detent is overcome by the tensile force applied on the closing lever of the sliding carriage by a hand to be transferred from the open position to the closed position.
The closing lever cooperates with the upper piston such that the upper piston closes the cylinder opening when the closing lever is transferred from the open position to the closed position when the sliding carriage is in the position of use. The upper piston closes the cylinder opening, for example, in a force absorbing manner or with over-center locking, while allowing gases and vapors that may arise in the sample or during the preparation of the sample to escape. In other words, the closing lever allows to easily put the mounting press into operational readiness by moving the sliding carriage into the position of use and moving the closing lever into the closed position.
The main cylinder axis of the cylinder is preferably the cylinder's central axis, i.e. the axis extending centrally through the cylinder along the mathematical height extension. In the position of use of the sliding carriage, the main cylinder axis then preferably extends centrally through the upper piston. In other words, in the position of use, the upper piston is or can be aligned with the cylinder opening of the mounting cylinder by means of the sliding carriage.
The mounting press preferably comprises a carriage support. In a first embodiment, the carriage support is a flat or planar surface along or on which the sliding carriage is displaceable. The cylinder opening is preferably recessed in the carriage support. That is, the carriage support surrounds the cylinder opening all around, preferably in a plane which also includes an exit surface of the cylinder opening. In other words, the exit surface of the cylinder opening and the carriage support define a common plane. Thus, the carriage support is preferably arranged transversely to the cylinder axis in its main extension direction, for example it is arranged perpendicular thereto.
Furthermore, the sliding closure is preferably displaceable along the carriage support and can be positioned over the cylinder opening.
The present disclosure furthermore relates to a sliding closure for a mounting press that comprises a mounting cylinder having a cylinder opening and a main cylinder axis extending through the mounting cylinder. The sliding closure comprises an upper piston arranged in the sliding closure, and a closing lever operatively connected to the upper piston, and a sliding carriage configured to be displaceable in a direction transverse—for example perpendicular—to the main cylinder axis, which is adapted to drive the upper piston to or into the cylinder opening of the mounting cylinder in a position of use of the sliding carriage.
The upper piston has at least one open position and one closed position and can be transferred from the open position to the closed position. Preferably, the upper piston can be transferred from the open position to the closed position in the position of use of the carriage.
The closing lever cooperates with the upper piston such that by moving the closing lever the upper piston is moved from the open position to the closed position and closes the cylinder opening when the sliding carriage is in the position of use. In other words, the closing lever is in an open position when the upper piston is in the open position and is in a closed position when the upper piston is in the closed position.
The closing lever preferably has a closure shaft. The closure shaft defines the bearing or fulcrum of the closing lever, and an application of force such as by manual actuation of the closing lever can be transferred, via the closure shaft, for example to the upper piston, for closing the mounting press.
The upper piston is transferred from the open position to the closed position by a pivotal movement of the closing lever around the closure shaft.
The closure shaft furthermore preferably has an eccentric component. The eccentric component is mounted on the same axis as the closure shaft, for example, and co-rotates with the rotation of the closure shaft. Alternatively, the closure shaft is an eccentric shaft, for example so as to have a cam and thus being a camshaft or, more generally, so as to have a variable cross section over its extension direction. Thus the closure shaft is adapted to transfer the upper piston from the open position to the closed position, directly or indirectly.
Furthermore preferably, the closure shaft is arranged adjacent to the upper piston such that the closure shaft acts directly on the upper piston during the transfer of the upper piston from the open position into the closed position to move it in such a way that it closes the cylinder opening. For example, the closure shaft is arranged directly above the upper piston, and the cam or the eccentric component bears on the upper piston. Upon rotation of the closure shaft and thus rotation of the cam or the eccentric components, a lowering force is exerted on the upper piston in this example, whereby the upper piston is moved into the mounting cylinder when the sliding carriage is in the position of use.
The sliding closure furthermore preferably comprises at least one compressible element, for example a spring element, for providing a retaining force for at least temporarily holding the upper piston in either the open position or the closed position. In other words, the one or more spring element(s) hold the upper piston in the open position, for example, and press it against the cam or against the eccentric component. If the lowering force of the eccentric component or cam to the upper piston exceeds the retaining force of the compressible element, for example caused by actuation of the closing lever, the upper piston is transferred to the closed position, i.e. it is moved into the mounting cylinder by the eccentric component or the cam or the closing lever.
Preferably, the upper piston can take a dead center position between the open position and the closed position, and the upper piston can be reliably held in the respective open position or closed position when the piston is driven to a position beyond the dead center position by means of the closing lever.
The sliding carriage furthermore preferably has a service position in which the cylinder opening is completely cleared, and in the service position the sliding carriage can, for example, be tilted about a service axis. More preferably, the sliding carriage can be locked in the tilted position.
In a further exemplary embodiment, the sliding carriage comprises a sensor device for detecting the position of the sliding carriage. The sensor device can, for example, be used to detect whether the position of use or the service position has been occupied by the sliding carriage. Furthermore, for example, the position information of the sliding carriage can be output to a controller of the mounting press, and the operation of the mounting press can be controlled in response to the position information, for example only if the sliding carriage and/or the closing lever are in the closed position or the position of use.
In a further exemplary embodiment, the sliding closure comprises a carriage support along which the sliding carriage is displaceable and which has a carriage seat or a sliding guide for receiving and guiding the sliding carriage. In one example, the carriage support is a flat or plane surface having laterally disposed carriage seats such as a sliding guide.
Furthermore, the sliding closure may be equipped with a front side compartment for granular material, and excess granular material is transferred into the granular material compartment, for example, by the displacement of the sliding carriage into the position of use.
The granular material compartment may be configured so as to be removable, and the granular material compartment may have a magnetic holder for being attached to the carriage support for easily emptying the excess granular material collected in the granular material compartment.
The present disclosure furthermore relates to a mounting press comprising a sliding closure as described above.
In a further embodiment, the mounting press with sliding closure may as well be combined with a suction device. Such a mounting press comprises a mounting cylinder or pressing cylinder for receiving the sample. The mounting cylinder has a main cylinder axis and a cylinder opening, with the main cylinder axis extending inside the mounting cylinder and out of the cylinder opening.
In this example, the mounting press comprises a covering extending around the cylinder opening. The covering may be a plane or flat surface which, for example, has a horizontal main extension direction. The cylinder opening may be recessed in the covering. Preferably, the covering constitutes a carriage support with laterally disposed carriage seats such as a sliding guide for receiving a sliding closure.
The mounting press may comprise a suction device for extracting granular material dust, granular material, or vapors, for example, especially from the region around the cylinder opening. For example, the suction device is completely incorporated or integrated in the mounting press. The suction device comprises a vacuum generator for providing a suction effect and is at least partly mounted on the covering or embedded in the covering or connected to the covering.
The covering is preferably a covering plate with the cylinder opening recessed therein. The covering may also have a carriage guide for a sliding carriage.
The suction device may be integrated in the sliding carriage, at least partially. The extracted granular material dust and/or extracted vapors can preferably be passed through the sliding carriage in such a preferred embodiment.
In a further embodiment, the suction device may comprise suction openings recessed in the covering plate, which are arranged around the cylinder opening recessed in the covering plate.
A vacuum generator may be arranged on the mounting press for providing the suction effect.
In a further embodiment, a front side granular material compartment may be provided for receiving granular material. For example, excess granular material which has been introduced into the mounting cylinder in excess of the desired or maximum filling level of the mounting cylinder may be received therein. This may include residues that are not fitting through the suction opening. Preferably, the residues of granular material are conveyed into the granular material compartment by sliding the sliding carriage to and onto the cylinder opening prior to starting or using the mounting press. During the sliding operation, the granular material residues are gathered by the front face of the sliding carriage and pushed over the covering and into the granular material compartment.
In an embodiment of a suction device for a mounting press, in which the mounting press has a mounting cylinder, a cylinder opening and a main cylinder axis extending through the mounting cylinder, a covering may be provided extending around the cylinder opening, and a vacuum generator to provide a suction effect. The vacuum generator is, for example, a fan device.
Furthermore, the suction device has at least one suction air passage connected to the vacuum generator. The extracted air together with the extracted dust, granular material or vapors is discharged through the suction air passage towards the vacuum generator.
The suction device comprises at least one suction opening that is in communication with the suction air passage, which may be arranged adjacent to the cylinder opening such that a suction effect can be achieved in the region of the cylinder opening. Moreover, the suction device may be at least partly mounted on the covering or embedded in the covering.
In a further example, the suction device may be adapted to unfold the suction effect directly in the region of the cylinder opening of the mounting cylinder. For this purpose, the at least one suction opening may be recessed in the covering laterally spaced apart from the cylinder opening. The at least one suction opening may as well be recessed or provided in the covering concentrically around the cylinder opening.
The covering is preferably a covering plate and has a carriage guide for a sliding carriage.
In a suction device comprising a sliding carriage that can be moved transversely to the cylinder axis, for example in a carriage guide of the covering plate, the at least one or a further suction opening may be provided on the sliding carriage. For example, the suction opening is arranged on a front side of the sliding carriage, so that the suction device achieves an effect directed directly towards the region of the cylinder opening when the sliding carriage is in a suction position in which the cylinder opening is not covered by the sliding carriage.
The at least one suction opening may be connected to the suction air passage through the sliding carriage. For example, the sliding carriage then comprises at least one sliding carriage passage which connects the at least one suction opening to the suction air passage by extending through the sliding carriage. Optionally, it is possible for the sliding carriage to additionally have a suction position in which the at least one suction air opening is in communication with the vacuum device through the sliding carriage so as to be exposed to an extracting negative pressure thereby.
The sliding carriage may have a position of use in which the sliding carriage covers the cylinder opening, i.e. is flush with the cylinder opening so as to preferably completely cover it.
The suction device may provide for vapor extraction so as to suck off vapors that are generated during the pressing operation of the mounting press. In this case, the sliding carriage may be adapted so that the suction effect unfolds in the region of the cylinder opening when the sliding carriage is in the position of use. For this purpose, the sliding carriage may have sliding carriage passages which are in communication with the suction air passage of the suction device in the position of use of the sliding carriage.
At least part of the suction air passage may be embedded in the covering plate so that the suction air passage extends through the covering plate and/or at least partly extends through the covering plate.
In a further example, the suction device may furthermore comprise a filter element which is preferably arranged at the vacuum generator. Such a filter element allows to filter granulate material dusts, granular material or possibly vapors from the extracted air. Depending on the configuration of the suction device, the filter element may optionally be selected with regard to the filter effect, the mesh size of the filter.
In one example, the suction device may furthermore comprise at least one further mounting press with a further cylinder opening, in which case the vacuum generator is a shared vacuum generator. In this example, the suction device is adapted to unfold the suction effect directly in the region of the cylinder opening of the mounting cylinder and at the same time at the further cylinder opening of the at least one further mounting press.
According to yet another embodiment, the subject-matter of the present disclosure can be added to a modular mounting press system for the hot mounting of samples. The mounting press system comprises a plurality of mounting cylinders or pressing cylinders for receiving samples. The mounting cylinder may have a main cylinder axis and a cylinder opening, wherein the main cylinder axis extends inside the mounting cylinder and out through the cylinder opening.
The modular mounting press system comprises a basic module for controlling at least one external mounting press, and a first external mounting press separate from the basic module and having a first mounting cylinder for receiving samples.
In this case, the basic module comprises a central input device for entering control data for the at least one external mounting press, a central power supply port for connecting the modular mounting press system to an external power supply, and a power distributor for providing the electrical power to the at least one external mounting press.
The modular mounting press system may furthermore comprise a hydraulic distributor for supplying cooling water to the at least one external mounting press.
The basic module may furthermore comprise at least one mounting press connector for electrically connecting the at least one external mounting press to the basic module for transferring both the electrical power required by the at least one external mounting press and control data for controlling the at least one external mounting press.
In another embodiment, the basic module may comprise a basic module mounting press accommodated in a shared basic module housing. In other words, this is an internal mounting press in the basic module housing, which is integrated with the control device of the basic module.
The power distributor may be configured to distribute the electrical power to the basic module mounting press and to the at least one external mounting press while taking into account a prioritization order that can be predetermined by the central controller. In other words, the central controller may define a sequence of allocation of the electrical power to the respective internal or external mounting press, for example by user input or by programming. This makes it possible, for example, to operate the modular mounting press system on a smaller dimensioned electrical power supply and nevertheless put all mounting presses into operation such that time delays are kept as small as possible. In other words, the complete modular mounting press system can thus be operated on a common or standard electrical power grid. For example, the mounting presses typically need the full electrical power only during the heating process, while during the cooling process they only need considerably lower electrical power.
The power distributor of the modular mounting press system may furthermore be configured to distribute the electrical power to the basic module mounting press and to the at least one external mounting press in a clocked manner when a predetermined amount of electrical power is reached or exceeded. In other words, the power distributor may be adapted to distribute the electric power to the mounting presses so as to not exceed a total amount of electric power that is needed from the external power grid. If, for example, the power distributor recognizes, based on the data made available by the central controller, that a heating process of an external mounting press is still continuing but is about to be completed, this heating process as a process A may be assigned a priority A. The desired start of a process B, for example of a further heating process, may then be started by the central controller either with a delay, i.e. a desired heating process as a process B is started only when the process A requires less electrical power and sufficient energy is available for starting the process B. In other words, process B which is controlled in prioritized manner is not started before process A starts to operate in a clocked manner and thus a free clock is available for the process B. In another case, process B may be started immediately and the electrical power can be distributed, by the power distributor, to the processes A and B in such a manner that both processes are optionally operated at reduced power or in a mixed clocked manner. This may be achieved by the clocked distribution of electrical power.
The at least one mounting press connector, the central power supply port, and the hydraulic distributor may all be arranged on a rear side of the basic module, for example.
Furthermore preferably, two or three external mounting presses are connectable to the basic module. All external mounting presses may be controlled and supplied with electrical power by the basic module. Particularly, the external mounting presses do no longer require a complete process control unit, since all the process control components are accommodated in the basic module. This allows to achieve a significant reduction in system costs. At the same time, ergonomics for the user can be enhanced by enabling to start and manage all processes from a central system. For example, this can come into play when the plurality of mounting presses are intended to carry out the same process in parallel and the user has to manually enter the process parameters only once for the first process, while it can then use the parameters already entered into the central controller for programming the further identical processes. Also, the user can be relieved by only having to take into account one control and operating unit and by getting displayed the operation parameters of all mounting presses of the modular mounting press system at one combined location there.
In a further preferred embodiment, the at least one external mounting press can have an indicator device for indicating the operating state, for example a color-changing indicator device. Such an indicator device may be implemented, for example, by providing a luminous color, for example by a four-color lamp or four LEDs of different color values. For example, operating conditions of an external mounting press to be indicated would be (1) heating mode, for example by red color, (2) ready for receiving or ready state, for example by green color, (3) cooling mode, for example by blue color, and (4) not ready or lid open state, by white color. However, the indicator device may also be used to implement the indication of other and/or further operating states. The decentralized indicator device arranged on the respective mounting press can thus provide the user with a quick first overview of the basic state of any of the mounting presses of the modular mounting press system, while the exact status data and further information continue to be displayed or made available at the central input device on the basic module.
Furthermore preferably, the at least one external mounting press may comprise a decentralized control button. Such a decentralized control button can be used, for example, to select, for the central input device, the mounting press to be displayed, set or programmed. Thus, this is a user-friendly embodiment featuring a combination of central control of the process parameters and decentralized selection of the parameters to be set at the central input device.
Furthermore preferably, the decentralized control button may at the same time comprise the indicator device mentioned above. This may be achieved, for example, by providing an illuminable control button on the respective mounting press, with the color state of the control button representing the operating state of the respective mounting press. This may also be achieved by providing the control button with a luminous ring or color ring around the control button, with the color ring representing the operating state of the respective mounting press based on the presented color. This allows the user to identify, at a glance, the basic operation state of all mounting presses of the modular mounting press system. If the user desires any information about a mounting press or any changes in the operation process of a mounting press, then the respective mounting press can be selected via the control button and the respective process parameters can be entered at the central input device.
The basic module mounting press and/or the at least one external mounting press may comprise a sliding closure.
The modular mounting press system may furthermore be equipped with a central suction device including a suction manifold for connecting the basic module mounting press and the at least one external mounting press to the central suction device.
It will be apparent to a person skilled in the art that although the present disclosure is applicable to mounting presses, it can in principle also be used for other machines. The latter shall not be excluded.
The present disclosure will now be explained in more detail by way of exemplary embodiments and with reference to the figures in which the same and similar elements are partially designated by the same reference numerals, while the features of the various exemplary embodiments can be combined.
Referring to
On the front side of carriage support 136, a granular material compartment 1 is provided for collecting excess granular material. When the sliding carriage 134 is moved to the position of use, it automatically pushes excess granular material into it.
On the front side of sliding carriage 134, a suction opening 152 is shown, which merges into a sliding carriage passage 154 inside the sliding carriage 134.
Finally,
Referring to
Referring to
For heating and cooling a sample (not shown) inserted in the cylinder 10, a heating/cooling unit 14 is arranged laterally of the pressing region. Heating/cooling unit 14 annularly surrounds the cylinder 10. The heating/cooling unit 14 is supplied with water through hose lines 34 (cf.
The lower pressure cylinder 10b has a cylinder head 16 and a cylinder bottom 17. A piston 18 is movably disposed within the pressure cylinder 10b. Piston 18 is connected to the upper-lower piston 23 through a piston rod 19 such that a change in the position of the piston 18 induces a change in the position of the upper-lower piston 23. The upper piston 27, in this case a pressing piston 27, is positioned by the sliding closure 120 and blocked by the pressure built up in the sample cylinder 10a. Hydraulic fluid is supplied to or returned from the pressure cylinder 10b through high-pressure hose 55, for example through hydraulic port 70.
The closing lever 130, in this case a lever 60, may have a grip surface 46 for improving haptics.
A first position sensor 56 such as a proximity switch 56 may be used in the carriage support 136. In the present example, the proximity switch 56 is adapted to identify whether the support plate 74 is retracted or is extended, which means that the sliding carriage 134 may have taken up a service position (cf.
In the present example, a covering plate 61 is inserted in the carriage support 136, which covers the suction connection passage 156 embedded in the carriage support. A suction covering 68 is attached to the sliding carriage 134 in this example.
The position of use of the sliding carriage 134 is detected by a front side position sensor 30 which, for example, is an inductive position sensor 30.
Referring to
In the closed position, the closure shaft 132 has a respective recess 142 on its lower surface on either side of the sample cylinder 10a, in each of which a spring element 144 is engaged, in the present case a spring compressor 71.
The heating/cooling unit 14 is supplied with cooling water through hoses 34.
In the open position of the sliding closure 120, the sliding carriage 134 can be displaced along the carriage support 136 as far as to a rear end position in which the guide pins 123 no longer engage in the carriage guide 122, since the carriage guide 122 extends only over a portion of the carriage support 136.
In the rear end position, the sliding carriage 134 can then be pivoted about the pivot axis, while it is supported on the pivot plate 59. Latching in the service position can be achieved by means of the support plate 74.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
So if, for example, vapors escape from the sample cylinder 10a during the heating operation and hence during the melting process of the granular material, which vapors might be harmful to the environment or harmful to health, the suction device 150 of the present embodiment is able to accommodate such influences as well, so that the application experience of the mounting press is improved.
Referring to
Referring to
Referring to
The basic module 101 has three mounting press connectors 108 on the rear side, for transferring both the electrical power required by the external mounting presses 104 and control data for controlling the external mounting presses 104. Furthermore, the basic module 101 has a central power supply port 110 for supplying all the mounting presses 100, 102, 104 with electrical power from the external power supply, such as the public power grid. Furthermore, the basic module 101 comprises a cooling water inlet 112 and a cooling water return line 114, which are supplied either from an external water supply or a circulation circuit with heat exchanger, for example. The modular mounting press system 106 comprises a water busbar 116, 118 for connecting the mounting presses 102, 104. Furthermore, central suction 164 is provided, which can be controlled and adjusted from the basic module 101.
Finally,
If the response to the query for 4 or more mounting units 102, 104 is positive, the next query made in step 206 will be as to whether all of the at least 4 heating/cooling units 14 of the at least 4 mounting units 102, 104 have to be supplied with power. If not all of the heating/cooling units 14 are operated in parallel, the flowchart loops back to regularly check the status of the mounting units in step 206.
However, if at least 4 heating/cooling units 14 are required in parallel, a prioritization order is defined in step 208 depending on the mode of the mounting units (heating or holding) and on deviation from target temperatures. In step 210 it is predetermined which power distribution is to be performed, in the present example the heating unit of mounting units 102, 104 having the lowest priority is blocked. This query is also repeated cyclically as long as the conflicting parallel operation of more than 3 mounting units 102, 104 is proceeding.
Referring to
If the assistant has been enabled, the query made in step 234 is whether the button 96 has been pressed on a mounting unit (MU) 102, 104 and a closure 120 has been opened. In other words, in step 234 the assistant expects the selection of a mounting unit 102, 104, for example via the control button 96 on the embedding unit 102, 104 in order to proceed with the process.
In response to the request or selection of a mounting unit 102, 104, the piston 23 of the selected mounting unit 102, 104 will be lowered in the next step 236 (button/switch operation). In step 238, the suction device on the selected mounting unit 102, 104 or the central suction device 164 is automatically enabled for a predefinable period of time.
In step 240, a query is made as to whether the respective button with respect to a reverse piston movement has been set in the visualization. If reverse piston movement is desired, the piston movement is reversed in step 242.
In step 244, a query is made as to whether suction switch over has been set in the visualization. If this is the case, suction is switched over in step 246.
Finally, in step 248, the position sensors 30, 56, 80, 82 are queried for the closed position of the sliding closure 120 of the selected mounting unit 102, 104. If it is determined that the closure 120 is completely closed, then the hot mounting can be started in step 250.
Once the hot mounting operation by the selected mounting unit 102, 104 has been completed, it is queried in step 252 whether the closure can be opened. If this is the case, the piston 23 is lifted in step 254 and the filling assistant is terminated in step 260.
The present disclosure provides for a comfortable, rapid and safe operation of a mounting press 100, 102, 104. So, the present disclosure allows to close and open a mounting press 100, 102, 104 that comprises the sliding closure 120 of the present disclosure in a more comfortable manner and faster, while consistent safety is ensured. Also, the sliding closure 120 of the present disclosure provides for easy access to the upper piston 27 that is arranged within the sliding closure 120, for example for being easily cleaned or replaced.
It will be apparent to a person skilled in the art that the embodiments described above have to be understood as examples and that the present disclosure is not limited thereto but can rather be varied in multiple ways without departing from the scope of the claims. Furthermore, it will be apparent that the features, irrespectively whether disclosed in the specification, the claims, the figures, or otherwise, individually define components of the present disclosure, even if they are described in conjunction with other features. In all the figures, the same reference numerals designate the same elements, so that descriptions of elements that are possibly mentioned only in conjunction with one or at least not with all of the figures can also be applied to those figures in conjunction of which those elements have not been explicitly described in the specification.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4969505, | Dec 21 1989 | General Motors Corporation | Vacuum bore chill for lost foam casting |
5800667, | Jun 26 1996 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for adhering wafer to supporting substrate |
20070090554, | |||
20150143928, | |||
20160151946, | |||
CA2404629, | |||
CN102046485, | |||
CN103498823, | |||
CN105223063, | |||
CN106102527, | |||
CN2723186, | |||
EP3072660, | |||
JP20013149140, | |||
JP2007159309, | |||
JP2016045044, | |||
JP2016181548, | |||
JP59135896, | |||
TW201545830, | |||
WO2016182438, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 12 2018 | ATM GmbH | (assignment on the face of the patent) | / | |||
Nov 04 2019 | BONGARTZ, JOCHEN | ATM GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051942 | /0069 | |
Dec 13 2019 | ATM GmbH | ATM QNESS GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 056820 | /0759 |
Date | Maintenance Fee Events |
Nov 04 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Nov 01 2025 | 4 years fee payment window open |
May 01 2026 | 6 months grace period start (w surcharge) |
Nov 01 2026 | patent expiry (for year 4) |
Nov 01 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 01 2029 | 8 years fee payment window open |
May 01 2030 | 6 months grace period start (w surcharge) |
Nov 01 2030 | patent expiry (for year 8) |
Nov 01 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 01 2033 | 12 years fee payment window open |
May 01 2034 | 6 months grace period start (w surcharge) |
Nov 01 2034 | patent expiry (for year 12) |
Nov 01 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |