devices and methods for securing a cover of a retrieval device while the retrieval device is resheathed to a more proximal position within a delivery sheath are disclosed herein. A retrieval device may include, for example, a securing element configured to grip the cover when the retrieval device is pulled proximally, to thereby secure the cover. A method of positioning the retrieval device may include, for example: (a) advancing the retrieval device distally through a delivery sheath to a partially deployed state while the securing element is in a first state, and (b) retracting the clot retrieval proximally from the partially deployed state while the securing element is in a second state that grips the cover to secure the cover.
|
10. A method of positioning a retrieval device, the method comprising:
providing a retrieval structure coupled to an elongated shaft, the retrieval structure including a flexible cover and an expandable securing element;
advancing at least a portion of the retrieval structure distally from a delivery sheath such that at least a portion of the cover remains within the delivery sheath; and
retracting the elongated shaft such that the securing element expands radially against the cover, thereby inhibiting relative motion between the securing element and the cover.
1. A method of positioning a retrieval device, the method comprising:
advancing at least a portion of a retrieval structure of a retrieval device distally from a delivery sheath to a partially deployed state, wherein the retrieval structure is coupled to an elongated shaft, and wherein (a) during advancement, a securing element coupled to the elongated shaft is in a first configuration and a cover of the retrieval structure extends proximally relative to a capture structure of the retrieval structure, and (b) in the partially deployed state, at least a distal portion of the capture structure is distal of the delivery sheath and at least a portion of the cover remains within the delivery sheath; and
retracting the retrieval device proximally such that the securing element expands radially to a second configuration wherein the securing element exerts an outward force against the cover that is greater than when in the first configuration.
2. The method of
the cover has a first portion coupled to the elongated shaft, a free second portion, and extends continuously between the first portion and second portion, and
in the second configuration, the securing element exerts the outward force against the cover nearer to the second portion than the first portion and the securing element is configured to prevent substantial movement of the second portion of the cover relative to the first portion of the cover.
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
|
The present application is a divisional of U.S. patent application Ser. No. 15/629,786 filed Jun. 22, 2017, which is incorporated herein by reference in its entirety.
The present technology relates generally to devices and methods for securing a cover of a retrieval device while the retrieval device is resheathed to a more proximal position within a delivery sheath.
Many medical procedures use medical device(s) to remove an obstruction (such as clot material) from a body lumen, vessel, or other organ. An inherent risk in such procedures is that mobilizing or otherwise disturbing the obstruction can potentially create further harm if the obstruction or a fragment thereof dislodges from the retrieval device. If all or a portion of the obstruction breaks free from the device and flows downstream, it is highly likely that the free material will become trapped in smaller and more tortuous anatomy. In many cases, the physician will no longer be able to use the same retrieval device to again remove the obstruction because the device may be too large and/or immobile to move the device to the site of the new obstruction.
Even in successful procedures, a physician must be cautious to prevent the walls of the vessel or body lumen from imparting undesired forces to shear or dislodge the obstruction as it passes through the vasculature during removal. These forces have the potential of fragmenting the obstruction. In some cases, the obstruction can simply break free from the retrieval device and can lodge in a new area causing more concern than the original blockage.
Procedures for treating ischemic stroke by restoring flow within the cerebral vasculature are subject to the above concerns. The brain relies on its arteries and veins to supply oxygenated blood from the heart and lungs and to remove carbon dioxide and cellular waste from brain tissue. Blockages that interfere with this blood supply eventually cause the brain tissue to stop functioning. If the disruption in blood occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death (infarction). Accordingly, it is desirable to provide immediate medical treatment of an ischemic stroke. To access the cerebral vasculature, a physician typically advances a catheter from a remote part of the body (typically a leg) through the abdominal vasculature and into the cerebral region of the vasculature. Once within the cerebral vasculature, the physician deploys a device for retrieval of the obstruction causing the blockage. Concerns about dislodged obstructions or the migration of dislodged fragments increases the duration of the procedure at time when restoration of blood flow is paramount. Furthermore, a physician might be unaware of one or more fragments that dislodge from the initial obstruction and cause blockage of smaller more distal vessels.
Many physicians currently perform thrombectomies (i.e. clot removal) with stents to resolve ischemic stroke. Typically, the physician deploys a stent into the clot in an attempt to push the clot to the side of the vessel and re-establish blood flow. Tissue plasminogen activator (“tPA”) is often injected into the bloodstream through an intravenous line to break down a clot. However, it takes time for the tPA to reach the clot because the tPA must travel through the vasculature and only begins to break up the clot once it reaches the clot material. tPA is also often administered to supplement the effectiveness of the stent. Yet, if attempts at clot dissolution are ineffective or incomplete, the physician can attempt to remove the stent while it is expanded against or enmeshed within the clot. In doing so, the physician must effectively drag the clot through the vasculature, in a proximal direction, into a guide catheter located within vessels in the patient's neck (typically the carotid artery). While this procedure has been shown to be effective in the clinic and is easy for the physician to perform, there remain some distinct disadvantages to using this approach.
For example, one disadvantage is that the stent may not sufficiently retain the clot as it pulls the clot to the catheter. In such a case, some or all of the clot might remain the vasculature. Another risk is that as the stent mobilizes the clot from the original blockage site, the clot might not adhere to the stent as the stent is withdrawn toward the catheter. This is a particular risk when passing through bifurcations and tortuous anatomy. Furthermore, blood flow can carry the clot (or fragments of the clot) into a branching vessel at a bifurcation. If the clot is successfully brought to the end of the guide catheter in the carotid artery, yet another risk is that the clot may be “stripped” or “sheared” from the stent as the stent enters the guide catheter. Regardless, simply dragging an expanded stent (either fully or partially expanded) can result in undesired trauma to the vessel. In most cases, since the stent is oversized compared to the vessel, dragging a fixed metallic (or other) structure can pull the arteries and/or strip the cellular lining from the vessel, causing further trauma such as a hemorrhagic stroke (leakage of blood from a cerebral vessel). Also, the stent can become lodged on plaque on the vessel walls resulting in further vascular damage.
In view of the above, there remains a need for improved devices and methods that can remove occlusions from body lumens and/or vessels.
At least some of the embodiments disclosed herein are devices, systems, and methods for retrieving clot material from a blood vessel lumen. For example, some embodiments are directed to a retrieval device (such as a clot retrieving device) that includes an elongated shaft configured to be intravascularly positioned at or adjacent clot material within a blood vessel lumen, and a retrieval assembly coupled to a distal region of the elongated shaft. The retrieval assembly may include a flexible cover and a capture structure. The retrieval assembly may be deployed within the blood vessel lumen at or near the clot material such that the capture structure engages or otherwise becomes enmeshed with at least a portion of the clot material, and at least a portion of the cover presses outward against the blood vessel wall proximal of the capture structure. Pulling the elongated shaft proximally everts the cover over the capture structure such that the cover at least partially ensheathes the capture structure and associated clot material. The retrieval assembly can then be withdrawn to remove the retrieval device and associated clot material from the patient.
In at least some embodiments of the present technology, a securing element can be used to secure the cover while the retrieval device is at least partially resheathed within a delivery sheath and while the retrieval assembly is still in the vasculature. Some embodiments of the securing element are attached to the elongated shaft of the retrieval device and configured to exert a force against the cover when the retrieval device is pulled proximally to thereby secure the cover.
The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent clauses may be combined in any combination, and placed into a respective independent clause, e.g., clause 1, clause 13, or clause 17. The other clauses can be presented in a similar manner.
Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are explanatory and are intended to provide examples and further explanation of the subject technology as claimed.
Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.
The present technology provides devices, systems, and methods for securing a flexible interventional device against an inner wall of a delivery sheath to assist in resheathing the device while positioning the device in a blood vessel lumen. Although many of the embodiments are described below with respect to devices, systems, and methods for removing clot material from a blood vessel lumen or otherwise treating a cerebral embolism, other applications and other embodiments in addition to those described herein are within the scope of the technology. For example, the securing devices of the present technology may be used to secure any flexible interventional device (e.g., a mesh, a braid, a fabric, etc.) configured to be intravascularly delivered to a body lumen through a delivery sheath.
The capture structure 100 has a low-profile configuration (not shown) when constrained within a delivery catheter (e.g., a microcatheter) and an expanded configuration for securing and/or engaging clot material or other obstructions within a blood vessel lumen (e.g., a cerebral blood vessel lumen) and/or for restoring blood flow within the blood vessel. The capture structure 100 has a proximal portion 100a coupled to the shaft 12 and a distal portion 100b. The capture structure 100 further includes an open cell framework or body 108 (
Referring again to
The cover 200 includes a first end portion 200a coupled to the shaft 12 via the connection assembly 120, a free second end portion 200b, and a cover wall 200c extending between the first end portion 200a and the second end portion 200b. As used herein to describe the second end portion 200b of the cover 200, the term “free” refers to a portion of the cover 200 that is not fixed to the elongated shaft 12 and may move radially and/or longitudinally with respect to the shaft 12. The cover 200 is flexible such that it is movable between a first position (
The cover 200 can comprise a mesh and/or braid of a plurality of wires (e.g., filaments, threads, sutures, fibers or the like) that have been interwoven to form a structure having openings (e.g., a porous fabric). The mesh and/or braid can be composed of metals, polymers, composites, and/or biologic materials. Polymer materials can include Dacron, polyester, polypropylene, nylon, Teflon, polytetrafluoroethylene (PTFE), tetrafluoroethylene, polyethylene terephthalate, polyactic acid (PLA) silicone, polyurethane, polyethylene, polycarbonate, styrene, polyimide, PEBAX, Hytrel, polyvinyl chloride, high-density polyethylene, low-density polyethylene, polyether ether ketone (PEEK), rubber, latex, and/or other suitable polymers known in the art. Other materials known in the art of elastic implants can also be used. Metal materials can include, but are not limited to, nickel-titanium alloys (e.g. Nitinol), platinum, cobalt-chromium alloys, stainless steel, tungsten or titanium. In certain embodiments, metal filaments may be highly polished and/or surface treated to further improve their hemocompatibility. The cover 200 can be constructed solely from metallic materials without the inclusion of any polymer materials, solely from polymer materials without the inclusion of any metallic materials, or a combination of polymer and metallic materials.
In some embodiments, some or all of the wires of the cover 200 are drawn-filled tube (“DFT”) wires having a radiopaque core (e.g., platinum, tantalum, gold, tungsten, etc.) surrounded by a superelastic material (e.g., Nitinol, a cobalt-chromium alloy, etc.). The radiopaque core may comprise about 5% to about 50% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%) of the total-cross-sectional area of the individual wires. In some embodiments, the cover 200 may have 72-144 total wires (e.g., 72, 96 128, 144, etc.) Moreover, some or all of the wires may have a wire diameter of about 0.005 inches to about 0.015 inches (e.g., 0.008 inches, 0.01 inches, etc.). In some embodiments, all of the wires have the same diameter, and in other embodiments some of the wires have different diameters.
As shown in
As shown in
In some instances, the physician may desire to move the retrieval assembly 14 proximally relative to the delivery catheter 2 while at least a portion of the retrieval assembly 14 is still within the delivery catheter 2. For example, in some instances it may be desirable to pull at least a portion of the retrieval assembly 14 back into the delivery catheter 2 mid-deployment so that the retrieval assembly 14 can be repositioned and redeployed. More specifically, the physician might advance the capture structure 100 and part of the cover 200 outside of the delivery catheter 2 before determining that the retrieval assembly 14 is not at a desired location within a blood vessel. In other instances, it may be desirable to retract the retrieval assembly 14 proximally when it has yet to be deployed and is still fully within the delivery catheter 2. As used herein, the term “resheath” encompasses any proximal movement of the retrieval assembly 14 within the delivery catheter 2, whether or not the retrieval assembly 14 has been partially deployed from (i.e., advanced outside of) the delivery catheter 2.
While the free second end portion 200b of the cover 200 allows the cover 200 to invert over the capture structure 100, it can hinder efforts to resheath the retrieval assembly 14 within the delivery catheter 2. Specifically, when the retrieval assembly 14 is retracted proximally with no means of securing the cover 200, friction between the delivery catheter 2 and the cover wall 200c can prevent or resist proximal movement of the free second end portion 200b of the cover 200 while the first end portion 200a of the cover 200 moves in a proximal direction with the shaft 12 (e.g., in a similar manner to the intended movement of the cover 200 within a vessel lumen). This can cause the cover 200 to bunch up within the delivery catheter 2 and/or snag on the capture structure 100. As a result, the physician might have to fully remove the retrieval assembly 14 from the delivery catheter 2 (e.g., through a larger outer catheter) in order to prepare the retrieval assembly 14 for redeployment. As described in further detail below with reference to
As shown in
The securing element 330 can be a braid or stent, a laser cut expandable component such as a sphere, a compressible foam rubber or polymer pad (in either case in suitable shape such as a cylinder, sleeve or sphere), or one or more struts extending between the first connector 332 and the second connector 334. In one embodiment, the securing element 330 is a heat-set array of nitinol wires. The size of the wires and the shape and configuration of the array can be chosen to give the securing element 330 different characteristics. For example, in some embodiments, using thicker wires or increasing the number of wires in the array can increase a frictional force between the securing element 330 and the cover 200. The securing element 330 can further have any suitable shape or relative size. For example, the securing element 330 can have a generally spherical shape or an outer surface with a different generally curved or angular shape.
In the embodiment shown in
In the second state, the securing element 330 contacts and pushes outwardly against the cover 200 at a contact region 425 of the cover 200. The contact region 425 can have a greater or smaller area depending on the configuration of the securing element 330 and the amount of force F2 applied to the shaft 12. For example, in some embodiments, as the distance D2 between the connectors 332, 334 decreases (e.g., the Force F2 is increased), the contact region 425 becomes larger as the securing element 330 expands radially. The securing element 330 exerts a force against the cover 200 at the contact region 425, and indirectly exerts a force against the interior surface 417 of the delivery sheath 415 (i.e., through the cover 200). The force exerted by the securing element 330 on the cover 200 can be greater in the second state than in the stationary state (
In operation, the securing element 330 secures (e.g., grips) the cover 200 in the second state. For example, the securing element 330 is configured such that there is more friction between the securing element 330 and an inner surface 421 of the cover 200 than between an outer surface 423 of the cover 200 and the interior surface 417 of the delivery sheath 415 in the second state. More specifically, friction between the securing element 330 and the contact region 425 of the cover 200 causes a frictional force that opposes relative motion between the securing element 330 and the cover 200. Therefore, the cover 200 can slide proximally relative to the delivery sheath 415—but not relative to the securing element 330—when the force F2 is applied to the shaft 12.
The forces acting on the cover 200 can be more complicated than presently described. For example, the physical structure of the cover 200 can introduce a column force when the retrieval assembly 14 is retracted proximally. Moreover, the securing element 330 can impart some horizontal forces on the cover 200 at boundary regions between the contact region 425 and non-contacted portions of the cover 200.
In the embodiment illustrated in
In some embodiments, the cover 200 does not include any proximal region 427 when the securing element 330 is in the second state. For example, the securing element 330 can be positioned such that the contact region 425 is at or immediately adjacent to a terminus 429 (i.e., absolute end) of the cover 200. In particular, the second connector 334 can be coupled to the shaft 12 at a position that is proximal of the terminus 429 of the cover 200. Accordingly, the terminus 429 can be between the connectors 332, 334 such that, in the second state, the contact region 425 of the cover 200 includes the terminus 429 of the cover 200. In such embodiments, even minor bunching or other undesired movement of the cover 200 can be avoided as the retrieval assembly 14 is retracted proximally.
In order for the securing element 330 to secure the cover 200 as described above, at least a portion of the cover 200 and a portion of the securing element 330 must remain within the delivery sheath 415. In particular, at least portion of the contact region 425 of the cover 200 must be within the delivery sheath 415 to enable resheathing of the retrieval assembly 14. In some embodiments, the securing element 330 is configured to expand outward against the cover 200 when the securing element 330 is fully outside of the delivery sheath 415 and within a vessel lumen. In some such embodiments, the securing element 330 helps expand the cover 200 within the vessel lumen to facilitate moving the cover 200 to the second position (
Once resheathed, the delivery sheath 415 can be moved to reposition the retrieval assembly 14 at another location within the vasculature. Some embodiments of the present technology accordingly can allow the physician to partially deploy and then resheath the retrieval assembly 14 as many times as necessary.
This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions have not been shown and/or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may have another suitable order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with certain embodiments may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. Accordingly, this disclosure and associated technology can encompass other embodiments not expressly shown and/or described herein.
Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “comprising” and the like are used throughout this disclosure to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or one or more additional types of features are not precluded. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.
Skillrud, Erik, Deen, Daniel, Epstein, Evan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10028782, | Nov 03 2008 | MAGNETO THROMBECTOMY SOLUTIONS LTD | Method and apparatus for thrombus dissolution/thrombectomy by an electrode catheter device |
10029008, | Nov 02 2009 | Pulse Therapeutics, Inc. | Therapeutic magnetic control systems and contrast agents |
10039906, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
2918919, | |||
2943626, | |||
3996938, | Jul 10 1975 | Expanding mesh catheter | |
4347846, | Dec 07 1979 | Porges | Surgical extractor |
4611594, | Apr 11 1984 | Northwestern University | Medical instrument for containment and removal of calculi |
4650466, | Nov 01 1985 | LUTHER MEDICAL PRODUCTS, INC | Angioplasty device |
4657020, | Jul 10 1985 | Ballard Medical Products | Method of using a foreign object protector hood |
4699147, | Sep 25 1985 | CORDIS WEBSTER, INC | Intraventricular multielectrode cardial mapping probe and method for using same |
4790812, | Nov 15 1985 | Apparatus and method for removing a target object from a body passsageway | |
4807626, | Feb 14 1985 | Stone extractor and method | |
4832055, | Jul 08 1988 | Mechanically locking blood clot filter | |
4873978, | Dec 04 1987 | MICROVENTION, INC | Device and method for emboli retrieval |
4969891, | Mar 06 1989 | Removable vascular filter | |
4998539, | Dec 18 1987 | Method of using removable endo-arterial devices to repair detachments in the arterial walls | |
5034001, | Sep 08 1989 | Advanced Cardiovascular Systems, INC | Method of repairing a damaged blood vessel with an expandable cage catheter |
5057114, | Sep 18 1990 | COOK INCORPORATED, 925 SOUTH CURRY PIKE, BLOOMINGTON, IN 47402, A CORP OF IN | Medical retrieval basket |
5059178, | Aug 03 1988 | KOSHIN INTERNATIONAL CORPORATION 50% UNDIVIDED INTEREST | Method of percutaneously removing a thrombus from a blood vessel by using catheters and system for removing a thrombus from a blood vessel by using catheters |
5102415, | Sep 06 1989 | Apparatus for removing blood clots from arteries and veins | |
5147400, | May 10 1989 | United States Surgical Corporation | Connective tissue prosthesis |
5152777, | Jan 25 1989 | Uresil, LLC | Device and method for providing protection from emboli and preventing occulsion of blood vessels |
5192286, | Jul 26 1991 | CYSTOMEDIX, INC | Method and device for retrieving materials from body lumens |
5300086, | Jul 17 1991 | Device with a locating member for removably implanting a blood filter in a vein of the human body | |
5329942, | Aug 14 1990 | Cook Medical Technologies LLC | Method for filtering blood in a blood vessel of a patient |
5443478, | Sep 02 1992 | BOARD OF REGENTS THE UNIVERSITY OF TEXAS SYSTEM | Multi-element intravascular occlusion device |
5449372, | Oct 09 1990 | Boston Scientific Scimed, Inc | Temporary stent and methods for use and manufacture |
5458375, | Apr 25 1994 | The Anspach Effort, Inc. | Rotary connector for fluid conduits |
5490859, | Nov 13 1992 | Boston Scientific Scimed, Inc | Expandable intravascular occlusion material removal devices and methods of use |
5496330, | Feb 19 1993 | Boston Scientific Corporation | Surgical extractor with closely angularly spaced individual filaments |
5509900, | Mar 02 1992 | Apparatus and method for retaining a catheter in a blood vessel in a fixed position | |
5653684, | Mar 19 1994 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Catheter with expandable wire mesh tip |
5658296, | Nov 21 1994 | Boston Scientific Scimed, Inc | Method for making surgical retrieval baskets |
5709704, | Nov 30 1994 | Lifescreen Sciences LLC | Blood clot filtering |
5733302, | Mar 25 1993 | Hemodynamics, Inc. | Cardiovascular stent and retrieval apparatus |
5741325, | Oct 01 1993 | Emory University; Georgia Tech Research Corporation | Self-expanding intraluminal composite prosthesis |
5792156, | Jun 27 1995 | Laboratoire Perouse Implant | Instrument for vascular surgery and its use |
5827324, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device |
5846251, | Jul 22 1996 | Applied Medical Resources Corporation | Access device with expandable containment member |
5895398, | Feb 02 1996 | The Regents of the University of California | Method of using a clot capture coil |
5941869, | Feb 12 1997 | PROLIFIX MEDICAL, INC | Apparatus and method for controlled removal of stenotic material from stents |
5947995, | Jun 06 1997 | ENDOVENTION, INC | Method and apparatus for removing blood clots and other objects |
5968090, | Sep 08 1997 | United States Surgical Corp. | Endovascular graft and method |
5971938, | Apr 02 1996 | Applied Medical Resources Corporation | Access device with expandable containment member |
5972019, | Jul 25 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot treatment device |
5984957, | Aug 12 1997 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Radially expanded prostheses with axial diameter control |
6001118, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device and method |
6033394, | Dec 05 1997 | Covidien LP | Catheter support structure |
6042598, | May 08 1997 | Edwards Lifesciences Corporation | Method of protecting a patient from embolization during cardiac surgery |
6053932, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device |
6066149, | Sep 30 1997 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot treatment device with distal filter |
6066158, | Jul 25 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot encasing and removal wire |
6096053, | May 03 1996 | Boston Scientific Scimed, Inc | Medical retrieval basket |
6099534, | Oct 01 1997 | Boston Scientific Scimed, Inc | Releasable basket |
6146403, | May 22 1997 | Boston Scientific Scimed, Inc | Variable expansion force stent |
6159220, | Mar 11 1999 | Boston Scientific Scimed, Inc | Medical retrieval device |
6165200, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6168603, | Feb 02 1995 | Boston Scientific Corporation | Surgical extractor |
6174318, | Oct 01 1997 | Boston Scientific Scimed, Inc | Basket with one or more moveable legs |
6176873, | Jun 25 1997 | Asahi Kogaku Kogyo Kabushiki Kaisha | Stent for endoscope |
6190394, | Nov 05 1999 | Annex Medical, Inc.; ANNEX MEDICAL, INC | Medical retrieval basket |
6217609, | Jun 30 1998 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Implantable endoprosthesis with patterned terminated ends and methods for making same |
6221006, | Feb 10 1998 | Artemis Medical, Inc | Entrapping apparatus and method for use |
6245088, | Jul 07 1997 | Retrievable umbrella sieve and method of use | |
6245089, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device and method |
6248113, | Jun 20 1996 | Device for the electrolytic dissolution of urinary stones and related method of treatment of urinary calculosis | |
6264664, | Mar 10 2000 | General Science and Technology Corp. | Surgical basket devices |
6302895, | Mar 11 1999 | SciMed Life Systems, Inc. | Medical retrieval device and method of making |
6309399, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
6348056, | Aug 06 1999 | Boston Scientific Scimed, Inc | Medical retrieval device with releasable retrieval basket |
6350266, | Feb 02 1995 | Boston Scientific Scimed, Inc | Hybrid stone retrieval device |
6364895, | Oct 07 1999 | Prodesco, Inc. | Intraluminal filter |
6371971, | Nov 15 1999 | Boston Scientific Scimed, Inc | Guidewire filter and methods of use |
6383195, | Apr 13 1998 | Endoline, Inc. | Laparoscopic specimen removal apparatus |
6383196, | Feb 02 1995 | SciMed Life Systems, Inc. | Surgical extractor |
6391044, | Feb 03 1997 | ANGIOGUARD, INC | Vascular filter system |
6402771, | Dec 23 1999 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Snare |
6409750, | Feb 01 1999 | Board of Regents, The University of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
6416505, | May 05 1998 | Boston Scientific Scimed, Inc | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and pressure application probe for use with same |
6425909, | Nov 04 1999 | Stryker Corporation | Methods and devices for filtering fluid flow through a body structure |
6436112, | Feb 02 1996 | The Regents of the University of California | Method of using a clot capture coil |
6443972, | Nov 19 1997 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Vascular filter |
6458139, | Jun 21 1999 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Filter/emboli extractor for use in variable sized blood vessels |
6485497, | Feb 02 1996 | The Regents of the University of California | Method of using a clot capture coil |
6494884, | Feb 09 2001 | Stryker Corporation | Methods and devices for delivering occlusion elements |
6506204, | Jan 24 1996 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Method and apparatus for occluding aneurysms |
6514273, | Mar 22 2000 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Device for removal of thrombus through physiological adhesion |
6530935, | Feb 02 1996 | Regents of the University of California, The | Clot capture coil and method of using the same |
6540657, | Dec 28 2000 | STRYKER EUROPEAN HOLDINGS III, LLC | Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance |
6540768, | Feb 09 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Vascular filter system |
6551342, | Aug 24 2001 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Embolic filter |
6575997, | Dec 23 1999 | ENDOVASCULAR TECHNOLOGIES, INC | Embolic basket |
6585753, | Mar 28 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Expandable coil stent |
6592605, | May 05 1997 | Board of Regents, The University of Texas System | Wire frame partial flow obstruction device for aneurysm treatment |
6592607, | Dec 23 1999 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Snare |
6602271, | May 24 2000 | Medtronic Ave, Inc | Collapsible blood filter with optimal braid geometry |
6605102, | Jul 08 1994 | EV3 INC | Intravascular trap and method of trapping particles in bodily fluids |
6610077, | Jan 23 2001 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Expandable emboli filter and thrombectomy device |
6616679, | Jul 30 1999 | Incept LLC | Rapid exchange vascular device for emboli and thrombus removal and methods of use |
6620148, | Aug 04 1999 | Boston Scientific Scimed, Inc | Filter flush system and methods of use |
6635068, | Feb 10 1998 | Ethicon Endo-Surgery, Inc | Occlusion, anchoring, tensioning and flow direction apparatus and methods for use |
6636758, | May 01 2001 | Stryker Corporation | Marker wire and process for using it |
6638245, | Jun 26 2001 | Stryker Corporation | Balloon catheter |
6638293, | Feb 02 1996 | Medtronic Vascular, Inc | Methods and apparatus for blocking flow through blood vessels |
6641590, | Dec 23 1999 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Snare |
6645199, | Nov 22 1999 | Boston Scientific Scimed, Inc | Loop structures for supporting diagnostic and therapeutic elements contact with body tissue and expandable push devices for use with same |
6652505, | Aug 03 1999 | Boston Scientific Scimed, Inc | Guided filter with support wire and methods of use |
6652548, | Mar 31 2000 | Covidien LP | Expansible shearing catheters for thrombus removal |
6660021, | Dec 23 1999 | Advanced Cardiovascular Systems, INC | Intravascular device and system |
6663650, | Jun 29 2000 | Stryker Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
6673042, | Nov 22 1999 | Expandable venous cannula and method of use | |
6679893, | Nov 16 2000 | Covidien LP | Grasping device and method of use |
6685738, | Jan 31 2000 | LifeShield Sciences LLC | Braided endoluminal device having tapered filaments |
6692508, | Feb 02 1996 | The Regents of the University of California | Method of using a clot capture coil |
6692509, | Feb 02 1996 | Regents of the University of California | Method of using a clot capture coil |
6695858, | Feb 10 1998 | Artemis Medical, Inc. | Medical device and methods for use |
6702782, | Jun 26 2001 | Stryker Corporation | Large lumen balloon catheter |
6730104, | Jun 29 2000 | Stryker Corporation | Methods and devices for removing an obstruction from a blood vessel |
6745080, | Nov 22 1999 | Boston Scientific Scimed, Inc | Helical and pre-oriented loop structures for supporting diagnostic and therapeutic elements in contact with body tissue |
6746468, | Jun 02 1999 | Stryker Corporation | Devices and methods for treating vascular malformations |
6749619, | Nov 20 2001 | The Cleveland Clinic Foundation | Apparatus and method for eliminating dislodged thrombus |
6755813, | Nov 20 2001 | Cleveland Clinic Foundation | Apparatus and method for performing thrombolysis |
6800080, | May 03 1996 | SciMed Life Systems, Inc. | Medical retrieval device |
6824545, | Jun 29 2000 | Stryker Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
6855155, | Jul 24 1998 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
6872211, | Feb 02 1995 | SciMed Life Systems, Inc. | Hybrid stone retrieval device |
6872216, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device and method |
6890341, | Nov 04 1999 | Stryker Corporation | Methods and devices for filtering fluid flow through a body structure |
6893431, | Oct 15 2001 | Boston Scientific Scimed, Inc | Medical device for delivering patches |
6905503, | Feb 09 2001 | Stryker Corporation | Methods and devices for delivering occlusion elements |
6913612, | Dec 23 1999 | ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories | Snare |
6936059, | Jan 16 2001 | Boston Scientific Scimed, Inc | Endovascular guidewire filter and methods of use |
6939362, | Nov 27 2001 | Advanced Cardiovascular Systems, INC | Offset proximal cage for embolic filtering devices |
6945977, | Dec 06 1999 | Covidien LP | Systems and methods for clot disruption and retrieval |
6953465, | Mar 25 2002 | Stryker Corporation | Containers and methods for delivering vaso-occluding filaments and particles |
6964672, | May 07 1999 | Salviac Limited | Support frame for an embolic protection device |
7004955, | Aug 24 2001 | Endovascular Technologies, Inc. | Embolic filter |
7004956, | Dec 23 1999 | Endovascular Technologies, Inc. | Embolic basket |
7037320, | Dec 21 2001 | Salviac Limited | Support frame for an embolic protection device |
7041126, | May 23 2003 | TAEWOONG MEDICAL CO , LTD | Flexible self-expandable stent and method of producing the same |
7048014, | Feb 01 1999 | Board of Regents, The University of Texas System | Methods for creating woven devices |
7058456, | Aug 09 2002 | Stryker Corporation | Methods and devices for changing the shape of a medical device |
7097653, | Jan 04 2000 | PFM MEDICAL AG | Implant for the closing of defect openings in the body of a human or animal and a system for the placement of such an implant |
7101380, | Jun 28 2001 | Nordson Corporation | Surgical device for retrieval of foreign objects from a body |
7169165, | Jan 16 2001 | Boston Scientific Scimed, Inc | Rapid exchange sheath for deployment of medical devices and methods of use |
7179273, | Jun 21 1999 | Endovascular Technologies, Inc. | Filter/emboli extractor for use in variable sized blood vessels |
7182771, | Dec 20 2001 | CARDIOVASCULAR TECHNOLOGIES, INC | Vascular couplers, techniques, methods, and accessories |
7235061, | Aug 03 1999 | Boston Scientific Scimed, Inc | Guided filter with support wire and methods of use |
7240516, | Aug 03 2004 | Medtronic Vascular, Inc.; Medtronic Vascular, Inc | Flexible resheathable stent design |
7399308, | Feb 12 1999 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Vascular filter system |
7534252, | Jun 29 2000 | Stryker Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
7578830, | Mar 08 1999 | Minimally invasive medical device deployment and retrieval system | |
7585741, | Jul 19 2004 | Round Rock Research, LLC | Methods of forming capacitors |
7621870, | Mar 12 2002 | Covidien LP | Everted filter device |
7837702, | Dec 21 2005 | NEXEON MEDSYSTEMS, INC | Interventional catheter for retrograde use having embolic protection capability and methods of use |
8070791, | Oct 17 2007 | Covidien LP | Multiple layer embolus removal |
8088140, | May 19 2008 | Covidien LP | Blood flow restorative and embolus removal methods |
8105333, | Jan 22 2002 | Stryker Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
8197493, | Oct 17 2007 | Covidien LP | Method for providing progressive therapy for thrombus management |
8267940, | Jun 29 2000 | Stryker Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
8603014, | Oct 05 2010 | CEREVAST MEDICAL, INC | Hands-free operator-independent transcranial ultrasound apparatus and methods |
8837800, | Oct 28 2011 | The Board of Trustees of the Leland Stanford Junior University; BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Automated detection of arterial input function and/or venous output function voxels in medical imaging |
9119656, | Sep 10 2004 | PENUMBRA, INC. | System and method for treating ischemic stroke |
9126018, | Sep 04 2014 | SILK ROAD MEDICAL, INC | Methods and devices for transcarotid access |
9211132, | Jun 27 2012 | MICROVENTION, INC | Obstruction removal system |
9241699, | Sep 04 2014 | SILK ROAD MEDICAL, INC | Methods and devices for transcarotid access |
9265512, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9308007, | Aug 14 2012 | W L GORE & ASSOCIATES, INC | Devices and systems for thrombus treatment |
9399118, | Sep 04 2014 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
9445828, | Jul 05 2012 | Cognition Medical Corp | Methods, devices, and systems for postconditioning with clot removal |
9445829, | Mar 14 2013 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
9492637, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9539022, | Nov 28 2012 | MicroVention, Inc.; MICROVENTION, INC | Matter conveyance system |
9561345, | Dec 23 2013 | ROUTE 92 MEDICAL, INC | Methods and systems for treatment of acute ischemic stroke |
9579119, | Aug 14 2012 | W. L. Gore & Associates, Inc. | Devices and systems for thrombus treatment |
9642635, | Mar 13 2013 | Neuravi Limited | Clot removal device |
9655633, | Oct 05 2011 | PENUMBRA, INC | System and method for treating ischemic stroke |
9737318, | Nov 19 2010 | Phenox GmbH | Thrombectomy device |
9770251, | Aug 13 2012 | MICROVENTION, INC | Shaped removal device |
9801643, | Sep 02 2014 | Cook Medical Technologies LLC | Clot retrieval catheter |
9861783, | Dec 23 2013 | SILK ROAD MEDICAL, INC | Transcarotid neurovascular catheter |
9993257, | Sep 07 2016 | NeuroVarc Technologies Inc. | Clot retrieval device for ischemic stroke treatment |
20010041909, | |||
20010044632, | |||
20010044634, | |||
20010051810, | |||
20020002396, | |||
20020004667, | |||
20020026211, | |||
20020058904, | |||
20020062135, | |||
20020072764, | |||
20020082558, | |||
20020123765, | |||
20020138094, | |||
20020151928, | |||
20020169474, | |||
20020188314, | |||
20020193825, | |||
20030004542, | |||
20030023265, | |||
20030040771, | |||
20030050663, | |||
20030060782, | |||
20030093087, | |||
20030144687, | |||
20030153935, | |||
20030176884, | |||
20030195556, | |||
20040068288, | |||
20040073243, | |||
20040079429, | |||
20040133232, | |||
20040138692, | |||
20040153025, | |||
20040153118, | |||
20040172056, | |||
20040199201, | |||
20040199243, | |||
20040210116, | |||
20040267301, | |||
20050004594, | |||
20050033348, | |||
20050038447, | |||
20050043680, | |||
20050043756, | |||
20050049619, | |||
20050055033, | |||
20050055047, | |||
20050059995, | |||
20050080356, | |||
20050085826, | |||
20050085847, | |||
20050085849, | |||
20050090857, | |||
20050090858, | |||
20050125024, | |||
20050131450, | |||
20050171566, | |||
20050203571, | |||
20050209609, | |||
20050216030, | |||
20050216050, | |||
20050234501, | |||
20050234505, | |||
20050277978, | |||
20050283166, | |||
20050283186, | |||
20060004404, | |||
20060009784, | |||
20060030925, | |||
20060047286, | |||
20060058836, | |||
20060058837, | |||
20060058838, | |||
20060095070, | |||
20060129166, | |||
20060129180, | |||
20060155305, | |||
20060190070, | |||
20060195137, | |||
20060229638, | |||
20060253145, | |||
20060271153, | |||
20060276805, | |||
20060282111, | |||
20060287668, | |||
20070112374, | |||
20070118165, | |||
20070149996, | |||
20070185500, | |||
20070185501, | |||
20070197103, | |||
20070198029, | |||
20070198030, | |||
20070198051, | |||
20070225749, | |||
20070233236, | |||
20070265656, | |||
20080109031, | |||
20080183198, | |||
20080188885, | |||
20080262528, | |||
20080262532, | |||
20090069828, | |||
20090105722, | |||
20090105737, | |||
20090125053, | |||
20090192518, | |||
20090287291, | |||
20090299393, | |||
20100076452, | |||
20100100106, | |||
20100174309, | |||
20100185210, | |||
20100217187, | |||
20100256600, | |||
20100318097, | |||
20110160742, | |||
20110160757, | |||
20110160760, | |||
20110160761, | |||
20110160763, | |||
20110166586, | |||
20110288572, | |||
20110319917, | |||
20120143230, | |||
20120197285, | |||
20130030461, | |||
20130281788, | |||
20130317589, | |||
20140276074, | |||
20140276403, | |||
20140277013, | |||
20140317589, | |||
20140343595, | |||
20150359547, | |||
20160015402, | |||
20160015935, | |||
20160106448, | |||
20160106449, | |||
20160113663, | |||
20160113665, | |||
20160151618, | |||
20160157985, | |||
20160199620, | |||
20160296690, | |||
20160302808, | |||
20160354098, | |||
20160375180, | |||
20170079766, | |||
20170079767, | |||
20170086862, | |||
20170100143, | |||
20170105743, | |||
20170164963, | |||
20170215902, | |||
20170224953, | |||
20170281909, | |||
20170290599, | |||
20180049762, | |||
20180084982, | |||
20180116717, | |||
20180132876, | |||
20180140314, | |||
20180140315, | |||
20180140354, | |||
20180185614, | |||
CN102036611, | |||
CN1640505, | |||
DE3501707, | |||
EP200668, | |||
EP1312314, | |||
EP2319575, | |||
JP2002537943, | |||
JP2007252951, | |||
JP2007522881, | |||
JP2008539958, | |||
JP2011508635, | |||
JP2014004219, | |||
JP2018118132, | |||
KR20180102877, | |||
WO53120, | |||
WO72909, | |||
WO132254, | |||
WO154622, | |||
WO167967, | |||
WO228291, | |||
WO3000334, | |||
WO3061730, | |||
WO3089039, | |||
WO2006031410, | |||
WO2006122076, | |||
WO2007092820, | |||
WO2008036156, | |||
WO2008131116, | |||
WO2009034456, | |||
WO2009086482, | |||
WO2011091383, | |||
WO2012009675, | |||
WO2012162437, | |||
WO2013106146, | |||
WO2015141317, | |||
WO2017192999, | |||
WO2018019829, | |||
WO2018033401, | |||
WO2018046408, | |||
WO2018137029, | |||
WO2018137030, | |||
WO2018145212, | |||
WO2018156813, | |||
WO2018172891, | |||
WO2018187776, | |||
WO9409845, | |||
WO9509586, | |||
WO9601591, | |||
WO9617634, | |||
WO9619941, | |||
WO9727808, | |||
WO9727893, | |||
WO9803120, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 26 2017 | SKILLRUD, ERIK | Covidien LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051583 | /0766 | |
Jun 26 2017 | DEEN, DANIEL | Covidien LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051583 | /0766 | |
Jun 26 2017 | EPSTEIN, EVAN | Covidien LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051583 | /0766 | |
Jan 22 2020 | Covidien LP | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 22 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Nov 15 2025 | 4 years fee payment window open |
May 15 2026 | 6 months grace period start (w surcharge) |
Nov 15 2026 | patent expiry (for year 4) |
Nov 15 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 15 2029 | 8 years fee payment window open |
May 15 2030 | 6 months grace period start (w surcharge) |
Nov 15 2030 | patent expiry (for year 8) |
Nov 15 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 15 2033 | 12 years fee payment window open |
May 15 2034 | 6 months grace period start (w surcharge) |
Nov 15 2034 | patent expiry (for year 12) |
Nov 15 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |