A surgical instrument is disclosed. The surgical instrument can include a first jaw, a second jaw, and a jaw closure lockout system. The first jaw can comprise a pivot pin slot and a slide pin slot. The second jaw can comprise an anvil and, in addition, a mounting portion comprising a pivot pin, which can be movably positioned in the pivot pin slot. A shiftable guide can be movably positioned in the first jaw and can comprise a body and a barrier wall. The body can comprise a slide pin movably positioned in the slide pin slot. The barrier wall can be aligned with a portion of the pivot pin slot when the slide pin is positioned within a range of positions in the slide pin slot, and the barrier wall can be offset from the pivot pin slot when the slide pin is positioned outside the range of positions.

Patent
   11547410
Priority
Jun 13 2014
Filed
Jul 23 2020
Issued
Jan 10 2023
Expiry
Dec 25 2034
Extension
195 days
Assg.orig
Entity
Large
1
1684
currently ok
2. A surgical instrument, comprising:
a housing;
a firing actuator;
a shaft extending from said housing, wherein said shaft comprises a firing bar;
an end effector extending from said shaft, wherein said end effector comprises:
a longitudinal axis;
a first jaw comprising a slot comprising a locking portion; and
a second jaw movable relative to said first jaw between an unclamped position and a clamped position, wherein said second jaw comprises a pivot pin movably positioned in said slot;
a staple cartridge seatable in said first jaw, wherein said staple cartridge comprises a plurality of staples removably stored therein; and
a lock system, comprising:
a lock member movable relative to said first jaw between a locked position and an unlocked position; and
a biasing member configured to bias said lock member into said locked position when said staple cartridge is not seated in said first jaw, wherein said pivot pin is retained in said locking portion of said slot to prevented said second jaw from moving into said clamped position when said lock member is in said locked position, and wherein said lock member is moved from said locking position to said unlocking position by a portion of said staple cartridge when said staple cartridge is seated in said first jaw, and wherein said pivot pin is moved out of said locking portion of said slot to permit said second jaw to move into said clamped position when said lock member is moved from said locked position toward said unlocked position.
1. A surgical instrument, comprising:
a housing;
a firing actuator;
a shaft extending from said housing, wherein said shaft comprises a firing bar;
an end effector extending from said shaft, wherein said end effector comprises:
a longitudinal axis;
a first jaw comprising a channel, wherein said channel comprises a slot and a locking recess; and
a second jaw movable relative to said first jaw between an open position and a closed position, wherein said second jaw comprises a pivot pin movably positioned in said slot;
a fastener cartridge seatable in said channel, wherein said fastener cartridge comprises a plurality of fasteners removably stored therein; and
a lock system, comprising:
a lock member longitudinally movable relative to said first jaw between a proximal position and a distal position; and
a biasing member configured to bias said lock member into said distal position when said fastener cartridge is not seated in said channel, wherein said pivot pin is retained in said locking recess to prevent said second jaw from moving into said closed position when said lock member is in said distal position, and wherein said lock member is moved from said distal position to said proximal position by a portion of said fastener cartridge when said fastener cartridge is seated in said channel, and wherein said pivot pin is moved out of said locking recess to permit said second jaw to move into said closed position when said lock member is moved from said distal position toward said proximal position.

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/058,427, entitled CLOSURE LOCKOUT SYSTEMS FOR SURGICAL INSTRUMENTS, filed Aug. 8, 2018, now U.S. Patent Application Publication No. 2019/0038287, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/304,077, entitled CLOSURE LOCKOUT SYSTEMS FOR SURGICAL INSTRUMENTS, filed Jun. 13, 2014, which issued on Aug. 14, 2018 as U.S. Pat. No. 10,045,781, the entire disclosures of which are hereby incorporated by reference herein.

The present invention relates to surgical instruments and, in various embodiments, to surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.

The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a perspective view of a surgical stapling instrument embodiment;

FIG. 2 is an exploded assembly view of the surgical stapling instrument of FIG. 1;

FIG. 3 is an exploded assembly view of a portion of an articulation assembly embodiment;

FIG. 4 is a partial exploded perspective view of a portion of the handle;

FIG. 5 is a side view of the handle with a handle case removed;

FIG. 6 is a partial exploded perspective view of an end effector and anvil lock embodiment;

FIG. 6A is a partial exploded perspective view of another end effector and anvil lock member embodiment;

FIG. 7 is a perspective view of an anvil lock member embodiment;

FIG. 7A is a perspective view of an anvil lock member embodiment of FIG. 6A;

FIG. 8 is a side elevational view of an end effector embodiment in an open position;

FIG. 9 is a top view of the end effector of FIG. 8;

FIG. 10 is a bottom view of the end effector depicted in FIGS. 8 and 9;

FIG. 11 is a partial bottom perspective view of an anvil embodiment;

FIG. 12 is a perspective view of a pivot mount embodiment;

FIG. 13 is a bottom perspective view of the pivot mount embodiment of FIG. 12;

FIG. 14 is a perspective view of a proximal end portion of a surgical staple cartridge embodiment;

FIG. 15 is a side elevational view of the surgical staple cartridge embodiment depicted in FIG. 14;

FIG. 16 is a side view of an end effector embodiment prior to seating a staple cartridge in the elongate channel;

FIG. 17 is a cross-sectional view of the end effector depicted in FIG. 16;

FIG. 18 is a side view of an end effector embodiment of FIGS. 16 and 17 with the anvil in the open position and wherein a surgical staple cartridge is being inserted into the elongate channel;

FIG. 19 is a cross-sectional view of the end effector of FIG. 18;

FIG. 20 is a side view of the end effector of FIGS. 16-19 with the staple cartridge embodiment seated within the elongate channel;

FIG. 21 is a cross-sectional view of the end effector of FIG. 20;

FIG. 22 is a side elevational view of the end effector of FIGS. 16-22 clamping tissue;

FIG. 23 is a cross-sectional view of the end effector of FIG. 22;

FIG. 24 is a side elevational view of the end effector of FIGS. 16-23 in a fully clamped position ready to fire;

FIG. 25 is a cross-sectional view of the end effector of FIG. 24;

FIG. 26 is an exploded assembly view of another surgical stapling instrument embodiment;

FIG. 27 is a perspective view of another pivot mount embodiment;

FIG. 28 is a bottom perspective view of the pivot mount embodiment of FIG. 27,

FIG. 29 is a partial exploded perspective view of an end effector and another anvil lock member embodiment;

FIG. 30 is a perspective view of another anvil lock member embodiment;

FIG. 31 is a partial side elevational view of a proximal end portion of another surgical staple cartridge embodiment;

FIG. 32 is a perspective view of a proximal end portion of the surgical staple cartridge embodiment of FIG. 31;

FIG. 33 is a side view of another end effector embodiment prior to seating a staple cartridge in the elongate channel;

FIG. 34 is a cross-sectional view of the end effector depicted in FIG. 33;

FIG. 35 is a side view of an end effector embodiment of FIGS. 33 and 34 with the anvil in the open position and wherein a surgical staple cartridge is being inserted into the elongate channel;

FIG. 36 is a cross-sectional view of the end effector of FIG. 35;

FIG. 37 is a side view of the end effector of FIGS. 33-36 with the staple cartridge embodiment seated within the elongate channel;

FIG. 38 is a cross-sectional view of the end effector of FIG. 37;

FIG. 39 is a side elevational view of the end effector of FIGS. 33-38 clamping tissue;

FIG. 40 is a cross-sectional view of the end effector of FIG. 39;

FIG. 41 is a side elevational view of the end effector of FIGS. 33-40 in a fully clamped position ready to fire; and

FIG. 42 is a cross-sectional view of the end effector of FIG. 41;

FIG. 43 is a perspective view of an end effector including an anvil, a closure tube engageable with the anvil, an elongate channel, and a staple cartridge positioned in the elongate channel according to various embodiments of the present disclosure;

FIG. 44 is a cross-sectional, perspective view of the end effector of FIG. 43, illustrated with a cutting element and a wedge sled removed therefrom for the purposes of illustration;

FIG. 45 is an exploded perspective view of the end effector of FIG. 43;

FIG. 46 is a partial exploded perspective view of the end effector of FIG. 43;

FIG. 47 is another partial exploded perspective view of the end effector of FIG. 43;

FIG. 48 is an elevation view of the end effector of FIG. 43 depicting the anvil in an open orientation, an anvil lockout system, and the staple cartridge removed from the elongate channel, wherein the closure tube of the end effector has been illustrated in cross-section to illustrate various other aspects of the end effector;

FIG. 49 is a cross-sectional elevation view of the end effector of FIG. 43 in the configuration illustrated in FIG. 48;

FIG. 50 is a detail view of the anvil lockout system as depicted in FIG. 48;

FIG. 51 is a detail view of the anvil lockout system as depicted in FIG. 49;

FIG. 52 is an elevation view of the end effector of FIG. 43 depicting the anvil in an open orientation, the anvil lockout system, and the staple cartridge positioned in the elongate channel, wherein the closure tube of the end effector has been illustrated in cross-section to illustrate other various aspects of the end effector;

FIG. 53 is a cross-sectional elevation view of the end effector of FIG. 43 in the configuration illustrated in FIG. 52;

FIG. 54 is a detail view of the anvil lockout system depicted in FIG. 53, wherein a mounting portion of the anvil is shaded for the purposes of illustration;

FIG. 55 is an elevation view of the end effector of FIG. 43 illustrating the staple cartridge positioned in the elongate channel and the anvil in a partially closed orientation, wherein the closure tube, depicted in cross-section, has been advanced distally to move the anvil into its partially closed orientation;

FIG. 56 is a cross-sectional elevation view of the end effector of FIG. 43 in the configuration illustrated in FIG. 55;

FIG. 57 is a detail view of the anvil lockout system as depicted in FIG. 55;

FIG. 58 is a detail view of the anvil lockout system as depicted in FIG. 56;

FIG. 59 is an elevation view of the end effector of FIG. 43 illustrating the staple cartridge positioned in the elongate channel and the anvil in a fully clamped orientation, wherein the closure tube, depicted in cross-section, has been advanced distally to move the anvil into its fully clamped orientation; and

FIG. 60 is a cross-sectional elevation view of the end effector of FIG. 43 in the configuration illustrated in FIG. 59.

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.

Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.

The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.

Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.

Turning to the Drawings wherein like numerals denote like components throughout the several views, FIGS. 1 and 2 depict a surgical stapling device 10 that is capable of practicing the unique benefits of various embodiments disclosed herein. An exemplary surgical device that has features with which embodiments of the present invention may be effectively employed is disclosed in U.S. Pat. No. 5,704,534, entitled ARTICULATION ASSEMBLY FOR SURGICAL INSTRUMENTS, which issued Jun. 6, 1998, the entire disclosure of which is herein incorporated by reference. Various other exemplary surgical stapling device embodiments are described in greater detail in the following U.S. patents which are each herein incorporated by reference in their respective entireties: U.S. Pat. No. 6,964,363, entitled SURGICAL STAPLING INSTRUMENT HAVING ARTICULATION JOINT SUPPORT PLATES FOR SUPPORTING A FIRING BAR, which issued Nov. 15, 2005; U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING MOTIONS, which issued Feb. 21, 2006; U.S. Pat. No. 7,044,352, entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, which issued May 16, 2006; U.S. Pat. No. 7,111,769, entitled SURGICAL INSTRUMENT INCORPORATING AN ARTICULATION MECHANISM HAVING ROTATION ABOUT THE LONGITUDINAL AXIS, which issued Sep. 26, 2006; and U.S. Pat. No. 7,143,923, entitled SURGICAL STAPLING INSTRUMENT HAVING A FIRING LOCKOUT FOR AN UNCLOSED ANVIL, which issued Dec. 5, 2006.

Referring again to FIGS. 1 and 2, the depicted surgical stapling device 10 includes a handle 20 that is operably connected to an implement portion 22, the latter further comprising an elongate shaft assembly 30 that is operably coupled to an end effector 200. The handle 20 includes a pistol grip 24 toward which a closure trigger 152 is pivotally drawn by the clinician to cause clamping, or closing of an anvil 220 toward an elongate channel 210 of the end effector 200. A firing trigger 102 is farther outboard of the closure trigger 152 and is pivotally drawn by the clinician to cause the stapling and severing of clamped tissue in the end effector 200.

For example, closure trigger 152 is actuated first. Once the clinician is satisfied with the positioning of the end effector 200, the clinician may draw back the closure trigger 152 to its fully closed, locked position proximate to the pistol grip 24. Then, the firing trigger 102 is actuated. The firing trigger 102 springedly returns when the clinician removes pressure. A release button 120 when depressed on the proximal end of the handle 20 releases the locked closure trigger 152.

Articulation System

The depicted embodiment include an articulation assembly 62 that is configured to facilitate articulation of the end effector 200 about the elongate axis A-A of the device 10. Various embodiments, however, may also be effectively employed in connection with non-articulatable surgical stapling devices. As can be seen in FIG. 2, for example, the elongate shaft assembly 30 includes a proximal closure tube segment 151 that is operably supported by a nozzle 60 that is supported on the handle 20. The handle 20 may be formed from two handle cases 21, 23 that operably contain firing and closure systems 100, 150. A proximal end portion 153 of the proximal closure tube segment 151 is rotatably supported by the handle 20 to facilitate its selective rotation about the elongate axis A-A. See FIG. 1. As can also be seen in FIGS. 1 and 2, in at least one embodiment, a distal end portion 157 of the proximal closure tube segment 151 is coupled to a flexible neck assembly 70. The flexible neck assembly 70 has first and second flexible neck portions, 72 and 74, which receive first and second elongate flexible transmission band assemblies 83, 85. The first and second transmission band assemblies 83, 85 have exterior reinforcement band portions 86, 87, respectively, extending distally from the structural portions of the bands. Each exterior reinforcement band portion 86, 87 has a plurality of attachment lugs 88 for securing first and second interior articulation bands 89, 90. See FIG. 2. The transmission band assemblies 83, 85 may be, for example, composed of a plastic, especially a glass fiber-reinforced amorphous polyamide, sold commercially under the trade name Grivory GV-6H by EMS-American Grilon. In contrast, it may be desired that the interior articulation bands 89, 90 of the transmission band assemblies 83, 85 be composed of a metal, advantageously full hard 301 stainless steel or its equivalent. The attachment lugs 88 on the exterior reinforcement band portions 86, 87 of the transmission bands 83, 85 are received into and secured within a plurality of lug holes 91 on the corresponding interior articulation band 89, 90. At the distal end of the first and second interior articulation band assemblies 89, 90 there are first and second connectors 92, 93. The articulation assembly further comprises distal articulation bands 96 and 97 that are configured to hookingly engage the first and second connectors 92, 93, respectively. The articulation bands 96 and 97 have receptacles 98, 99 to couple the bands 96, 97 to the end effector 200 as will be discussed in further detail below.

In at least one form, the flexible neck assembly 70 is preferably composed of a rigid thermoplastic polyurethane sold commercially as ISOPLAST grade 2510 by the Dow Chemical Company. As can be seen in FIG. 3, the flexible neck assembly 70 has first and second flexible neck portions 72, 74. These neck portions 72, 74 are separated by a central longitudinal rib 73. See FIG. 6. The neck portions 72, 74 each have a plurality of neck ribs 75 configured essentially as semi-circular disks. The flexible neck portions 72, 74 together generally form a cylindrical configuration. A side slot 76 extends through each of the neck ribs 75 to provide a passage through the first and second flexible neck portions 72, 74 for receiving the interior articulation bands 89, 90 and exterior reinforcement band portions 86, 87 of the flexible band assemblies 83, 85. In a similar fashion, the central longitudinal rib 73 separating the first and second flexible neck portions 72, 74 has a central longitudinal slot for providing a passage to receive the stapler actuating members. Extending proximally from the first and second flexible neck portions 72, 74 are first and second support guide surfaces 77, 78 for supporting the reciprocating movement of the interior articulation bands 89, 90 and the exterior reinforcement portions 86, 87 of the flexible transmission band assemblies 83, 85. Extending from the distal end of the flexible neck portions 72, 74 is a channel guide 79 for guiding the movement of the stapler actuating members into a staple cartridge 300 of the end effector 200 as will be further discussed below.

In at least one form, when the first and second transmission band assemblies 83, 85 are brought into contact with each other during assembly of the instrument 10, they form an elongate cylinder which has a longitudinal cavity through it that is concentrically positioned between the band assemblies 83, 85 for the passage of a firing rod 110. The proximal ends of the first and second bands have first and second gear racks 94, 95 which, as will be discussed below, meshingly engage an articulation assembly 62.

Upon rotation of the articulation assembly 62, one of the first and second flexible transmission band assemblies is moved forwardly and the other band assembly is moved rearwardly. In response to the reciprocating movement of the band assemblies 83, 85 within the first and second flexible neck portions 72, 74 of the flexible neck assembly 70, the flexible neck assembly 70 bends to provide articulation. As can be seen in FIG. 5, an articulation assembly 62 includes an actuator 63, an articulation body 64 and the nozzle 60. Rotational movement of the actuator 63 causes corresponding rotation of the articulation body 64 within the nozzle 60. The first and second elongate transmission band assemblies 83, 85, consequently reciprocate axially in opposite directions parallel to the longitudinal axis A-A of the endoscopic shaft 30 of the stapling device 10 to cause the remote articulation of the end effector 200 through the flexible neck assembly 70. The articulation body 64 further includes a drive gear 65 thereon. As can be seen in FIG. 4, the drive gear 65 has a flared opening 66 through it, and a lower pivot 67. Within the flared opening 66 of the drive gear 65, there is a firing rod orifice 68 for receiving the firing rod 110 enabling the firing of staples into the clamped tissue in response to pivotal rotation of the firing trigger 102. The drive gear 65 is supported for meshing engagement with the first and second drive racks 94, 95 on the flexible elongate transmission band assemblies 83, 85 to effect the desired reciprocating movement of the band assemblies 83, 85.

As can be seen in FIG. 5, the nozzle 60 of the articulation assembly 62 has a nozzle body 61. The nozzle body 61 has an axial bore 69 extending through it for receiving the drive gear 65 of the articulation body 64. The bore 69 provides a continuous opening axially from the frame into the elongate endoscopic shaft 30 and therefore the firing rod 110 and other operative components of the stapling device 10 can communicate with the end effector 200. Further details relating to the articulation assembly 62 may be found in U.S. Pat. No. 5,704,534, which has been previously herein incorporated by reference.

Closure System

As will be discussed in further detail below, the end effector 200 comprises an elongate channel 210 that is configured to operably receive a surgical staple cartridge 300. An anvil 220 is movably supported relative to the elongate channel 210 and is moved from an open position (FIGS. 16 and 17) to closed positions wherein tissue may be cut and stapled (FIGS. 24 and 25). The movement of the anvil 220 between open and closed positions is at least partially controlled by a closure system, generally designated as 150, which, as indicated above, is controlled by the closure trigger 152. The closure system 150 includes the proximal closure tube segment 151 that operably houses the articulation band assemblies 83, 85 in the manner discussed above and which is non-movably coupled to the flexible neck assembly 70.

In various forms, the proximal closure tube segment 151 includes a proximal end portion 153 that axially extends through the bore 69 in the nozzle 60. The proximal closure tube segment 151 has elongate axial slots 155 therethrough to permit the articulation body 64 to extend therethrough. See FIG. 2. The slots 155 enable the articulation body 64 to rotate about articulation axis B-B relative to the proximal closure tube segment 151 while facilitating the axial movement of the proximal closure tube segment 151 along axis A-A relative to articulation body 64. The transmission bands 83, 85 function as a frame upon which the proximal closure tube segment 151 can axially move. The proximal end 153 of the proximal closure tube segment 151 is rotatably coupled to a closure yoke 154 that is supported within the handle 20 for reciprocating motion therein. See FIGS. 4 and 5.

The closure trigger 152 has a handle section 156, a gear segment section 158 and an intermediate section 160. See FIG. 5. A bore extends through the intermediate section 160. A cylindrical support member 162 extending from the second handle housing 23 passes through the bore for pivotably mounting the closure trigger 152 on the handle portion 20. A proximal end 98 of the closure yoke 154 has a gear rack 164 that is engaged by the gear segment section 158 of the closure trigger 152. When the closure trigger 152 is moved toward the pistol grip 24 of the handle portion 20, the closure yoke 154 and, hence, the proximal closure tube segment 151 move distally, compressing a spring 166 that biases the closure yoke 152 proximally.

In at least one form, the closure system 150 further includes a distal closure tube segment 170 that is non-movably coupled to the channel guide portion 79 of the flex neck assembly 70 by attachment tabs 72, 74. See FIGS. 9 and 10. The distal closure tube segment 170 has an opening 176 therein that is adapted to interface with an upstanding tab 224 formed on the anvil 220 as will be discussed in further detail below. Thus, axial movement of the proximal closure tube segment 151 results in axial movement of the flex neck assembly 70, as well as the distal closure tube segment 170. For example, distal movement of the proximal closure tube segment 151 effects pivotal translation movement of the anvil 220 distally and toward the elongate channel 210 of the end effector 200 and proximal movement effects opening of the anvil 220 as will be discussed in further detail below.

Firing System

In at least one form, the surgical instrument 10 further includes a firing system, generally designated as 100, for applying firing motions to the firing rod 110 in response to actuation of the firing trigger 102. In at least one form, the firing system 100 further includes a drive member 104 that has first and second gear racks 105, 106 thereon. A first notch 109 is provided on the drive member 105 intermediate the first and second gear racks 105, 106. During return movement of the firing trigger 102, a tooth 112 on the firing trigger 102 engages with the first notch 109 for returning the drive member 104 to its initial position after staple firing. A second notch 114 is located at a proximal end of the firing rod 110 for locking the firing rod 110 to an upper latch arm 122 of the release button 120 in its unfired position. The firing system 150 further includes first and second integral pinion gears 111, 113. The first integral pinion gear 111 is engaged with a drive rack 115 provided on the firing rod 110. The second integral pinion gear 113 is engaged with the first gear rack 105 on the drive member 104. The first integral pinion gear 111 has a first diameter and the second integral pinion gear 113 has a second diameter which is smaller than the first diameter.

In various embodiments, the firing trigger 102 is provided with a gear segment section 103. The gear segment section 103 engages the second gear rack 106 on the drive member 104 such that motion of the firing trigger 102 causes the drive member 104 to move back and forth between first and second drive positions. In order to prevent staple firing before tissue clamping has occurred, the upper latch arm 122 on the release button 120 is engaged with the second notch 114 on the drive rack 115 such that the firing rod 110 is locked in its proximal-most position. When the upper latch arm 122 falls into a recess in the closure yoke, the upper latch arm 122 disengages with the second notch 114 to permit distal movement of the firing rod 110. Because the first gear rack 105 on the drive member 104 and the drive rack 115 on the firing rod 110 are engaged, movement of the firing trigger 102 causes the firing rod 110 to reciprocate between a first reciprocating position and a second reciprocating position. Further details concerning various aspects of the firing system 150 may be gleaned from reference to U.S. Pat. No. 7,000,818 which has been herein incorporated by reference in its entirety.

As can be seen in FIG. 3, various embodiments, the distal end 117 of the firing rod 110 is rotatably received within a firing bar mounting yoke 118. The firing bar mounting yoke 118 has a slot 119 for hookingly receiving a hook 132 formed on a proximal end of a knife bar 130. In addition, as shown in FIG. 3, a support bar 140 is supported for axial movement between the first and second support guide surfaces 77, 78 of the flex neck assembly 70. The support bar 140 has a slot 142 that is configured to permit the knife bar 130 to slidably pass therethrough. The metal knife bar 130 has a tissue cutting edge 134 formed on its distal end and is configured to operably interface with a wedge sled operably supported within a surgical staple cartridge 300.

End Effector

As discussed above, in at least one form, an end effector 200 includes an elongate channel 210 that is configured to operably support a surgical staple cartridge 300 therein. As shown in FIGS. 2 and 6, the elongate channel 210 has a proximal end portion that includes two spaced mounting tabs 212 that are configured to be engaged by the hooks 998, 99 on the distal ends of the articulation bands 96, 97. Thus, the reciprocating motions of the articulation bands 96, 97 cause the elongate channel 210 to articulate relative to the flex neck assembly 70. As further indicated above, the end effector 200 also includes an anvil 220. In at least one form, the anvil 220 is fabricated from, for example, 416 Stainless Steel Hardened and Tempered RC35 Min (or similar material) and has a staple-forming undersurface 222 thereon that is configured for confronting engagement with the staple cartridge 300 when mounted in the elongate channel 210. The anvil 220 is formed with a proximally extending mounting portion 223 that includes two trunnion walls 226, 228 that each has a trunnion 30 protruding therefrom. See FIG. 11. In addition, formed on the underside 232 of the mounting portion 223 is a downwardly protruding pivot tab 234 that has a slot 236 extending therethrough that is configured to receive and support the knife bar 130 as it is axially advanced through the end effector 200 during cutting and stapling. In addition, the anvil opening tab 224 is formed on the mounting portion 223 such that it can operably interface with the opening 176 in the distal closure tube segment 170 as will be further discussed below. As can be seen in FIGS. 16-25, the anvil trunnions 230 are configured to be movably received in corresponding trunnion slots 214 formed in the proximal end of the elongate channel 210. Each trunnion slot 214 has an arcuate segment 216 that communicates with a locking notch 218.

To facilitate pivotal travel of the anvil mounting portion 223 relative to the elongate channel 210, various embodiments include a pivot mount 240. As can be in FIGS. 12 and 13, one form of a pivot mount 240 has a body portion 242 that is configured to be attached to the elongate channel 210. For example, the body portion 242 may be formed with two opposed attachment tabs 243 that are configured to retainingly engage tab openings 211 (FIG. 6) formed in the elongate channel 210. In addition, the pivot mount 240 has a proximally extending foot portion 244 that has a retainer lug 245 protruding therefrom that is configured to be received in a corresponding opening 211 in the elongate channel 210. See FIG. 17. The pivot mount 240 may be fabricated from, for example, Vectra A435 Liquid Crystal Polymer—natural or similar materials. As can be further seen in FIGS. 12 and 13, the body portion 242 has an upstanding central portion 246 that has a slot 247 extending therethrough for axially receiving the knife bar 130. The central portion 246 provides lateral support to the knife bar 130 as it is driven through tissue clamped within the end effector 200. Various embodiments of the pivot mount 240 further include rocker surfaces 248 formed on each side of the central portion 246 for pivotally receiving the trunnion walls 226, 228 of the anvil 220 thereon.

Anvil Lockout System

Various embodiments include a unique and novel anvil lockout system 250 that prevents closure of the anvil 220 when a staple cartridge 300 has not been properly installed in the elongate channel 210. Referring to FIGS. 6 and 7, for example, an embodiment of an anvil lockout system 250 includes a movable anvil lock member 260 that is movable in response to contact by a portion or portions of a staple cartridge 300 as will be discussed in further detail below. In at least one form, the anvil lock member 260 comprises a body portion 262 that has a distally protruding central support tab 264 formed thereon. A slot 266 extends through body portion 262 and the central support tab 264 to enable the knife bar 130 to pass therethrough. The body portion 262 further includes proximally extending mounting bar 268 that is configured to be slidably received within a corresponding mounting opening 270 in the channel guide 79 of the flex neck assembly 70. In addition, a biasing member in the form of, for example, a coil spring 269 is supported within the opening 270 to bias the anvil lock member 260 in the distal direction “DD”. See FIG. 16. When the anvil 220 is mounted to the elongate channel 210, the trunnions 230 are received within their corresponding trunnion slots 214 in the elongate channel 210, the central support tab 264 of the anvil lock member 260 is received between the trunnion walls 226, 228 to further provide support to the anvil 220. The body portion 262 of the anvil lock member 260 is further formed with two cam surfaces 263 configured to engage the proximal end surfaces 227, 229 of the trunnion walls 226, 228. See FIGS. 6 and 7. Various embodiments of the anvil lock member may be fabricated from, for example, Vectra A435 Liquid Crystal Polymer—natural or similar materials.

FIGS. 6A and 7A illustrate an alternative anvil lock member 260′ that is movable in response to contact by a portion or portions of a staple cartridge 300. In at least one form, the anvil lock member 260′ comprises a body portion 262 that has a distally protruding central support tab 264 formed thereon. A slot 266 extends through body portion 262 and the central support tab 264 to enable the knife bar 130 to pass therethrough. The body portion 262 further includes proximally extending mounting bar 268′ that is configured to be slidably and retainably received within a corresponding mounting opening 270′ in the channel guide 79′ of the flex neck assembly 70′. In addition, a biasing member in the form of, for example, a coil spring 269 is supported within the opening 270′ to bias the anvil lock member 260′ in the distal direction “DD”. The anvil lock member 260′ otherwise operates in the same manner as anvil lock member 260. When the anvil 220 is mounted to the elongate channel 210, the trunnions 230 are received within their corresponding trunnion slots 214 in the elongate channel 210, the central support tab 264 of the anvil lock member 260′ is received between the trunnion walls 226, 228 to further provide support to the anvil 220. The body portion 262 of the anvil lock member 260 is further formed with two cam surfaces 263 configured to engage the proximal end surfaces 227, 229 of the trunnion walls 226, 228. The distal closure tube segment 170′ operates in the same manner as the distal closure tube segment 170 described above.

Surgical Staple Cartridge

Various embodiments include a unique and novel surgical staple cartridge 300 that is configured to interact with the anvil lockout system 250 when installed in the elongate channel 210. As can be seen in FIGS. 14 and 15, in at least one form, the surgical staple cartridge 300 includes a cartridge body 302 that may be fabricated from, for example, Vectra A435, 20% PTFE/15% GF-natural. The cartridge body 302 is sized and shaped to be received within the elongate channel 210. In at least one form, the cartridge body 302 is configured to be seated in the elongate channel 210 such that is removably retained therein. The cartridge body 302 may be formed with a centrally disposed slot 304 therein for receiving the knife bar 130. On each side of the slot 304, there is provided rows 306, 308, 310 of staple openings 312 that are configured to support a surgical staple therein. In the depicted embodiment, three rows 306, 308, 310 are provided on each side of the slot 304. The surgical staples may be supported on staple drivers that are movably supported within the staple openings 312. Also supported within the staple cartridge body 302 is a wedge sled that is configured for axial movement through the cartridge body 302 when contacted by the cutting bar. The wedge sled is configured with wedge-shaped driving members that contact the staple drivers and drive the drivers and their corresponding staples toward the closed anvil as the wedge sled is driven distally through the cartridge body 302. Examples of staple driver arrangements and wedge sled arrangements that may be employed are described in further detail in U.S. Pat. No. 7,669,746, the entire disclosure which is herein incorporated by reference. In various embodiments, to facilitate installation of the wedge sled and drivers in the cartridge body 302, metal cartridge pans 314, 316 may be attached to the cartridge body 302 as shown in FIGS. 14 and 15. The cartridge pans 314 and 316 serve to retain the wedge sled and drivers within the cartridge body 302.

In various embodiments, the cartridge body 302 additionally has at least one release member formed thereon that protrudes in the proximal direction. In the embodiment depicted in FIG. 14, two release members 320 are formed on the proximal end 319 of the cartridge 300. The release members 320 each have a wedge shape that defines a sloped pivot surface 321 that are configured to pivotally support a portion of the anvil mounting portion 223 thereon.

Installation of a Staple Cartridge

An understanding of the operation of a anvil lockout system may be gleaned from reference to FIGS. 16-25. FIGS. 16 and 17 illustrate the position of the anvil 220 relative to the elongate channel 210 prior to installing a staple cartridge 300. When in that “unloaded” and open position, the anvil lock member 260 is biased in the distal direction by spring 269 such that the cam surfaces 263 on the anvil lock member 260 are in contact with the end surfaces 227, 229 of the trunnion walls 226, 228. The anvil lock member 260 pushes the anvil mounting portion 223 in the distal direction “DD” such that the trunnions 230 are seated in their respective locking notch 218. The cam surfaces 263 on the anvil lock member 260, in cooperation with the end wall surfaces 227, 229, also serve to pivot and retain the anvil in the open position as shown in FIGS. 16 and 17. As can be seen in FIG. 16, when in that position, the trunnion walls 226, 228 are supported on the rocker surfaces 248 on the pivot mount 240. When in that position, the surgeon cannot close the anvil 220 by actuating the closure trigger 152 to advance the distal closure tube 170. Because the closure tube segments cannot be advanced distally to close the anvil 220, the closure trigger 152 cannot be actuated to its fully closed position whereby the firing trigger 102 may be actuated. Thus, when no cartridge 300 is present, the end effector 200 may not be actuated.

FIGS. 18 and 19 illustrate the initial insertion of the staple cartridge 300 into the elongate channel 210. FIGS. 20 and 21 illustrate the end effector 200 after the staple cartridge 300 has been fully seated in the elongate channel 210. As can be seen in FIG. 20 for example, when the cartridge 300 has been fully seated, the release members 320 on the cartridge 300 engage the trunnion walls 226, 228 and serve to move the anvil mounting portion 223 in a proximal direction “PD” such that the trunnion walls 226, 228 now pivotally rest on the release members 320. As can be seen in FIG. 21, when in that position, the anvil mounting portion 223 has moved proximally such that the trunnions 230 are moved out of their respective locking notches 218 and into the bottom of the arcuate slot segment 216 into an “actuatable” position whereby the anvil 220 may be pivoted closed by actuating the closure trigger 152.

When the device 10 is in the starting position and the staple cartridge 300 has been loaded into the elongate channel as described above, both of the triggers 152, 102 are forward and the anvil 220 has been moved to the actuatable position, such as would be typical after inserting the loaded end effector 200 through a trocar or other opening into a body cavity. The instrument 10 is then manipulated by the clinician such that tissue “T” to be stapled and severed is positioned between the staple cartridge 300 and the anvil 200, as depicted in FIGS. 22 and 23. As discussed above, movement of the closure trigger 152 toward the pistol grip 24 causes the proximal closure tube segment 151, the flex neck assembly 70 and the distal closure tube segment 170 to move distally. As the distal closure tube segment 170 moves distally, it contacts a closure ledge 221 on the anvil 220. Pressure from the tissue captured between the anvil 220 and the staple cartridge 300 serves to move the anvil 220 such that the trunnions 230 are positioned to move within the arcuate trunnion slot segments 216. The surgeon may pivot the anvil 220 relative to the staple cartridge 300 to manipulate and capture the desired tissue “T” in the end effector 200. As the distal closure tube segment 170 contacts the closure ledge 221, the anvil 220 is pivoted towards a clamped position. The retracted knife bar 130 does not impede the selective opening and closing of the anvil 220.

Once the desired tissue “T” has been positioned between the anvil 220 and the cartridge 300, the clinician moves the closure trigger 152 proximally until positioned directly adjacent to the pistol grip 24, locking the handle 20 into the closed and clamped position. As can be seen in FIG. 25, when in the fully clamped position, the anvil trunnions 230 are located in the upper end of the arcuate slot portion 216 and the anvil tab 224 is received within the opening 176 in the distal closure tube segment 170. After tissue clamping has occurred, the clinician moves the firing trigger 102 proximally causing the knife bar 130 to move distally into the end effector 200. In particular, the knife bar 130 moves through the slot 236 in the pivot tab portion 234 of the anvil 220 and into the slot 304 in the cartridge body 302 to contact the wedge sled operably positioned within the staple cartridge 300. As the knife bar 130 is driven distally, it cuts the tissue T and drives the wedge sled distally which causes the staples to be sequentially fired into forming contact with the staple-forming undersurface 222 of the anvil 220. The clinician continues moving the firing trigger 102 until brought proximal to the closure trigger 152 and pistol grip 24. Thereby, all of the ends of the staples are bent over as a result of their engagement with the anvil 220. The cutting edge 132 has traversed completely through the tissue T. The process is complete by releasing the firing trigger 102 and by then depressing the release button 120 while simultaneously squeezing the closure trigger 152. Such action results in the movement of the distal closure tube segment 170 in the proximal direction “D”. As the anvil tab 224 is engaged by the opening 176 in the distal closure tube segment 170 it causes the anvil to pivot open. The end surfaces 227, 229 again contact the pusher surfaces 263 on the anvil lock member 260 to pivot the anvil to the open position shown in FIGS. 20 and 21 to enable the spent cartridge 300 to be removed from the elongate channel 210.

FIGS. 26-42 illustrate an alternative surgical stapling instrument 10′ that is similar in construction and operation to surgical stapling instrument 10 except for the differences discussed below. This embodiment, for example, employs the pivot mount 240′ illustrated in FIGS. 29 and 30. As can be seen in FIGS. 27 and 28 one form of a pivot mount 240′ has a body portion 242′ that is configured to be attached to the elongate channel 210. For example, the body portion 242′ may be formed with two opposed attachment tabs 243′ that are configured to retainingly engage tab openings 211 (FIG. 26) formed in the elongate channel 210. In addition, the pivot mount 240′ has a proximally extending foot portion 244′ that has a slot 247′ extending therethrough for axially receiving the knife bar 130. Various embodiments of the pivot mount 240′ further include rocker surfaces 248′ formed on the body portion 242′ for pivotally receiving the trunnion walls 226, 228 of the anvil 220 thereon.

This embodiment also includes an anvil lockout system 250′ that prevents closure of the anvil 220 when a staple cartridge 300′ has not been properly installed in the elongate channel 210. Referring to FIGS. 29 and 30, for example, an embodiment of an anvil lockout system 250′ includes an anvil lock member 400 that is configured to contact the anvil mounting portion 223 as will be discussed in further detail below. In at least one form, the anvil lock member 400 comprises a leaf spring 402 that has a slot 404 therein for accommodating the knife bar 130. The leaf spring 402 is configured for attachment to the channel guide 79″ of the flex neck assembly 70″.

As can be seen in FIGS. 31 and 32, in at least one form, the surgical staple cartridge 300′ includes a cartridge body 302′ that is similar to the surgical staple cartridge 300 described above, except for the differences discussed below. FIG. 29 depicts a wedge sled 360 that is supported within the cartridge body 302′ in the manner described above. In this embodiment, the proximal end portion 303 of the cartridge body 302′ is configured to contact a portion of the anvil mounting portion 223 and urge the anvil 220 proximally when the cartridge body 302′ is seated within the elongate channel 210.

An understanding of the operation of a anvil lockout system 250′ may be gleaned from reference to FIGS. 33-43. FIGS. 33 and 34 illustrate the position of the anvil 220 relative to the elongate channel 210 prior to installing a staple cartridge 300′. When in that “unloaded” position, the anvil lock member 400 has engaged the upper surface of the anvil support portion 223 such that the anvil 220 is pivoted to the open position on the rocker surfaces 248′ on the pivot mount 140′. When in that position, the trunnions 230 are seated in their respective locking notch 218. When in that position, the surgeon cannot close the anvil 220 by actuating the closure trigger 152 to advance the distal closure tube 170′. Because the closure tube segments cannot be advanced distally to close the anvil 220, the closure trigger 152 cannot be actuated to its fully closed position whereby the firing trigger 102 may be actuated. Thus, when no cartridge 300′ is present, the end effector 200 may not be actuated.

FIGS. 35 and 36 illustrate the initial insertion of the staple cartridge 300′ into the elongate channel 210. FIGS. 37 and 38 illustrate the end effector 200 after the staple cartridge 300′ has been fully seated in the elongate channel 210. As can be seen in FIG. 37 for example, when the cartridge 300′ has been fully seated, the proximal end portion 303 on the cartridge 300′ engages the trunnion walls 226, 228 and serves to move the anvil mounting portion 223 in a proximal direction “PD” such that the trunnions are moved out of their respective locking notch 218 and into an actuatable position the bottom of the arcuate slot segment 216. The anvil 220 is now in position to be pivoted closed by actuating the closure trigger 152.

When the device 10′ is in the starting position and the staple cartridge 300′ has been loaded into the elongate channel 210 as described above, both of the triggers 152, 102 are forward and the anvil 220 is open and in the actuatable position, such as would be typical after inserting the loaded end effector 200 through a trocar or other opening into a body cavity. The instrument 10′ is then manipulated by the clinician such that tissue “T” to be stapled and severed is positioned between the staple cartridge 300′ and the anvil 220, as depicted in FIGS. 39 and 40. As discussed above, movement of the closure trigger 152 toward the pistol grip 24 causes the proximal closure tube segment 151, the flex neck assembly 70″ and the distal closure tube segment 170″ to move distally. As the distal closure tube segment 170′ moves distally, it contacts a closure ledge 221 on the anvil 220. Pressure from the tissue captured between the anvil 220 and the staple cartridge 300′ serves to move the anvil 220 such that the trunnions 230 are positioned to move within the arcuate trunnion slot segments 216. The surgeon may pivot the anvil 220 relative to the staple cartridge to manipulate and capture the desired tissue “T” in the end effector 200. As the distal closure tube segment 170″ contacts the closure ledge 221, the anvil 220 is pivoted towards a clamped position. The retracted knife bar 130 does not impede the selective opening and closing of the anvil 220.

Once the desired tissue “T” has been positioned between the anvil 220 and the cartridge 300′, the clinician moves the closure trigger 152 proximally until positioned directly adjacent to the pistol grip 24, locking the handle 20 into the closed and clamped position. As can be seen in FIG. 42, when in the fully clamped position, the anvil trunnions 230 are located in the upper end of the arcuate slot portion 216 and the anvil tab 224 is received within the opening 176 in the distal closure tube segment 170″. After tissue clamping has occurred, the clinician moves the firing trigger 102 proximally causing the knife bar 130 to move distally into the end effector 200. In particular, the knife bar 130 moves through the slot 236 in the pivot tab portion 234 of the anvil 220 and into the slot 304 in the cartridge body 302′ to contact the wedge sled 360 operably positioned in therein. As the knife bar 130 is driven distally, it cuts the tissue T and drives the wedge sled 360 distally which causes the staples to be sequentially fired into forming contact with the staple-forming undersurface 222 of the anvil 220. The clinician continues moving the firing trigger 102 until brought proximal to the closure trigger 152 and pistol grip 24. Thereby, all of the ends of the staples are bent over as a result of their engagement with the anvil 220. The cutting edge 132 has traversed completely through the tissue T. The process is complete by releasing the firing trigger 102 and by then depressing the release button 120 while simultaneously squeezing the closure trigger 152. Such action results in the movement of the distal closure tube segment 170″ in the proximal direction “D”. As the anvil tab 224 is engaged by the opening 176 in the distal closure tube segment 170″, it causes the anvil 220 to pivot open. The anvil lock member 400 applies a biasing force to the upper surface of the trunnion walls of the anvil mounting portion 223 and serves to pivot the anvil to the open position shown in FIGS. 33 and 34 to enable the spent cartridge 300′ to be removed from the elongate channel 210. The entire disclosure of U.S. patent application Ser. No. 13/429,647, entitled SURGICAL STAPLING DEVICE WITH LOCKOUT SYSTEM FOR PREVENTING ACTUATION IN THE ABSENCE OF AN INSTALLED STAPLE CARTRIDGE, which was filed on Mar. 26, 2012, now U.S. Pat. No. 9,078,653, is incorporated herein by reference.

Referring now to FIGS. 43-60, an implement portion 1022 can be coupled to the handle of a surgical instrument, such as to the handle 20 of the surgical stapling device 10 (see, e.g., FIGS. 1 and 2), for example. Similar to the implement portion 22 (see, e.g., FIG. 6), the implement portion 1022 can include an elongate shaft assembly 1030, which can be operably coupled to an end effector 1200. In certain instances, the end effector 1200, which can be similar to the end effector 200, for example, can include an elongate channel 1210 and an anvil 1220. Moreover, when the closure trigger 152 (see, e.g., FIGS. 1 and 2) of the handle 20 is pivotally drawn toward the pistol grip 24 (see, e.g., FIGS. 1 and 2), the anvil 1220 can clamp and/or close relative to the elongate channel 1210 of the end effector 1200. Additionally, when the firing trigger 102 (see, e.g., FIGS. 1 and 2) of the handle 20 is pivotally drawn toward the pistol grip 24, for example, the end effector 1200 can staple and/or sever the tissue clamped therein. In various instances, similar to the end effector 200, the end effector 1200 can be configured to articulate about an elongate axis of the device 10 and, in other instances, the end effector may be non-articulatable.

Referring primarily to FIGS. 43-45, the elongate shaft assembly 1030 can be similar to the elongate shaft assembly 30, for example, and can include a proximal closure tube segment 1151, which can extend from the handle 20 (see, e.g., FIGS. 1 and 2). In various instances, the proximal closure tube segment 1151 can include a distal end portion 1157, which can be coupled to a flexible neck assembly 1070. The flexible neck assembly 1070 can be similar to flexible neck assembly 70 (see, e.g., FIGS. 2 and 3) and, in such instances, the flexible neck assembly 1070 can permit articulation of the end effector 1200 relative to the proximal closure tube segment 1151, for example. In certain instances, the flexible neck assembly 1070 can have first and second flexible neck portions 1072, 1074, which can be separated by a central longitudinal rib 1073 (FIGS. 43 and 45). The neck portions 1072, 1074 can each have a plurality of neck ribs 1075, which can be configured essentially as semi-circular disks, for example. Moreover, a side slot 1076 (FIG. 45) can extend through each of the neck ribs 1075 to provide a passage through the first and second flexible neck portions 1072, 1074 for articulation members, such as the articulation members 89, 90 (see, e.g., FIG. 2) and exterior reinforcement band portions 86, 87 (see, e.g., FIG. 2) of the flexible band assemblies 83, 85 (see, e.g., FIG. 2), for example. In a similar fashion, the central longitudinal rib 1073 of the flexible neck assembly 1070 can separate the first and second flexible neck portions 1072, 1074, for example, and can have a central longitudinal slot for providing a passage to receive stapler actuating members, for example. In various instances, a channel guide 1079 (FIG. 45) can extend from the distal end of the flexible neck portions 1072, 1074, for example, and can guide the movement of the stapler actuating member(s) into a surgical staple cartridge 1300 of the end effector 1200.

As discussed above, the end effector 1200 can comprise the elongate channel 1210, which can be configured to operably receive a surgical staple cartridge 1300. Moreover, the anvil 1220 can be movably supported relative to the elongate channel 1210 and can be moved from an open position (see, e.g., FIGS. 52 and 53) to closed positions (see, e.g., FIGS. 59 and 60), in which tissue between the anvil 1220 and the elongate channel 1210 can be cut and/or stapled, for example. The movement of the anvil 1220 between open and closed positions is at least partially controlled by a closure system, which, as indicated above, is controlled by the closure trigger 152 (see, e.g., FIGS. 1 and 2).

In at least one form, the closure system can include a distal closure tube segment 1170, which can be similar to distal closure tube segment 170 (see, e.g., FIGS. 1 and 2), for example. The distal closure tube segment 1170 can be non-movably coupled to the channel guide 1079 (FIG. 45) of the flexible neck assembly 1070. In various instances, the distal closure tube segment 1170 can comprise an opening 1176 therein, which can be adapted to interface with an upstanding tab 1224 formed on the anvil 1220. In various instances, axial movement of the proximal closure tube segment 1151 can result in axial movement of the flexible neck assembly 1070, as well as axial movement of the distal closure tube segment 1170. In such instances, distal movement of the proximal closure tube segment 1151 can generate translational movement of the anvil 1220 distally and rotational movement toward the elongate channel 1210 of the end effector 1200, for example. Correspondingly, proximal movement of the proximal closure tube segment 1151 can generate translational movement of the anvil 1220 proximally and rotational movement away from the elongate channel 1210 of the end effector 1200, for example

Further to the above, as shown in FIGS. 45-47, the elongate channel 1210 can have a proximal end portion that includes spaced mounting tabs 1212. For example, a mounting tab 1212 can be positioned on each lateral side of the elongate channel 1210. In various instances, the mounting tabs 1212 can be configured to be engaged by hooks on the distal ends of articulation bands, such as the articulation bands 96 and 97 (see, e.g., FIG. 2), for example. Thus, in certain instances, reciprocating motions of the articulation bands can affect articulation of the elongate channel 1210 relative to the flexible neck assembly 1070, for example. A staple cartridge 1300 positioned within the elongate channel 1210 can move with the elongate channel 1210 such that the staple cartridge 1300 can be positioned within a surgical site.

Also further to the above, the anvil 1220 can have a staple-forming undersurface 1222 thereon which can be configured for confronting engagement with the staple cartridge 1300 when the staple cartridge 1300 has been mounted in the elongate channel 1210. In various instances, the anvil 1220 can further include a closure ledge 1221, which can be placed in abutting contact with the distal edge of the distal closure tube 1170, for example. The anvil 1220 can be formed with a proximally extending mounting portion 1223, for example, which can includes trunnion walls 1226, 1228 that each have a trunnion 1230 protruding outwardly therefrom. In various instances, each trunnion wall 1226 and 1228 can have a proximal end surface 1227 and 1229, respectively, for example, which can operably interface with an anvil lock member 1260 of the anvil lockout system 1250, as described in further detail herein. Moreover, in certain instances, each trunnion wall 1226, 1228 can further include a contoured surface 1225, for example, which can operably interface with an abutment surface 1248 of a shiftable guide 1240, as described in further detail herein.

In various instances, a downwardly protruding pivot tab 1234 can be formed on the underside 1222 of the proximally extending mounting portion 1223. In various instances, a longitudinal slot 1236 can be defined through the pivot tab 1234 and, in certain instances, the slot 1236 can be configured to receive and support a knife bar, such as the knife bar 130 (see, e.g. FIGS. 2 and 3), for example, as the knife bar 130 is axially advanced through the end effector 1200 to perform the cutting and stapling functions of the end effector 1200. In addition, the anvil opening tab 1224 can be formed on the mounting portion 1223, such that the tab 1224 can operably interface with the opening 1176 in the distal closure tube segment 1170, as further discussed herein.

Referring now to FIGS. 48, 50, 52, 55, 57 and 59, the anvil trunnions 1230 can be configured to be movably received in corresponding trunnion slots 1214 formed in the proximal end of the elongate channel 1210. In various instances, each trunnion slot 1214 can have an arcuate slot segment 1216 and a locking notch 1218. The arcuate slot segment 1216 can form a pivot path for the trunnion 1230, for example, as the anvil 1220 pivots relative to the elongate channel 1210, for example. Moreover, in certain instances, when the trunnion 1230 is received in the locking notch 1218, the geometry of the locking notch 1218 can prevent travel of the trunnion 1230 along the arcuate slot segment 1216, for example.

In various embodiments, the end effector 1200 can include a shiftable guide 1240, which can be slidably retained in the elongate channel 1210, for example. Referring primarily to FIGS. 45-47, the shiftable guide 1240 can comprises a body portion 1242 that can be configured to move or slide within the elongate channel 1210. In at least one instance, the body portion 1242 may be formed with two opposed attachment tabs 1243 that are configured to retainingly engage tab openings 1211 formed in the elongate channel 1210. Additionally or alternatively, the shiftable guide 1240 can have a proximally extending foot portion 1244, which can have a downwardly protruding retainer lug 1245. In various instances, the retainer lug 1245 can be dimensioned and positioned such that it can be received in a corresponding lug opening 1219 (see, e.g. FIGS. 46 and 47) in the bottom of the elongate channel 1210. Additionally or alternatively, the shiftable guide 1240 can include proximal nubs 1249 which can protrude from opposite lateral sides of the shiftable guide 1240, for example. In various instances, each nub 1249 can be slidably positioned in a nub slot 1217 (see, e.g., FIGS. 46 and 47) in the lateral sides of the elongate channel 1210.

In various instances, the shiftable guide 1240 can shift and/or move within the elongate channel 1210. For example, as described in further detail herein, various components of the end effector 1200 can bias the shiftable guide 1240 into and/or toward different positions within the elongate channel 1210. Moreover, when the shiftable guide 1240 moves within the elongate channel 1210, the opposed attachment tabs 1243 can slide within the tab openings 1211, the retainer lug 1245 can slide within the lug opening 1219, and/or the opposing proximal nubs 1249 can slide within the nub slots 1217, for example. In such instances, the tab openings 1211, the lug opening 1219, and/or the nub slots 1217 can constrain, guide and/or limit the shifting and/or displacement of the shiftable guide 1240 relative to the elongate channel 1210 along a longitudinal path, for example. This longitudinal path can comprise a range of positions for the shiftable guide 1240. In various instances, the longitudinal lengths of the tab openings 1211, the lug opening 1219 and/or the nub slots 1217 can limit the longitudinal range of motion of the shiftable guide 1240. As described in further detail herein, the shiftable guide 1240 can cooperate with an anvil lockout system 1250, for example, and can facilitate the locking and unlocking of the anvil 1220 relative to the elongate channel 1210, for example.

Referring still to FIGS. 45-47, the body portion 1242 of the shiftable guide 1240 can have an upstanding central portion 1246, for example, which can have a slot 1247 extending therethrough for axially receiving a knife bar, such as the knife bar 130 (see, e.g., FIGS. 2 and 3), for example. The central portion 1246 can provide lateral support to the knife bar 130 as it is driven through tissue clamped within the end effector 1200, for example. In various instances, the slidable guide 1240 can also include a barrier portion 1241, which can extend proximally from the body portion 1242. The barrier portion 1241 can form a wall and, in various instances, the proximal nub 1249 can extend outwardly from the wall of the barrier portion 1241, for example. In various instances, the shiftable guide 1240 can include a pair of lateral barrier walls 1241 which can be positioned on opposite sides of the proximally extending foot portion 1244. In at least one form, the lateral barrier walls 1241 can extend proximally beyond the foot portion 1244 and on either side thereof, for example.

In various instances, each lateral barrier wall 1241 can include a proximal-most edge, for example, which can define a ramped or contoured surface. As described in further detail herein, the ramped proximal edge can define a slope that corresponds to a sloped portion of the trunnion slot 1214. Various embodiments of the shiftable guide 1240 can also include abutment surfaces 1248 formed on each lateral barrier wall 1241. For example, the abutment surfaces 1248 can extend along the ramped proximal edge of each lateral barrier wall 1241. As described in further detail herein, the abutment surfaces 1248 can be operably positioned in abutting contact with a portion of the proximally extending mounting portion 1223 of the anvil 1220, for example. Moreover, in certain instances, the profile of the abutment surfaces 1248 can match and/or complement a portion 1225 of the proximally extending mounting portion 1223 of the anvil 1220, for example. As described in further detail herein, engagement between the abutment surfaces 1248 of the shiftable guide 1240 and the mounting portion 1223 of the anvil 1220 can affect movement of the trunnions 1230 between the locking notches 1218 and the arcuate slot segments 1216, for example.

In various instances, as the shiftable guide 1240 is moved within the elongate channel 1210, the lateral barrier walls 1241 can move relative to the lockout notches 1218 defined in the elongate channel 1210. For example, when the shiftable guide 1240 is within a first range of positions relative to the elongate channel 1210, a portion of the lateral barrier walls 1241 can be longitudinally aligned with their respective lockout notches 1218 such that the barrier walls 1241 overlap the lockout notches 1218. When the shiftable guide 1240 is within a second range of positions relative to the elongate channel 1210, however, the lateral barrier walls 1241 can be longitudinally offset from the respective lockout notches 1218 such that the barrier walls 1241 do not overlap the lockout notches 1218, for example. In various instances, the ramped proximal edge and abutment surfaces 1248 of the barrier walls 1241 can move between a distal position which is distal to the lockout notches 1218 and a proximal position at least partially overlapping and/or extending past a least a portion of the lockout notches 1218.

As further indicated above, in various instances, the end effector 1200 can include an anvil lockout system 1250 which can prevent the anvil 1220 from being closed when a staple cartridge 1300 has not been installed and/or has not been properly installed in the elongate channel 1210. In various instances, the lockout system 1250 can operably interface with the shiftable guide 1240, for example, to prevent, or at least attempt to prevent, the closure of the anvil 1220. Referring to FIGS. 45-47, for example, the anvil lockout system 1250 can include a movable anvil lock member 1260, for example, which can be similar to anvil lock member 260, for example. In various instances, the anvil lock member 1260 can be movable in response to contact by a portion or portions of a staple cartridge 1300, as discussed in further detail below. Moreover, in at least one form, the anvil lock member 1260 can comprise a body portion 1262 which can have a distally protruding central support tab 1264 formed thereon. A slot 1266 can extend through the body portion 1262 and the central support tab 1264, for example, to enable a knife bar, such as the knife bar 130 (see, e.g., FIGS. 2 and 3), for example, to pass therethrough. Referring primarily to FIG. 45, the body portion 1262 can further include a proximally extending mounting bar 1268, for example, which can be configured to be slidably received within the corresponding mounting opening 1270 in the channel guide 1079 of the flexible neck assembly 1070. In various instances, a biasing member in the form of, for example, a coil spring 1269 can be supported within the opening 1270 to bias the anvil lock member 1260 in the distal direction “DD” (FIG. 45).

When the anvil 1220 is mounted to the elongate channel 1210, further to the above, the trunnions 1230 can be received within their corresponding trunnion slots 1214 in the elongate channel 1210, for example, and the central support tab 1264 of the anvil lock member 1260 can be received between the trunnion walls 1226, 1228, for example. In certain instances, the anvil lock member 1260 can be closely received between the trunnion walls 1226, 1228. Furthermore, the central support tab 1264 can be positioned intermediate the barrier walls 1241 of the shiftable guide 1240, for example. In certain instances, the body portion 1262 of the anvil lock member 1260 can be formed with two cam surfaces 1263, for example, which can be configured to operably engage the proximal end surfaces 1227, 1229 of the trunnion walls 1226, 1228 of the anvil 1220. In such instances, the cam surfaces 1263 of the anvil lock member 1260 can bias the mounting portion 1223 of the anvil 1220 distally and/or downwardly, similar to the cam surface 263 of anvil lock member 260, for example. In various instances, the cam surfaces 1263 of the anvil lock member 1260 can bias the trunnions 1230 of the anvil 1220 into and/or toward the locking notches 1218 in the elongate channel 1210, for example. Simply put, the spring 1269 can bias the anvil lock member 1260 distally and the anvil lock member 1260 can contact the anvil 1220 and push the trunnions 1230 distally. Similarly, the anvil 1220, when pushed distally by the anvil lock member 1260, can push the shiftable guide 1240 distally. As will be described in greater detail further below, the staple cartridge 1300, for example, can be inserted into the elongate channel 1210 to push the shiftable guide 1240, the anvil 1220, and the anvil lock member 1260 proximally to unlock the anvil 1220. Such proximal movement of the shiftable guide 1240, the anvil 1220, and the anvil lock member 1260 can resiliently compress the spring 1269. In the event that the staple cartridge 1300 were to be removed from the elongate channel 1210, the spring 1269 could resiliently expand to push the shiftable guide 1240, the anvil 1220, and the anvil lock member 1260 distally once again and lock the anvil 1220.

As discussed above, the surgical staple cartridge 1300, for example, can be structured and configured to interact with the anvil lockout system 1250 and the shiftable guide 1240, for example, when the staple cartridge 1300 is installed in the elongate channel 1210. Referring to FIGS. 45-47, the surgical staple cartridge 1300 can include a cartridge body 1302, which can be similar to cartridge body 302, for example. The cartridge body 1302 can be sized and structured to be received within the elongate channel 1210. In at least one form, the cartridge body 1302 can be configured to be seated in the elongate channel 1210 such that the cartridge body 1302 is removably retained therein. The cartridge body 1302 may be formed with a centrally disposed slot 1304 therein for receiving a knife bar, such as the knife bar 130 (see, e.g., FIGS. 2 and 3), for example. In various instances, rows 1306, 1308, 1310 of staple openings 1312 can be positioned on each side of the slot 1304, and can be configured to support a surgical staple (not shown) therein. Referring primarily to FIGS. 43 and 45, in various instances, three rows 1306, 1308, 1310 of staple openings 1312 can be defined on each side of the slot 1304. In other instances, the cartridge body 1302 can include fewer than six rows of staple openings 1312 or more than six rows of staple openings 1312, for example. In some instances, the openings 1312 may not be arranged in longitudinal rows. In various instances, the surgical staples may be supported on staple drivers (not shown), for example, which can be movably supported within the staple openings 1312.

As described above with respect to the cartridge body 302, in various instances, a wedge sled, such as wedge sled 360 (FIG. 29), for example, can be slidably positioned within the cartridge body 1302. The wedge sled can be configured for axial movement through the cartridge body 1302 when contacted by the knife bar. In various instances, the wedge sled can be configured with wedge-shaped driving members, for example, which can contact the staple drivers and drive the drivers and their corresponding staples toward the closed anvil, for example, as the wedge sled is driven distally through the cartridge body 1302. Examples of staple driver arrangements and wedge sled arrangements that may be employed are described in further detail in U.S. Pat. No. 7,669,746, entitled STAPLE CARTRIDGES FOR FORMING STAPLES HAVING DIFFERENT FORMED STAPLE HEIGHTS, which issued on Mar. 2, 2010, the entire disclosure of which is herein incorporated by reference. To facilitate installation of the wedge sled and drivers in the cartridge body 1302, in various embodiments, metal cartridge pan(s) 1314 may be attached to the cartridge body 1302, as shown in FIG. 45. The cartridge pan(s) 1314 can serve to retain the wedge sled and drivers within the cartridge body 1302.

Referring primarily to FIGS. 46 and 47, the cartridge body 1302 can further include a proximal nose portion 1320, for example, which can protrude from the cartridge body 1302 in the proximal direction. When the cartridge 1300 is seated in the elongate channel 1210, for example, the proximal nose portion 1320 can be configured to engage and/or contact the shiftable guide 1240. In various instances, the nose portion 1320 can have a tapered perimeter, for example, which can facilitate engagement between the cartridge body 1302 and the shiftable guide 1240. In at least one instance, a tapered recess 1238 in the distal end of the shiftable guide 1240 can be configured to receive the proximal nose portion 1320 of the staple cartridge 1300. In such instances, the shiftable guide 1240 can guide the staple cartridge 1300 into a fully seated position and/or into proper alignment within the elongate channel 1210. Moreover, engagement between the proximal nose portion 1320 and the tapered recess 1238 can facilitate proper alignment of the slot 1304 in the cartridge body 1302 and the slot 1247 in the shiftable guide 1240, for example, which can further facilitate proper alignment of the cartridge body 1302 with the slot 1266 in the locking member 1260, the slot in the channel guide 1079, and/or various elements of the firing assembly, such as the knife bar 130 (see, e.g., FIGS. 2 and 3), for example. As described in further detail herein, placement of the staple cartridge 1300 in the elongate channel 1210 can bias the shiftable guide 1240 proximally via engagement of the proximal nose portion 1320 with the tapered recess 1238, for example. The proximal movement of the shiftable guide 1240 can shift the proximal mounting portion 1223 of the anvil 1220 proximally via engagement between the abutment surfaces 1248 of the shiftable guide 1240 and the contoured portions 1225 of the trunnion walls 1226, 1228, for example. When the anvil 1220 is shifted proximally, the trunnions 1230 of the anvil 1220 can move out of the locking notches 1218 and into the arcuate slot segments 1216 of the trunnion slots 1214 defined in the elongate channel 1210, for example.

The operation of the anvil lockout system 1250 is depicted in FIGS. 48-60. Referring to FIGS. 48-51, the anvil 1220 can be oriented in an open position relative to the elongate channel 1210 prior to a staple cartridge being inserted into the elongate channel 1210. The anvil 1220 can also be oriented in the open position depicted in FIGS. 48-51 after a staple cartridge has been removed from the elongate channel 1210. Such a configuration of the end effector 1200 can be referred to as an “unloaded” configuration. In such an unloaded configuration, the anvil lock member 1260 can be biased in the distal direction “DD” by the spring 1269, such that the cam surfaces 1263 (FIG. 51) on the anvil lock member 1260 are in contact with the end surfaces 1227, 1229 (FIGS. 50 and 51) of the trunnion walls 1226, 1228. The anvil lock member 1260 can push the anvil mounting portion 1223 in the distal direction “DD” and/or downward, for example, such that the trunnions 1230 are seated in their respective locking notches 1218. The cam surfaces 1263 on the anvil lock member 1260, in cooperation with the end wall surfaces 1227, 1229 defined on the anvil 1220, can also serve to pivot and retain the anvil 1220 in the open position shown in FIGS. 48-51. In the event that an operator of a surgical instrument comprising the end effector 1200 attempts to close the anvil 1220 when the end effector 1200 is in its unloaded configuration, the anvil lock member 1260 can resist or prevent the closure of the anvil 1220. Stated another way, the anvil lock member 1260 can prevent the rotation of the anvil 1220 toward the elongate channel 1210 which can, in turn, prevent the distal displacement of the closure tube segment 1170. In such circumstances, the closure trigger 152 cannot be actuated to its fully closed position by the operator of the surgical instrument and, as a result, the firing trigger 102 (see, e.g., FIGS. 1 and 2) cannot be actuated to fire the staples contained within the staple cartridge and/or incise the tissue captured between the staple cartridge and the anvil 1220. Thus, when no staple cartridge is present in the elongate channel 1020 and/or when a staple cartridge, such as the staple cartridge 1300, is not fully seated in the elongate channel 1020, the end effector 1200 may not be actuated. Moreover, in various instances, when the wrong staple cartridge has been loaded into the elongate channel, such as a staple cartridge that is shorter than the intended staple cartridge 1300, the anvil lock system 1250 can prevent the operator from closing and actuating the end effector. Such a system can be referred to as a “no-cartridge lockout” and/or a “short cartridge lockout”, for example.

When the anvil mounting portion 1223 is biased in the distal direction “DD”, referring again to FIGS. 48-51, the contoured portion 1225 (FIGS. 49 and 51) of the trunnion walls 1226, 1228 can be placed and/or pushed into abutting engagement with the proximally extending barrier portions 1241 of the shiftable guide 1240 such that the shiftable guide 1240 is also shifted into and/or biased toward the distal direction “DD”. In such instances, the attachment tabs 1243, the retainer lug 1245, and/or the nubs 1249 can be shifted distally in their respective slots and/or openings 1211, 1217, 1219 in the elongate channel 1210, for example. Moreover, the trunnion walls 1226, 1228 can push the proximally extending barrier portions 1241 distally past the locking notches 1218. Stated another way, the proximally extending barrier portions 1241 can be positioned distally such that the proximal ends of the barrier portions 1241 and the abutment surfaces 1248 (FIG. 51) of the barrier portions 1241 are longitudinally offset from, and not overlapping with, the locking notches 1218. In such a position, the barrier portions 1241 of the shiftable guide 1240 do not block the trunnions 1230 from entering into the locking notches 1218. In fact, the biasing force which pushes the shiftable guide 1240 distally also pushes the trunnions 1230 into the locking notches 1218. The trunnions 1230 can be configured such that they do not rotate, or at least substantially rotate, when they are positioned within the locking notches 1218 which, as a result, prevents the anvil 1220 from rotating relative to the elongate channel 1210. In various instances, the trunnions 1230 may comprise a non-circular cross-section, for example. In certain instances, each trunnion 1230 can comprise a circular portion and a lock portion extending from the circular portion, for example. The circular portion can define an axis about which the anvil 1220 can rotate and the lock portion can be configured to engage a lock notch 1218. In at least one instance, the lock portion of a trunnion 1230 can comprise a wedge configured to abut a sidewall of a lock notch 1218 and, owing to this abutting relationship, the anvil 1220 may not rotate, or at least substantially rotate, relative to the elongate channel 1210. In order for the anvil 1220 to be rotated relative to the elongate channel 1210, the anvil 1220 can be pushed proximally such that the lock portions of the trunnions 1230 are disengaged from the lock notches 1218 and the trunnions 1230 can enter into the arcuate portions 1216 of the trunnion slots 1214 as described herein.

FIGS. 52-60 depict the staple cartridge 1300 fully seated within the elongate channel 1210. When the staple cartridge 1300 has been fully seated, referring primarily to FIGS. 52-54, the proximal nose portion 1320 of the cartridge 1300 can be nested within the recess 1238 (FIG. 54) in the shiftable guide 1240. In various instances, the tapered nose portion 1320 can slide into the recess 1238 in the shiftable guide 1240 until the cartridge body 1302 is in abutting engagement with the shiftable guide 1240. As the staple cartridge 1300 is moved into the fully seated positioned with the elongate channel 1210, the tapered nose portion 1320 can push the shiftable guide 1240 in the proximal direction “PD”, for example.

Referring still to FIGS. 52-54, a portion of the shiftable guide 1240 can be in abutting engagement with a portion of the proximally extending mounting portion 1223 of the anvil 1220. For example, the proximal end and abutment surface 1248 of the barrier wall 1241 of the shiftable guide 1240 can be positioned against a contoured edge 1225 of the trunnion wall 1226, 1228. In such instances, proximal shifting of the shiftable guide 1240 can also affect proximal shifting of the trunnion walls 1226, 1228 of the mounting portion 1223. For example, the barrier walls 1241 can push the contoured edges 1225 of the trunnion walls 1226, 1228 in the proximal direction “PD”. In various instances, the shiftable guide 1240 can overcome the spring force generated by the spring 1269 engaged with the lock member 1260 of the anvil lock system 1250, for example, to shift the mounting portion 1223 proximally. When the cartridge 1300 is fully loaded into the elongate channel 1210, referring primarily to FIG. 52, the anvil mounting portion 1223 can be moved proximally such that the trunnions 1230 are pushed out of their respective locking notches 1218. For example, the trunnions 1230 can be moved into the bottom of the arcuate slot segment 1216 such that the trunnions 1230 and the anvil 1220 are in an “unlocked” or “actuatable” position, for example, whereby the anvil 1220 may be pivoted closed by actuating the closure trigger 152 (see, e.g., FIGS. 1 and 2).

When the staple cartridge 1300 is fully seated within the elongate channel 1210 and the shiftable guide 1240 is biased proximally, as described herein, at least a portion of the shiftable guide 1240 can overlap the locking slots 1218 in the elongate channel 1210. For example, the shiftable guide 1240 can be shifted proximally such that the barrier portions 1241 are longitudinally aligned with the locking notches 1218. In certain instances, the barrier portions 1241 can longitudinally overlap the locking notches 1218, for example, and can be longitudinally offset from the arcuate slot segments 1216, for example. Referring to FIG. 52, the barrier portions 1241 can be shifted such that they at least partially cover and/or block the locking notches 1218 in the elongate channel 1210; however, in such a position, the barrier portions 1241 may not cover and/or block the arcuate slot segment 1216, for example. Moreover, when the barrier portions 1241 longitudinally overlap the locking notches 1218, the barrier portions 1241 can block the trunnions 1230 from entering into or accessing the locking notches 1218. In such instances, the trunnions 1230 can be guided away from the locking notches 1218 and along the arcuate slot segments 1216, for example.

When the surgical stapling instrument 10 is in its open, unfired configuration, as illustrated in FIG. 1, both of the triggers 152, 102 can be in an unactuated or, shifted-forward, position and, when the proper staple cartridge has been properly loaded into the end effector 1200, the anvil 1220 can be in an actuatable position, such as would be typical after inserting the loaded end effector 1200 through a trocar or other opening into a body cavity. The instrument 10 can then be manipulated by the clinician such that the tissue to be stapled and severed by the end effector 1200 is positioned between the staple cartridge 1300 and the anvil 1220. As discussed above, movement of the closure trigger 152 toward the pistol grip 24 (FIGS. 1 and 2) can affect distal movement of the proximal closure tube segment 1151, the flexible neck assembly 1070 and the distal closure tube segment 1170. Moreover, referring now to FIGS. 55-58, as the distal closure tube segment 1170 moves distally, it can contact the closure ledge 1221 on the anvil 1220. The anvil 1220 can contact the tissue and push the tissue against the staple cartridge 1300 to create clamping pressure within the tissue. As the reader will appreciate, different types of tissue can react differently to the clamping pressure applied thereto; nonetheless, the tissue can apply a reactive force to the anvil 1220 which can cause the anvil 1220 to move along a path which is at least partially defined by the arcuate trunnion slot segments 1216. In any event, the surgeon can pivot the anvil 1220 relative to the staple cartridge 1300 to manipulate and capture the desired tissue in the end effector 1200.

When the cartridge 1300 is fully seated in the elongate channel 1210, as discussed above and referring primarily to FIG. 57, the proximal edge and abutment surfaces 1248 of the barrier walls 1241 can extend proximally past the locking notches 1218. As also discussed above, a portion of the barrier walls 1241 can longitudinally overlap the locking notches 1218 and the proximal edges of the barrier walls 1241 can be at and/or near the boundary between the locking notches 1218 and the arcuate slot segments 1216. In various instances, the proximal edges and abutment surfaces 1248 of the barrier walls 1241 can be longitudinally aligned with a portion of the edge of the arcuate slot segments 1216, for example, such that the proximal edges of the barrier walls 1241 guide the trunnions 1230 along the arcuate slot segments 1216 when the anvil 1220 is being closed relative to the cartridge 1300, for example.

Once the tissue has been positioned between the anvil 1220 and the cartridge 1300, in various instances, the clinician can move the closure trigger 152 (see, e.g., FIGS. 1 and 2) proximally until positioned directly adjacent to the pistol grip 24 (see, e.g., FIGS. 1 and 2), for example, locking the handle 20 (see, e.g., FIGS. 1 and 2) into the closed and clamped position. When the anvil 1220 is in its fully clamped position, referring now to FIGS. 59 and 60, the anvil trunnions 1230 can be located in the upper end of the arcuate slot portions 1216. After the tissue has been clamped, the clinician can move the firing trigger 102 (see, e.g., FIGS. 1 and 2) proximally causing the knife bar 130 (see, e.g., FIGS. 2 and 3) to move distally into the end effector 1200. In particular, the knife bar 130 can move through the slot 1236 in the pivot tab portion 1234 of the anvil 1220 and into the slot 1304 in the cartridge body 1302 to contact the wedge sled operably positioned within the staple cartridge 1300. As the knife bar 130 is driven distally, it can sever the tissue captured between the anvil 1220 and the staple cartridge 1300 and drive the wedge sled distally which can cause the staples to be sequentially fired into forming contact with the staple-forming undersurface 1222 of the anvil 1220.

In various instances, the clinician can continue to move the firing trigger 102 until it is adjacent the closure trigger 152 and the pistol grip 24. In certain instances, a single actuation of the firing trigger 102 can be sufficient to deform all of the staples removably stored in the staple cartridge 1300 while, in other instances, more than one actuation of the firing trigger 102 may be required to deform all of the staples removably stored in the staple cartridge 1300. Concurrent with the staple deformation, the cutting edge 132 (FIGS. 2 and 3) of the knife bar 130 can traverse through the tissue T. Once the tissue has been sufficiently stapled and incised, the firing trigger 102 can be released and the anvil 1220 can be opened to release the tissue captured within the end effector 1200. In certain instances, the anvil 1220 can be opened by depressing the release button 120 (FIGS. 1 and 2) while simultaneously squeezing the closure trigger 152. Such action can result in the movement of the distal closure tube segment 1170 in the proximal direction “PD”. In such instances, the anvil tab 1224, which can be engaged by the opening 1176 in the distal closure tube segment 1170, can cause the anvil 1220 to pivot open. Additionally, in various instances, the downwardly protruding pivot tab 1234 (FIG. 6) extending from the anvil 1220 can push against the spent cartridge 1300 to pivot the anvil 1210 back to the open position shown in FIGS. 51-54. In various instances, the spent staple cartridge 1300 can then be removed from the elongate channel 1210 and an unspent staple cartridge can be positioned in the elongate channel 1210 in order to reuse the surgical instrument and end effector 1200 once again.

In various instances, when the spent cartridge 1300 has been removed from the elongate channel 1210, the end effector 1200 can return to the “unloaded” and open position depicted in FIGS. 48-51, for example. In such instances, the spring-loaded anvil lock system 1250, e.g., the spring 1269 and the camming surface(s) 1263 of the anvil lock member 1260 can bias the end surfaces 1227 and 1229 of the trunnion walls 1226 and 1228 distally, which can shift the trunnions 1230 into the locking notches 1218 of the trunnion slots 1214, for example. Moreover, the contoured surfaces 1225 of the anvil mounting portion 1223 can bias the biasing surfaces 1248 of the shiftable guide 1240 distally, which can shift the shiftable guide 1240 distally, such that the shiftable guide 1240 is longitudinally offset from the locking notches 1218, and thus, can unblock access to the locking notches 1218, for example.

The various unique and novel features of the above-described embodiments serve to prevent the end effector from being closed when a surgical staple cartridge is not present or has not been properly seated within the elongate channel. When the anvil is in the locked position wherein the anvil trunnions are retained in their respective locking notches, the anvil is retained in the open position. When in the open position, the end effector cannot be inadvertently inserted through a trocar. Because a full closure stroke is prevented, the firing system cannot be actuated. Thus, even if the clinician attempts to actuate the firing trigger, the device will not fire. Various embodiments also provide the clinician with feedback indicating that a cartridge is either not present or has not been properly installed in the elongate channel.

The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Jamison, Barry T., Setser, Michael E., Cropper, Michael S., Patel, Sudhir B., Dugan, John R., Kistler, Paul H.

Patent Priority Assignee Title
12070215, Jun 13 2014 Cilag GmbH International Closure lockout systems for surgical instruments
Patent Priority Assignee Title
10004498, Jan 31 2006 Cilag GmbH International Surgical instrument comprising a plurality of articulation joints
10010322, Jan 31 2006 Cilag GmbH International Surgical instrument
10039529, Sep 17 2010 Cilag GmbH International Power control arrangements for surgical instruments and batteries
10045781, Jun 13 2014 Cilag GmbH International Closure lockout systems for surgical instruments
10052099, Jan 31 2006 Cilag GmbH International Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
10052100, Jan 31 2006 Cilag GmbH International Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
10058963, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10071452, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10123798, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10130359, Sep 29 2006 Cilag GmbH International Method for forming a staple
10136887, Apr 16 2013 Cilag GmbH International Drive system decoupling arrangement for a surgical instrument
10136890, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
10149680, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a gap setting system
10159482, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10166025, Mar 26 2012 Cilag GmbH International Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
10188393, Sep 17 2010 Cilag GmbH International Surgical instrument battery comprising a plurality of cells
10213198, Sep 30 2010 Cilag GmbH International Actuator for releasing a tissue thickness compensator from a fastener cartridge
10335144, Jan 31 2006 Cilag GmbH International Surgical instrument
10342533, Jan 31 2006 Cilag GmbH International Surgical instrument
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10405854, Mar 28 2012 Cilag GmbH International Surgical stapling cartridge with layer retention features
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441369, Jan 10 2007 Cilag GmbH International Articulatable surgical instrument configured for detachable use with a robotic system
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10492787, Sep 17 2010 Cilag GmbH International Orientable battery for a surgical instrument
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10729441, Jun 13 2014 Cilag GmbH International Closure lockout systems for surgical instruments
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11083458, Aug 20 2018 Cilag GmbH International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
3490675,
3494533,
3643851,
3662939,
3717294,
3819100,
4111206, May 04 1975 Surgical instrument for applying metal staples to organs and tissues and for simultaneous division thereof
4272002, Jul 23 1979 Lawrence M., Smith; G. Marts, Acker; Franklin G., Smith Internal surgical stapler
4305539, Mar 26 1979 Surgical suturing instrument for application of a staple suture
4331277, May 23 1980 United States Surgical Corporation Self-contained gas powered surgical stapler
4379457, Feb 17 1981 United States Surgical Corporation; UNITED STATES SURGICAL CORPORATION, A CORP OF N Y Indicator for surgical stapler
4383634, May 26 1981 UNITED STATES SURGICAL CORPORATION, A CORP OF N Y Surgical stapler apparatus with pivotally mounted actuator assemblies
4396139, Feb 15 1980 Technalytics, Inc. Surgical stapling system, apparatus and staple
4397311, Dec 20 1979 Vesesojuzny Nauchnoissledovatelsky I Ispytatelny Institut Surgical instrument for staple suturing of hollow organs
4402445, Oct 09 1981 United States Surgical Corporation Surgical fastener and means for applying same
4415112, Oct 27 1981 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
4429695, Feb 05 1980 United States Surgical Corporation Surgical instruments
4434796, Apr 07 1981 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical staple, a method of and forceps for its removal
4438659, Jul 09 1981 TRACTEL S A Release mechanism for a traction apparatus acting on a cable which passes therethrough
4475679, Aug 07 1981 Multi-staple cartridge for surgical staplers
4489875, Oct 17 1980 United States Surgical Corporation Self-centering surgical staple and stapler for applying the same
4500024, Nov 19 1980 Ethicon, Inc. Multiple clip applier
4505273, Feb 10 1982 B BRAUN-SSC AG Surgical staple
4505414, Oct 12 1983 Expandable anvil surgical stapler
4520817, Feb 05 1980 United States Surgical Corporation Surgical instruments
4522327, May 18 1983 United States Surgical Corporation Surgical fastener applying apparatus
4530453, Oct 04 1983 United States Surgical Corporation Surgical fastener applying apparatus
4566620, Oct 19 1984 United States Surgical Corporation Articulated surgical fastener applying apparatus
4573622, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
4580712, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
4585153, Jul 16 1984 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
4605001, Oct 19 1984 ETHICON, INC , A CORP OF NEW JERSEY Surgical stapling instrument with dual staple height mechanism
4605004, Jul 16 1984 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
4608981, Oct 19 1984 ETHICON, INC , A CORP OF NEW JERSEY Surgical stapling instrument with staple height adjusting mechanism
4610383, Oct 14 1983 ETHICON, INC , A CORP OF NEW JERSEY Disposable linear surgical stapler
4612933, Mar 30 1984 ETHICON, INC , A CORP OF NEW JERSEY Multiple-load cartridge assembly for a linear surgical stapling instrument
4619391, Apr 18 1984 Acme United Corporation Surgical stapling instrument
4629107, Aug 19 1983 VSESOJUZNY NAUCHO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI, USSR, MOSCOW Ligating instrument
4632290, Aug 17 1981 United States Surgical Corporation Surgical stapler apparatus
4633874, Oct 19 1984 HEWLETT-PACKARD COMPANY, A CA CORP Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
4634419, Dec 13 1985 Sherwood Services AG Angulated ultrasonic surgical handpieces and method for their production
4655222, Jul 30 1984 Ethicon, Inc. Coated surgical staple
4662555, Mar 11 1986 Pilling Weck Incorporated Surgical stapler
4664305, May 04 1982 Surgical stapler
4669647, Aug 26 1983 Technalytics, Inc. Surgical stapler
4671445, Aug 09 1984 United States Surgical Corporation Flexible surgical stapler assembly
4684051, Sep 05 1985 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I IPSYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical instrument
4700703, Mar 27 1986 Semion, Resnick Cartridge assembly for a surgical stapling instrument
4715520, Oct 10 1985 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
4719917, Feb 17 1987 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Surgical staple
4727308, Aug 28 1986 International Business Machines Corporation FET power converter with reduced switching loss
4728020, Aug 30 1985 United States Surgical Corporation Articulated surgical fastener applying apparatus
4747820, Apr 09 1986 Sherwood Services AG Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
4750902, Aug 28 1985 Covidien AG; TYCO HEALTHCARE GROUP AG Endoscopic ultrasonic aspirators
4752024, Oct 17 1986 UNITED STATES SURGICAL CORPORATION, A CORP OF CT Surgical fastener and surgical stapling apparatus
4754909, Aug 09 1984 United States Surgical Corporation Flexible stapler
4767044, Oct 19 1984 United States Surgical Corporation Surgical fastener applying apparatus
4805823, Mar 18 1988 Ethicon Endo-Surgery, Inc Pocket configuration for internal organ staplers
4809695, Aug 06 1980 GWATHMEY, OWEN M , THE MEADOW Suturing assembly and method
4817847, Apr 21 1986 Finanzaktiengesellschaft Globe Control Instrument and a procedure for performing an anastomosis
4819853, Dec 31 1987 United States Surgical Corporation Surgical fastener cartridge
4821939, Sep 02 1987 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
4827911, Apr 02 1986 Sherwood Services AG Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
4844068, Jun 05 1987 ETHICON, INC , A CORP OF Bariatric surgical instrument
4848637, May 19 1986 J CRAYTON PRUITT Staple device for use on the mesenteries of the abdomen
4865030, Jan 21 1987 AMS Research Corporation Apparatus for removal of objects from body passages
4869414, Aug 30 1985 United States Surgical Corporation Articulated surgical fastener applying apparatus
4869415, Sep 26 1988 Ethicon, Inc. Energy storage means for a surgical stapler
4896678, Dec 12 1986 Olympus Optical Co., Ltd. Endoscopic treating tool
4931047, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
4938408, Jan 15 1988 Ethicon, Inc. Surgical stapler safety and sequencing mechanisms
4941623, May 19 1986 J CRAYTON PRUITT Stapling process and device for use on the mesentery of the abdomen
4944443, Apr 22 1988 STRYKER SALES CORPORATION A MI CORPORATION Surgical suturing instrument and method
4978333, Dec 20 1988 Sherwood Services AG Resonator for surgical handpiece
4986808, Dec 20 1988 Sherwood Services AG Magnetostrictive transducer
5002553, May 14 1984 Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC Atherectomy system with a clutch
5015227, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Apparatus for providing enhanced tissue fragmentation and/or hemostasis
5038109, Oct 13 1988 Gyrus Medical Limited Screening and monitoring instrument
5065929, Apr 01 1991 Ethicon, Inc. Surgical stapler with locking means
5071430, Nov 11 1988 United States Surgical Corporation Surgical instrument
5088997, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Gas coagulation device
5104397, Apr 14 1989 Johnson & Johnson Professional, Inc Multi-position latching mechanism for forceps
5122156, Dec 14 1990 UNITED STATES SURGICAL CORPORATION, Apparatus for securement and attachment of body organs
5129570, Nov 30 1990 Ethicon, Inc. Surgical stapler
5137198, Feb 16 1991 Ethicon, Inc Fast closure device for linear surgical stapling instrument
5139513, Oct 17 1989 Bieffe Medital S.A. Apparatus and method for suturing
5141144, Dec 18 1990 United States Surgical Corporation Stapler and firing device
5156315, Apr 26 1991 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
5158567, Sep 02 1987 United States Surgical Corporation One-piece surgical staple
5190517, Jun 06 1991 INTEGRA LIFESCIENCES IRELAND LTD Electrosurgical and ultrasonic surgical system
5221036, Jun 11 1991 Surgical stapler
5221281, Jun 30 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical tubular trocar
5222975, Jul 13 1992 Surgical staples
5236440, Apr 14 1992 Sherwood Services AG Surgical fastener
5240163, Oct 30 1991 Sherwood Services AG Linear surgical stapling instrument
5258009, Jun 30 1992 Sherwood Services AG Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
5258012, Jun 30 1992 ETHICON, INC , A CORP OF OHIO Surgical fasteners
5281216, Mar 31 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical bipolar treating apparatus
5282829, Aug 15 1991 United States Surgical Corporation Hollow body implants
5284128, Jan 24 1992 Applied Medical Resources Corporation Surgical manipulator
5304204, Feb 09 1993 Ethicon, Inc. Receiverless surgical fasteners
5312023, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5312329, Apr 07 1993 INTEGRA LIFESCIENCES IRELAND LTD Piezo ultrasonic and electrosurgical handpiece
5333772, Sep 12 1991 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
5342395, Nov 27 1991 Sherwood Services AG Absorbable surgical repair devices
5342396, Mar 02 1993 HOLOBEAM, INC Staples
5346504, Nov 19 1992 Ethicon, Inc Intraluminal manipulator with a head having articulating links
5350400, Oct 30 1991 Sherwood Services AG Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
5358506, Mar 14 1991 United States Surgical Corporation Approximating apparatus for surgical jaw structure
5364001, Oct 18 1991 Seagate Technology, INC Self contained gas powered surgical apparatus
5366479, Oct 18 1991 Tyco Healthcare Group LP Surgical staple for attaching an object to body tissue
5370645, Apr 19 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical processor and method of use
5372596, Jul 27 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Apparatus for leakage control and method for its use
5374277, Oct 09 1992 Ethicon, Inc Surgical instrument
5381943, Oct 09 1992 Ethicon, Inc Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
5382247, Jan 21 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Technique for electrosurgical tips and method of manufacture and use
5383880, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5389104, Nov 18 1992 Symbiosis Corporation Arthroscopic surgical instruments
5395033, May 24 1993 Ethicon, Inc. Endoscopic surgical instrument with electromagnetic sensor
5395384, Dec 30 1992 Instrument for the extraction of patho-logical vein sections such as varices
5397046, Oct 18 1991 United States Surgical Corporation Lockout mechanism for surgical apparatus
5403312, Jul 22 1993 Ethicon, Inc Electrosurgical hemostatic device
5405072, Oct 17 1991 United States Surgical Corporation Anvil for surgical staplers
5405344, Sep 30 1993 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
5413267, May 14 1991 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
5413272, May 07 1991 United States Surgical Corporation Surgical fastening device
5413573, May 24 1991 Onesys Oy Device for surgical procedures
5417361, May 05 1993 Ethicon Endo-Surgery, Inc. Staple cartridge for a surgical stapler
5421829, Nov 30 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical handpiece and an energy initiator
5422567, Dec 27 1993 Covidien AG; TYCO HEALTHCARE GROUP AG High frequency power measurement
5423471, Oct 02 1992 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
5423809, Jan 21 1992 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical control for a trocar
5425745, May 26 1989 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
5433721, Jan 17 1992 Ethicon, Inc Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
5438302, Jul 12 1993 GYRUS MEDICAL LIMITED CHARTERHOUSE Electrosurgical radiofrequency generator having regulated voltage across switching device
5441483, Nov 16 1992 Catheter deflection control
5447265, Apr 30 1993 United States Surgical Corporation Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
5447417, Aug 31 1993 INTEGRA LIFESCIENCES IRELAND LTD Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
5449355, Nov 24 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Retrograde tissue splitter and method
5452837, Jan 21 1994 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
5462215, Oct 18 1991 United States Surgical Corporation Locking device for an apparatus for applying surgical fasteners
5465896, Nov 07 1991 United States Surgical Corporation Linear surgical stapling instrument
5466020, Dec 30 1994 INTEGRA LIFESCIENCES IRELAND LTD Bayonet connector for surgical handpiece
5472442, Mar 23 1994 Sherwood Services AG Moveable switchable electrosurgical handpiece
5474057, Feb 22 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Laparoscopic dissection tension retractor device and method
5474566, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5478354, Jul 14 1993 United States Surgical Corporation Wound closing apparatus and method
5480089, Aug 19 1994 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
5484398, Mar 17 1994 Sherwood Services AG Methods of making and using ultrasonic handpiece
5485947, Jul 20 1992 Ethicon, Inc. Linear stapling mechanism with cutting means
5485952, Sep 23 1992 United States Surgical Corporation Apparatus for applying surgical fasteners
5487499, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
5489058, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5496312, Oct 07 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Impedance and temperature generator control
5496317, May 04 1993 Gyrus Medical Limited Laparoscopic surgical instrument
5497933, Oct 18 1991 Tyco Healthcare Group LP Apparatus and method for applying surgical staples to attach an object to body tissue
5503320, Aug 19 1993 United States Surgical Corporation Surgical apparatus with indicator
5503638, Feb 10 1994 SYNOVIS LIFE TECHNOLOGIES, INC Soft tissue stapling buttress
5505363, May 26 1989 United States Surgical Corporation Surgical staples with plated anvils
5509596, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5509916, Aug 12 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Laser-assisted electrosurgery system
5520678, Nov 30 1993 Richard Wolf GmbH Manipulator arm with proximal and distal control balls
5529235, Apr 28 1994 Ethicon Endo-Surgery Identification device for surgical instrument
5533661, Aug 23 1991 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
5535934, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5535935, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5535937, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5541376, Mar 28 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Switch and connector
5547117, Mar 30 1994 Ethicon Endo-Surgery Handle actuator for surgical instrument having clamp lock and emergency release
5553765, Apr 28 1995 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
5554169, May 26 1989 United States Surgical Corporation Method for placing staples in laparoscopic or endoscopic procedures
5560530, Apr 07 1994 United States Surgical Corporation Graduated anvil for surgical stapling instruments
5560532, Oct 08 1993 United States Surgical Corporation; NEIL D GERSHON, ESQ Apparatus and method for applying surgical staples to body tissue
5562239, Apr 28 1994 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
5562241, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5564615, Jun 10 1994 Ethicon, Inc. Surgical instrument
5571285, Feb 19 1991 ETHICON, INC , A CORPORATION OF OHIO Surgical staple for insertion into tissue
5577654, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5579978, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5580067, Mar 30 1994 Ethicon Endo Surgery Handle actuator for surgical instrument having flexible cable
5584425, Oct 18 1991 United States Surgical Corporation Lockout mechanism for surgical apparatus
5586711, May 02 1994 United States Surgical Corporation Surgical stapler with mechanisms for reducing the firing force
5588579, Aug 25 1994 United States Surgical Corporation Anvil for circular stapler
5588580, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5588581, Jun 10 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5597107, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5599344, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Control apparatus for electrosurgical generator power output
5601224, Oct 09 1992 Ethicon, Inc Surgical instrument
5605272, Mar 12 1996 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Trigger mechanism for surgical instruments
5605273, Mar 30 1994 Ethicon Endo-Surgery Surgical instrument having staple head adapted for rib insertion
5607094, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5609601, Sep 23 1994 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
5611709, Aug 10 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Method and assembly of member and terminal
5613966, Dec 21 1994 Covidien AG; TYCO HEALTHCARE GROUP AG System and method for accessory rate control
5615820, Oct 07 1993 United States Surgical Corporation Cartridge surgical fastener applying apparatus
5618303, Jul 02 1992 THE COOPER COMPANIES, INC Endoscopic instrument system and method
5619992, Apr 06 1995 Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
5628446, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5628743, Dec 21 1994 Sherwood Services AG Dual mode ultrasonic surgical apparatus
5628745, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Exit spark control for an electrosurgical generator
5630539, May 02 1994 United States Surgical Corporation Laparoscopic stapler with overload sensor and interlock
5630540, May 24 1995 United States Surgical Corporation Surgical staple and staple drive member
5632432, Dec 19 1994 Ethicon Endo-Surgery Surgical instrument
5634584, Oct 09 1992 Ethicon Endo-Surgery, Inc. Surgical instrument
5636779, Dec 13 1994 United States Surgical Corporation Apparatus for applying surgical fasteners
5636780, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5639008, Aug 25 1994 The United States Surgical Corporation Anvil for circular stapler
5645209, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5647526, Oct 18 1991 United States Surgical Corporation Self contained gas powered surgical apparatus
5647869, Jun 29 1994 Gyrus Medical Limited Electrosurgical apparatus
5651491, Oct 27 1995 United States Surgical Corporation Surgical stapler having interchangeable loading units
5653373, Sep 17 1990 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
5653374, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5655698, Jul 13 1994 Surgical stapler with curved jaws
5657921, Aug 05 1994 Tyco Healthcare Group LP Apparatus for applying surgical fasteners
5662258, Feb 03 1994 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
5662260, Jul 13 1994 Surgical staple cartridge
5662667, Sep 19 1995 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
5667527, Mar 02 1993 HOLOBEAM, INC Staples
5669544, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5669904, Mar 07 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical gas plasma ignition apparatus and method
5669907, Feb 10 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Plasma enhanced bipolar electrosurgical system
5673840, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5673841, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5673842, Mar 05 1996 Ethicon Endo-Surgery Surgical stapler with locking mechanism
5678748, May 24 1995 VIR Engineering Surgical stapler with improved safety mechanism
5680981, May 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5680982, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5680983, Dec 18 1990 United States Surgical Corporation Safety device for a surgical stapler cartridge
5690269, Apr 20 1993 United States Surgical Corporation Endoscopic stapler
5692668, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5693020, Jul 28 1994 Loctite Deutschland GmbH Hose pump for the exact dosing of small quantities of liquids
5693051, Jul 22 1993 Ethicon Endo-Surgery, Inc Electrosurgical hemostatic device with adaptive electrodes
5695494, Dec 22 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Rem output stage topology
5695524, Apr 05 1994 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
5697543, Mar 12 1996 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
5702387, Sep 27 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Coated electrosurgical electrode
5704534, Dec 19 1994 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
5706997, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5706998, Jul 17 1995 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
5709334, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners
5709680, Jul 22 1993 Ethicon Endo-Surgery Electrosurgical hemostatic device
5711472, Jul 17 1992 United States Surgical Corporation Self contained gas powered surgical apparatus
5713895, Dec 30 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Partially coated electrodes
5715604, Jun 15 1995 EIS Instruments Force-developing device for cutting forceps
5715987, Apr 05 1994 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
5715988, Aug 14 1995 United States Surgical Corporation Surgical stapler with lockout mechanism
5718359, Aug 14 1995 United States of America Surgical Corporation Surgical stapler with lockout mechanism
5720744, Jun 06 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Control system for neurosurgery
5725554, Oct 08 1993 IMAGYN MEDICAL TECHNOLOGIES CALIFORNIA, INC Surgical staple and stapler
5730758, Sep 12 1996 DEAN ALLGEYER, M D , INC ; ALLGEYER, DEAN Staple and staple applicator for use in skin fixation of catheters
5732871, Dec 06 1993 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
5732872, Oct 31 1995 Heartport, Inc Surgical stapling instrument
5735445, Mar 07 1995 United States Surgical Corporation Surgical stapler
5735874, Jun 21 1996 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
5743456, Dec 16 1993 Stryker Corporation Hand actuable surgical handpiece
5749893, Apr 30 1993 Tyco Healthcare Group LP Surgical instrument having an articulated jaw structure and a detachable knife
5752644, Jul 11 1995 United States Surgical Corporation Disposable loading unit for surgical stapler
5752965, Oct 21 1996 SYNOVIS LIFE TECHNOLOGIES, INC Apparatus and method for producing a reinforced surgical fastener suture line
5762255, Feb 20 1996 Conmed Corporation Surgical instrument with improvement safety lockout mechanisms
5762256, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
5772659, Sep 26 1995 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical generator power control circuit and method
5776130, Sep 19 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Vascular tissue sealing pressure control
5779130, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus
5779131, Oct 19 1995 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
5779132, Oct 19 1995 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
5782396, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
5782397, Jan 04 1994 Alpha Surgical Technologies, Inc. Stapling device
5782748, Jul 10 1996 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
5785232, Apr 17 1996 VIR Engineering Surgical stapler
5794834, Mar 30 1994 Ethicon Endo-Surgery Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
5797536, Oct 09 1992 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
5797537, Feb 20 1996 Covidien LP Articulated surgical instrument with improved firing mechanism
5797538, Oct 05 1994 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
5800379, Feb 23 1996 SOMNUS MEDICAL TECHNOLOGIES, INC Method for ablating interior sections of the tongue
5807393, Dec 22 1992 Ethicon Endo-Surgery, Inc Surgical tissue treating device with locking mechanism
5814055, Sep 19 1995 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical clamping mechanism
5820009, Feb 20 1996 Covidien LP Articulated surgical instrument with improved jaw closure mechanism
5826776, Dec 19 1994 Ethicon Endo-Surgery, Inc. Surgical instrument
5827271, Sep 19 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Energy delivery system for vessel sealing
5830598, Aug 15 1996 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
5833695, Jul 13 1994 Surgical stapling system and method of applying staples from multiple staple cartridges
5836503, Apr 22 1996 United States Surgical Corporation Insertion device for surgical apparatus
5839639, Aug 17 1995 LSI Solutions, Inc Collapsible anvil assembly and applicator instrument
5843021, May 09 1994 GYRUS ACMI, INC Cell necrosis apparatus
5855311, Mar 30 1994 Ethicon Endo-Surgery Reloadable surgical instrument
5860975, Dec 21 1994 Gyrus Medical Limited Electrosurgical instrument
5865361, Sep 23 1997 Covidien LP Surgical stapling apparatus
5868760, Dec 07 1994 Method and apparatus for endolumenally resectioning tissue
5878937, Oct 18 1991 United States Surgical Corporation Apparatus for applying surgical fasteners
5878938, Aug 11 1997 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
5893506, Mar 01 1994 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
5894979, Mar 01 1994 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
5897552, Nov 08 1991 EP Technologies, Inc. Electrode and associated systems using thermally insulated temperature sensing elements
5901895, Oct 05 1994 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
5902312, Jul 03 1995 System for mounting bolster material on tissue staplers
5908402, Feb 03 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Method and apparatus for detecting tube occlusion in argon electrosurgery system
5918791, Oct 08 1993 United States Surgical Corporation Surgical apparatus for applying surgical fasteners
5937951, Jul 18 1997 Ethicon Endo-Surgery, Inc. Skin stapler with rack and pinion staple feed mechanism
5941442, Oct 27 1995 United States Surgical Corporation Surgical stapler
5944715, Jun 29 1996 Gyrus Medical Limited Electrosurgical instrument
5947984, Oct 10 1997 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
5951552, Jun 30 1997 Ethicon Endo-Surgery, Inc. Capacitively coupled cordless electrosurgical instrument
5954259, Aug 05 1994 United States Surgical Corporation Self-contained powered surgical apparatus for applying surgical fasteners
5988479, Dec 13 1994 United States Surgical Corporation Apparatus for applying surgical fasteners
6004319, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6010054, Feb 20 1996 Conmed Corporation Linear stapling instrument with improved staple cartridge
6012494, Mar 16 1995 Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. Flexible structure
6013076, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6015406, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6027501, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6032849, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
6033399, Apr 09 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical generator with adaptive power control
6039734, Oct 24 1995 Gyrus Medical Limited Electrosurgical hand-held battery-operated instrument
6050172, Apr 04 1997 EMHART GLASS S A Pneumatically operated mechanism
6050472, Apr 26 1996 Olympus Optical Co., Ltd. Surgical anastomosis stapler
6050996, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument with replaceable electrodes
6068627, Dec 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Smart recognition apparatus and method
6074401, Jan 09 1997 Medtronic, Inc Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
6079606, Sep 23 1997 Covidien LP Surgical stapling apparatus
6083191, Feb 07 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical apparatus
6083242, Feb 17 1999 HOLOBEAM, INC Surgical staples with deformation zones of non-uniform cross section
6093186, Dec 20 1996 Gyrus Medical Limited Electrosurgical generator and system
6099551, Mar 12 1998 GABBAY, SHLOMO Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
6109500, Oct 10 1996 United States Surgical Corporation Lockout mechanism for a surgical stapler
6117158, Jul 07 1999 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
6119913, Jun 14 1996 BOSTON SCIENTIFIC LTD ; Boston Scientific Corporation Endoscopic stapler
6131789, Nov 30 1990 Ethicon, Inc. Surgical stapler
6131790, Sep 02 1998 Surgical stapler and cartridge
6149660, Apr 22 1996 Covidien LP Method and apparatus for delivery of an appliance in a vessel
6155473, May 26 1989 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
6156056, Jul 10 1998 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Suture buttress
6162208, Sep 11 1997 Technology Holding Company II Articulating endoscopic implant rotator surgical apparatus and method for using same
6171330, Dec 15 1997 Sofradim Production Pneumatic surgical instrument for the distribution and placement of connecting or fastening means
6187003, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument for sealing vessels
6202914, Oct 27 1995 United States Surgical Corporation Surgical stapler
6210403, Oct 07 1993 Covidien AG; TYCO HEALTHCARE GROUP AG Automatic control for energy from an electrosurgical generator
6213999, Mar 07 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical gas plasma ignition apparatus and method
6228081, May 21 1999 Gyrus Medical Limited Electrosurgery system and method
6228083, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
6241139, Sep 23 1997 Surgical stapling apparatus
6250532, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6261286, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6273897, Feb 29 2000 Ethicon, Inc Surgical bettress and surgical stapling apparatus
6277114, Apr 03 1998 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
6302311, Jun 14 1996 Boston Scientific Corporation Endoscopic stapler
6322494, Apr 03 1998 Gyrus Medical Limited Endoscope
6325799, Apr 24 1997 Gyrus Medical Limited Electrosurgical instrument
6325805, Apr 23 1999 Warsaw Orthopedic, Inc Shape memory alloy staple
6325810, Jun 30 1999 Ethicon, Inc Foam buttress for stapling apparatus
6330965, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
6334861, Sep 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Biopolar instrument for vessel sealing
6336926, Jan 15 1999 Gyrus Medical Limited Electrosurgical system
6338737, Jul 17 1997 Flexible annular stapler for closed surgery of hollow organs
6358224, Sep 24 1999 Covidien LP Irrigation system for endoscopic surgery
6387113, Feb 02 1999 Biomet Manufacturing Corp Method and apparatus for repairing a torn meniscus
6439446, Dec 01 2000 Boston Scientific Scimed, Inc Safety lockout for actuator shaft
6443973, Jun 02 1999 Covidien LP Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
6450391, Jul 10 1998 United States Surgical Corporation Apparatus and method for surgical fastening
6488196, Jun 30 1999 AXYA MEDICAL, INC Surgical stapler and method of applying plastic staples to body tissue
6488197, Feb 22 2000 Covidien LP Fluid delivery device for use with anastomosing resecting and stapling instruments
6488659, Aug 05 1999 BIOCARDIA, INC System and method for delivering thermally sensitive and reverse-thermal gelation materials
6491201, Feb 22 2000 Covidien LP Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
6491690, Jul 18 1997 Cinetic Landis Grinding Limited Electrosurgical instrument
6505768, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
6517528, Apr 13 2000 Boston Scientific Corporation Magnetic catheter drive shaft clutch
6517565, Jun 02 1999 Covidien LP Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
6517566, May 11 1998 SURGICAL CONNECTIONS, INC Devices and methods for treating e.g. urinary stress incontinence
6533157, Feb 22 2000 Covidien LP Tissue stapling attachment for use with an electromechanical driver device
6558379, Nov 18 1999 Gyrus Medical Limited Electrosurgical system
6569085, Aug 16 2001 IS, LLC Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
6578751, Sep 26 2001 Boston Scientific Scimed, Inc Method of sequentially firing staples using springs and a rotary or linear shutter
6585144, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6588643, Jun 17 1994 Hearport, Inc. Surgical stapling instrument and method thereof
6592597, May 07 2001 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
6607475, Jul 20 2000 CARDINAL HEALTH CMP 200, INC; Carefusion 2200, Inc Hand-actuated articulating surgical tool
6616686, Sep 08 2000 Abbott Vascular Inc Surgical staples and methods for stapling
6619529, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6629988, Aug 28 2001 Ethicon, Inc Composite staple for completing an anastomosis
6638297, May 30 2002 Ethicon Endo-Surgery, Inc Surgical staple
6644532, Oct 18 1991 United States Surtical Corporation Surgical stapling apparatus
6656193, May 07 2001 Ethicon Endo-Surgery, Inc. Device for attachment of buttress material to a surgical fastening device
6669073, Sep 23 1997 Covidien LP Surgical stapling apparatus
6676660, Jan 23 2002 EHTICON ENDO-SURGERY, INC Feedback light apparatus and method for use with an electrosurgical instrument
6681978, Oct 27 1995 United States Surgical Corporation Surgical stapler
6695198, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6698643, Jul 12 1999 Covidien LP Expanding parallel jaw device for use with an electromechanical driver device
6716233, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
6722552, Jun 30 1999 AXYA HOLDINGS, INC ; TORNIER, INC Surgical stapler and method of applying plastic staples to body tissue
6723109, Feb 07 2001 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
6749560, Oct 26 1999 GYRUS ACMI, INC Endoscope shaft with slotted tube
6755338, Aug 29 2001 RICHARD A HILLSTEAD, INC Medical instrument
6761685, Mar 12 1999 SciMed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
6769590, Apr 02 2001 Luminal anastomotic device and method
6769594, May 31 2002 Tyco Healthcare Group LP End-to-end anastomosis instrument and method for performing same
6786382, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating an articulation joint for a firing bar track
6793652, Jun 02 1999 Covidien LP Electro-mechanical surgical device
6793661, Oct 30 2000 COGENTIX MEDICAL, INC Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms
6817508, Oct 13 2000 Covidien LP Surgical stapling device
6817509, Oct 27 1995 United States Surgical Corporation Surgical stapler
6817974, Jun 29 2001 Intuitive Surgical Operations, Inc Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
6830174, Aug 30 2000 RICHARD A HILLSTEAD, INC Medical instrument
6835336, Oct 03 1997 Ethicon, Inc Methods for making biopolymer sponge tubes
6840423, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6843403, Jun 02 1999 Covidien LP Surgical clamping, cutting and stapling device
6858005, Apr 03 2000 Intuitive Surgical Operations, Inc Tendon-driven endoscope and methods of insertion
6866178, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6874669, Jun 19 1998 Boston Scientific Scimed, Inc Integrated surgical staple retainer for a full thickness resectioning device
6877647, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
6878106, Feb 15 1999 Deformable fiberscope with a displaceable supplementary device
6905057, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
6908472, Oct 20 2000 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
6932810, Sep 09 1997 Sherwood Services AG Apparatus and method for sealing and cutting tissue
6945444, Apr 03 2001 Covidien LP Surgical stapling device for performing circular anastomoses
6953138, Feb 18 2004 Frank W., Dworak Surgical stapler anvil with nested staple forming pockets
6953139, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
6958035, Oct 15 2002 DUSA PHARMACEUITCALS, INC , A CORP OF NEW JERSEY Medical device sheath apparatus and method of making and using same
6959851, Jul 16 2003 Covidien LP Surgical stapling device with tissue tensioner
6959852, Sep 29 2003 Cilag GmbH International Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
6964363, Jul 09 2003 Cilag GmbH International Surgical stapling instrument having articulation joint support plates for supporting a firing bar
6978921, May 20 2003 Cilag GmbH International Surgical stapling instrument incorporating an E-beam firing mechanism
6981628, Jul 09 2003 Cilag GmbH International Surgical instrument with a lateral-moving articulation control
6984231, Aug 27 2001 Gyrus Medical Limited Electrosurgical system
6986451, Aug 28 1995 Covidien LP Surgical stapler
6988649, May 20 2003 Cilag GmbH International Surgical stapling instrument having a spent cartridge lockout
6988650, Dec 30 2003 Ethicon Endo-Surgery, Inc Retaining pin lever advancement mechanism for a curved cutter stapler
6995729, Jan 09 2004 Biosense Webster, Inc Transponder with overlapping coil antennas on a common core
7000818, May 20 2003 Cilag GmbH International Surgical stapling instrument having separate distinct closing and firing systems
7000819, Sep 29 2003 Cilag GmbH International Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
7001408, Sep 20 2002 Ethicon Endo-Surgery, Inc Surgical device with expandable member
7008435, Aug 09 2001 Abbott Vascular Inc Surgical stapling device and method
7018357, Feb 27 2001 Tyco Healthcare Group LP External mixer assembly
7032798, Jun 02 1999 Covidien LP Electro-mechanical surgical device
7032799, Oct 05 2001 Covidien LP Surgical stapling apparatus and method
7044352, May 20 2003 Cilag GmbH International Surgical stapling instrument having a single lockout mechanism for prevention of firing
7044353, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7052494, Sep 21 2001 Gyrus Medical Limited Surgical system and method
7055730, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7055731, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
7056330, May 31 2002 Ethicon Endo-Surgery, Inc Method for applying tissue fastener
7059508, Jun 30 2004 Cilag GmbH International Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
7070083, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
7077856, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
7080769, Apr 02 2001 Luminal anastomotic device
7083075, Sep 29 2003 Cilag GmbH International Multi-stroke mechanism with automatic end of stroke retraction
7097089, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7097644, Mar 30 2001 Ethicon Endo-Surgery, Inc Medical device with improved wall construction
7108709, Jun 07 2001 Abbott Vascular Inc Surgical staple
7111769, Jul 09 2003 Cilag GmbH International Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
7121446, Dec 13 2004 NITI SURGICAL SOLUTIONS LTD Palm-size surgical stapler for single hand operation
7128253, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7128254, Sep 07 2004 Cilag GmbH International Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
7128748, Mar 26 2002 SYNOVIS LIFE TECHNOLOGIES, INC Circular stapler buttress combination
7133601, Feb 18 2003 Black & Decker Inc Amperage control for protection of battery over current in power tools
7137981, Mar 25 2002 Ethicon Endo-Surgery, Inc Endoscopic ablation system with a distally mounted image sensor
7140527, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7140528, May 20 2003 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
7143923, May 20 2003 Cilag GmbH International Surgical stapling instrument having a firing lockout for an unclosed anvil
7143924, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7143925, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating EAP blocking lockout mechanism
7143926, Feb 07 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
7147138, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
7147139, Dec 30 2003 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
7147637, Dec 09 2003 GYRUS ACMI, INC Surgical instrument
7147650, Apr 12 2004 ENDOBOTICS, LLC Surgical instrument
7150748, Jun 18 2004 Gyrus Medical Limited Bipolar coagulating instrument
7156863, Mar 16 2000 Medigus Ltd. Fundoplication apparatus and method
7159750, Jun 17 2003 Covidien LP Surgical stapling device
7168604, Jun 20 2003 Covidien LP Surgical stapling device
7172104, Feb 17 2004 Covidien LP Surgical stapling apparatus
7182239, Aug 27 2004 Segmented introducer device for a circular surgical stapler
7199537, Jan 14 2003 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, and method
7204404, Dec 30 2003 Ethicon Endo-Surgery, Inc Slotted pins guiding knife in a curved cutter stapler
7204835, Feb 02 2004 GYRUS ACMI, INC Surgical instrument
7207471, May 10 2002 Covidien LP Electrosurgical stapling apparatus
7211081, Jan 09 2003 Gyrus Medical Limited Electrosurgical generator
7213736, Jul 09 2003 Cilag GmbH International Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
7220272, Aug 28 2001 Ethicon, Inc. Composite staple and method for using same
7225963, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7225964, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7237708, Aug 19 1993 United States Surgical Corp. Surgical apparatus with indicator
7238195, May 10 2002 Covidien LP Wound closure material applicator and stapler
7246734, Dec 05 2005 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
7247161, Mar 22 2002 GYRUS ACMI, INC Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
7258262, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7258546, Jun 07 2001 KALTENBACH & VOIGT GMBH & CO , KG Medical or dental instrument and/or supply unit and/or care unit and/or system for the medical or dental instrument
7278562, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7282048, Aug 27 2001 Gyrus Medical Limited Electrosurgical generator and system
7293685, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7296722, Oct 04 2004 Covidien LP Surgical fastener applying apparatus with controlled beam deflection
7296724, Oct 18 1991 United States Surgical Corporation Surgical stapling apparatus
7300450, Sep 03 2001 VLEUGELS HOLDING B V Surgical instrument
7303106, Oct 04 2002 Covidien LP Surgical stapling device with visual indicator
7303107, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
7303108, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
7308998, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7326203, Sep 30 2002 Depuy Acromed, Inc.; Depuy Acromed Device for advancing a functional element through tissue
7328828, Nov 04 2005 Ethicon Endo-Surgery, Inc,; Ethicon Endo-Surgery, Inc Lockout mechanisms and surgical instruments including same
7328829, Dec 13 2004 NITI SURGICAL SOLUTIONS LTD Palm size surgical stapler for single hand operation
7331340, Mar 04 2003 IVAX Corporation Medicament dispensing device with a display indicative of the state of an internal medicament reservoir
7334717, Oct 05 2001 Covidien LP Surgical fastener applying apparatus
7334718, Nov 30 2000 Boston Scientific Scimed, Inc Stapling and cutting in resectioning for full thickness resection devices
7336048, May 02 2005 Robert Bosch GmbH Method for operating a power tool
7354447, Nov 10 2005 Cilag GmbH International Disposable loading unit and surgical instruments including same
7357287, Sep 29 2005 Cilag GmbH International Surgical stapling instrument having preloaded firing assistance mechanism
7357806, Dec 06 2001 Ethicon Endo-Surgery, Inc Clip ejector for endoscopic clip applier
7364060, Oct 17 2003 Covidien LP Surgical stapling device with tiltable anvil head
7364061, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
7380695, May 20 2003 Cilag GmbH International Surgical stapling instrument having a single lockout mechanism for prevention of firing
7380696, May 20 2003 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
7396356, Jan 03 2002 Microline Surgical, Inc Combined dissecting, cauterizing, and stapling device
7398907, Oct 20 2000 Covidien LP Directionally biased staple and anvil assembly for forming the staple
7398908, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7401721, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7404508, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device
7404509, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for linear stapler
7404822, Oct 30 2001 Choice Spine, LP Surgical instrument
7407074, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for multi-fire surgical fastening instrument
7407075, Aug 15 2005 Covidien LP Staple cartridge having multiple staple sizes for a surgical stapling instrument
7407076, Oct 13 2000 Covidien LP Surgical stapling device
7407077, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for linear surgical stapler
7407078, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instrument having force controlled spacing end effector
7410086, Jul 28 2004 Cilag GmbH International Electroactive polymer-based actuation mechanism for circular stapler
7416101, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with loading force feedback
7419080, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device with dual actuating control knob
7419321, Jan 05 2005 Hand applicator of encapsulated liquids
7422136, Mar 15 2007 Covidien LP Powered surgical stapling device
7422139, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting fastening instrument with tactile position feedback
7427607, Feb 20 2002 NEXT21 K K Drug administration method
7431188, Mar 15 2007 Covidien LP Surgical stapling apparatus with powered articulation
7431189, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion
7431694, May 16 2003 EHTICON ENDO-SURGERY, INC Method of guiding medical devices
7431730, May 10 2002 Covidien LP Surgical stapling apparatus having a wound closure material applicator assembly
7434715, Sep 29 2003 Cilag GmbH International Surgical stapling instrument having multistroke firing with opening lockout
7434717, Jan 11 2007 Cilag GmbH International Apparatus for closing a curved anvil of a surgical stapling device
7438209, Jun 29 2007 Cilag GmbH International Surgical stapling instruments having a releasable staple-forming pocket
7438718, Jan 24 2001 TYCO Healthcare Group IP Anastomosis instrument and method for performing same
7441684, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
7441685, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a return mechanism
7448525, Aug 02 2006 Ethicon Endo-Surgery, Inc Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
7451904, Sep 26 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
7455682, Oct 18 2004 Covidien LP Structure containing wound treatment material
7461767, Jun 03 2005 Covidien LP Battery powered surgical instrument
7464846, Jan 31 2006 Ethicon Endo-Surgery, Inc Surgical instrument having a removable battery
7464847, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7464849, Jan 31 2006 Ethicon Endo-Surgery, Inc Electro-mechanical surgical instrument with closure system and anvil alignment components
7467740, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instruments having flexible channel and anvil features for adjustable staple heights
7472814, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7472815, Sep 21 2005 Ethicon Endo-Surgery, Inc Surgical stapling instruments with collapsible features for controlling staple height
7472816, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7473253, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider with non-conductive stop members
7481347, Oct 04 2002 Covidien LP Pneumatic powered surgical stapling device
7481348, Oct 06 2006 Covidien LP Surgical instrument with articulating tool assembly
7481349, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7487899, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating EAP complete firing system lockout mechanism
7490749, Mar 28 2007 Cilag GmbH International Surgical stapling and cutting instrument with manually retractable firing member
7494039, Jun 17 2003 Covidien LP Surgical stapling device
7500979, Aug 31 2005 Cilag GmbH International Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
7503474, Aug 30 2000 RICHARD A HILLSTEAD, INC Medical instrument
7506790, Jul 28 2004 Cilag GmbH International Surgical instrument incorporating an electrically actuated articulation mechanism
7506791, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
7510107, Jun 18 2007 Cilag GmbH International Cable driven surgical stapling and cutting instrument with apparatus for preventing inadvertent cable disengagement
7513408, Jul 28 2004 Cilag GmbH International Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
7517356, Apr 16 2002 Covidien LP Surgical stapler and method
7547312, Sep 17 2003 W L GORE & ASSOCIATES, INC Circular stapler buttress
7549563, Dec 30 2003 Ethicon Endo-Surgery, Inc Rotating curved cutter stapler
7549564, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulating end effector
7549998, Jun 02 2003 ASENSUS SURGICAL EUROPE S À R L Surgical instrument comprising an instrument handle and zero point adjustment
7552854, May 19 2006 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
7556185, Aug 15 2007 Covidien LP Surgical instrument with flexible drive mechanism
7559449, Mar 26 2003 Covidien LP Energy stored in spring with controlled release
7559450, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
7559452, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
7565993, Sep 23 1997 United States Surgical Corporation Surgical stapling apparatus
7568603, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with articulatable end effector
7575144, Jan 31 2006 Ethicon Endo-Surgery, Inc Surgical fastener and cutter with single cable actuator
7588174, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staples sizes
7588175, Jun 18 2007 Cilag GmbH International Surgical stapling and cutting instrument with improved firing system
7588176, Jun 18 2007 Cilag GmbH International Surgical cutting instrument with improved closure system
7588177, Oct 04 2002 Covidien LP Tool assembly for surgical stapling device
7597229, Jun 22 2007 Cilag GmbH International End effector closure system for a surgical stapling instrument
7597230, Jun 17 2003 Covidien LP Surgical stapling device
7600663, Jul 05 2007 Apparatus for stapling and incising tissue
7604150, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an anti-back up mechanism
7604151, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
7607557, Nov 04 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
7611038, Oct 20 2000 Covidien LP Directionally biased staple and anvil assembly for forming the staple
7615067, Jun 05 2006 ENDOBOTICS, LLC Surgical instrument
7624902, Aug 31 2007 Covidien LP Surgical stapling apparatus
7624903, Oct 18 1991 Tyco Healthcare Group LP Apparatus for applying surgical fastners to body tissue
7625370, Jan 16 2003 Applied Medical Resources Corporation Tissue fusion/welder apparatus and method
7631793, Mar 19 2002 Covidien LP Surgical fastener applying apparatus
7631794, Oct 05 2001 Covidien LP Surgical fastener applying apparatus
7635074, Oct 04 2005 Covidien LP Staple drive assembly
7637409, Mar 15 2007 Covidien LP Powered surgical stapling device
7638958, Jun 28 2005 Stryker Corporation Powered surgical tool with control module that contains a sensor for remotely monitoring the tool power generating unit
7641091, Oct 04 2005 Covidien LP Staple drive assembly
7641092, Aug 05 2005 Ethicon Endo-Surgery, Inc Swing gate for device lockout in a curved cutter stapler
7641093, May 20 2003 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
7641095, Dec 21 2006 Covidien LP Staple driver for articulating surgical stapler
7644848, Jan 31 2006 Ethicon Endo-Surgery, Inc Electronic lockouts and surgical instrument including same
7645230, Feb 11 2003 Olympus Corporation Over-tube, method of manufacturing over-tube, method of disposing over-tube, and method of treatment in abdominal cavity
7651017, Nov 23 2005 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
7654431, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
7658311, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a geared return mechanism
7662161, Sep 13 1999 REX MEDICAL, L P Vascular hole closure device
7665646, Jun 18 2007 Covidien LP Interlocking buttress material retention system
7665647, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
7669746, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
7669747, Jun 29 2007 Cilag GmbH International Washer for use with a surgical stapling instrument
7670334, Jan 10 2006 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
7673780, Nov 09 2005 Ethicon Endo-Surgery, Inc Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
7673781, Aug 31 2005 Cilag GmbH International Surgical stapling device with staple driver that supports multiple wire diameter staples
7673782, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
7673783, Nov 04 2005 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
7694865, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7695485, Nov 30 2001 Covidien LP Surgical device
7699204, Oct 18 2004 Covidien LP Structure containing wound treatment material
7699846, Mar 04 2005 Gyrus ENT L.L.C. Surgical instrument and method
7699856, Jun 27 2002 Apyx Medical Corporation Method, apparatus, and kit for thermal suture cutting
7703653, Sep 28 2007 Covidien LP Articulation mechanism for surgical instrument
7708180, Nov 09 2006 Ethicon Endo-Surgery, Inc Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
7708181, Mar 18 2008 Boston Scientific Scimed, Inc Endoscopic stapling devices and methods
7708182, Apr 17 2007 Covidien LP Flexible endoluminal surgical instrument
7708758, Aug 16 2006 ENDOBOTICS, LLC Surgical instrument
7717312, Jun 03 2005 Covidien LP Surgical instruments employing sensors
7717313, Oct 18 2004 Covidien LP Surgical apparatus and structure for applying sprayable wound treatment material
7717846, Sep 06 2002 C.R. Bard, Inc. External endoscopic accessory control system
7721930, Nov 10 2006 Ethicon Endo-Surgery, Inc Disposable cartridge with adhesive for use with a stapling device
7721931, Jan 10 2007 Cilag GmbH International Prevention of cartridge reuse in a surgical instrument
7721933, Oct 13 2000 Covidien LP Surgical fastener applying apparatus
7721934, Jan 31 2006 Ethicon Endo-Surgery, Inc. Articulatable drive shaft arrangements for surgical cutting and fastening instruments
7721936, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
7726537, Oct 04 2002 Covidien LP Surgical stapler with universal articulation and tissue pre-clamp
7726538, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7731072, Jun 18 2007 Cilag GmbH International Surgical stapling and cutting instrument with improved anvil opening features
7731073, May 19 2006 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
7735703, Jun 29 2007 Cilag GmbH International Re-loadable surgical stapling instrument
7738971, Jan 10 2007 Cilag GmbH International Post-sterilization programming of surgical instruments
7740159, Aug 02 2006 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
7743960, Jun 14 2002 Covidien LP Surgical device
7744627, Jun 17 2002 Covidien LP Annular support structures
7744628, May 10 2002 Covidien LP Surgical stapling apparatus having a wound closure material applicator assembly
7751870, Jan 30 2002 Covidien LP Surgical imaging device
7753245, Jun 22 2007 Cilag GmbH International Surgical stapling instruments
7753904, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
7758612, Apr 27 2004 Covidien LP Surgery delivery device and mesh anchor
7766209, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
7766210, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with user feedback system
7770773, Jul 27 2005 Covidien LP Surgical device
7770774, Aug 28 1995 Covidien LP Surgical stapler
7770775, Jan 31 2006 Ethicon Endo-Surgery, Inc Motor-driven surgical cutting and fastening instrument with adaptive user feedback
7770776, Jan 26 2005 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Rotatable stapling head of a surgical stapler
7780054, Feb 18 2005 Ethicon Endo-Surgery, Inc Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
7780055, Apr 06 2005 Covidien LP Loading unit having drive assembly locking mechanism
7784662, Feb 18 2005 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
7784663, Mar 17 2005 Cilag GmbH International Surgical stapling instrument having load sensing control circuitry
7793812, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
7794475, Sep 29 2006 Cilag GmbH International Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
7798386, May 30 2007 Cilag GmbH International Surgical instrument articulation joint cover
7799039, Nov 09 2005 Ethicon Endo-Surgery, Inc Surgical instrument having a hydraulically actuated end effector
7810690, Oct 09 2004 Ethicon Endo-Surgery, Inc Surgical stapling instrument
7810691, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Gentle touch surgical stapler
7810692, Feb 14 2008 Cilag GmbH International Disposable loading unit with firing indicator
7810693, May 30 2007 Cilag GmbH International Surgical stapling and cutting instrument with articulatable end effector
7819296, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with retractable firing systems
7819297, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with reprocessible handle assembly
7819298, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
7819299, Jun 04 2007 Cilag GmbH International Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
7823592, Oct 18 2004 Covidien LP Annular adhesive structure
7824426, Oct 20 2000 Covidien LP Directionally biased staples and cartridge having directionally biased staples
7828189, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7832408, Jun 04 2007 Cilag GmbH International Surgical instrument having a directional switching mechanism
7832611, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Steerable surgical stapler
7832612, Sep 19 2008 Cilag GmbH International Lockout arrangement for a surgical stapler
7837079, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7837080, Sep 18 2008 Cilag GmbH International Surgical stapling instrument with device for indicating when the instrument has cut through tissue
7837081, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staple sizes
7837694, Apr 28 2005 Warsaw Orthopedic, Inc Method and apparatus for surgical instrument identification
7842028, Apr 15 2005 ENDOBOTICS, LLC Surgical instrument guide device
7845533, Jun 22 2007 Covidien LP Detachable buttress material retention systems for use with a surgical stapling device
7845534, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7845535, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
7845537, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
7854736, Mar 04 2005 Gyrus Ent, L.L.C. Surgical instrument and method
7857183, Mar 31 2005 Cilag GmbH International Surgical instrument incorporating an electrically actuated articulation mechanism
7857185, Feb 14 2008 Cilag GmbH International Disposable loading unit for surgical stapling apparatus
7857186, Sep 19 2008 Cilag GmbH International Surgical stapler having an intermediate closing position
7861906, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with articulatable components
7866525, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
7866527, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
7870989, Jun 03 2005 Covidien LP Surgical stapler with timer and feedback display
7886951, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
7886952, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7891531, Jan 31 2006 Sub-miniature surgical staple cartridge
7891532, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
7893586, Feb 20 2006 Black & Decker Inc DC motor with dual commutator bar set and selectable series and parallel connected coils
7896877, May 20 2004 Gyrus Medical Limited Surgical instrument
7900805, Jan 10 2007 Cilag GmbH International Surgical instrument with enhanced battery performance
7905380, Jun 04 2007 Cilag GmbH International Surgical instrument having a multiple rate directional switching mechanism
7905381, Sep 19 2008 Cilag GmbH International Surgical stapling instrument with cutting member arrangement
7905902, Jun 16 2003 Ethicon Endo-Surgery, Inc.; Ethicon Endo-Surgery, Inc Surgical implant with preferential corrosion zone
7909039, Sep 10 2004 INHA-INDUSTRY PARTNERSHIP INSTITUTE Operating staple and intraluminal stapler for operation having the operating staple
7909220, Oct 05 2007 Covidien LP Surgical stapler having an articulation mechanism
7909221, Jun 03 2005 Covidien LP Battery powered surgical instrument
7913891, Feb 14 2008 Cilag GmbH International Disposable loading unit with user feedback features and surgical instrument for use therewith
7913893, Aug 28 1995 Covidien LP Surgical stapler
7918376, Mar 09 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Articulated surgical instrument
7918377, Oct 16 2008 Cilag GmbH International Surgical stapling instrument with apparatus for providing anvil position feedback
7918845, Jan 15 2003 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Endoluminal tool deployment system
7922061, May 21 2008 Cilag GmbH International Surgical instrument with automatically reconfigurable articulating end effector
7922063, Oct 31 2007 Covidien LP Powered surgical instrument
7922743, Oct 18 2004 Covidien LP Structure for applying sprayable wound treatment material
7926691, Apr 14 2008 Covidien LP Variable compression surgical fastener cartridge
7931660, May 10 2007 Covidien LP Powered tacker instrument
7934630, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
7934631, Nov 10 2008 Boston Scientific Scimed, Inc Multi-fire stapling systems and methods for delivering arrays of staples
7935773, Aug 19 2004 Covidien LP Water-swellable copolymers and articles and coatings made therefrom
7938307, Oct 18 2004 Covidien LP Support structures and methods of using the same
7942303, Jun 06 2008 Covidien LP Knife lockout mechanisms for surgical instrument
7942890, Mar 15 2005 Covidien LP Anastomosis composite gasket
7950560, Apr 13 2007 Covidien LP Powered surgical instrument
7950561, Jun 18 2007 Covidien LP Structure for attachment of buttress material to anvils and cartridges of surgical staplers
7951071, Jun 02 1999 Covidien LP Moisture-detecting shaft for use with an electro-mechanical surgical device
7954682, Jan 10 2007 Cilag GmbH International Surgical instrument with elements to communicate between control unit and end effector
7954684, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a firing member return mechanism
7954686, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
7954687, Nov 06 2007 Covidien LP Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
7959050, Jul 25 2005 Cilag GmbH International Electrically self-powered surgical instrument with manual release
7959051, Feb 15 2008 Cilag GmbH International Closure systems for a surgical cutting and stapling instrument
7963432, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Driverless surgical stapler
7966799, Sep 29 2006 Cilag GmbH International Method of manufacturing staples
7967180, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
7967181, Aug 29 2007 Covidien LP Rotary knife cutting systems
7967839, May 20 2002 ROCKY MOUNTAIN BIOSYSTEMS, INC Electromagnetic treatment of tissues and cells
7976563, Jul 11 2006 KARL STORZ SE & CO KG Medical instrument
7980443, Feb 15 2008 Cilag GmbH International End effectors for a surgical cutting and stapling instrument
7988026, Sep 06 2007 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Endocutter with staple feed
7988027, Mar 31 2009 Covidien LP Crimp and release of suture holding buttress material
7988779, Oct 30 2003 NANO MET-ZERO, INC Absorbent articles comprising nanoparticles
7992757, May 03 2006 Datascope Corp Systems and methods of tissue closure
7997469, Oct 04 2005 Covidien LP Staple drive assembly
8002795, Jun 03 2005 Covidien LP Surgical instruments employing sensors
8006885, Apr 09 2007 Covidien LP Surgical stapling apparatus with powered retraction
8006889, Jun 19 1998 Boston Scientific Scimed, Inc. Method and device for full thickness resectioning of an organ
8011550, Mar 31 2009 Covidien LP Surgical stapling apparatus
8011551, Jul 01 2008 Covidien LP Retraction mechanism with clutch-less drive for use with a surgical apparatus
8011553, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8016176, Jun 04 2008 Covidien LP Surgical stapling instrument with independent sequential firing
8016177, May 25 2007 Covidien LP Staple buttress retention system
8016178, Mar 31 2009 Covidien LP Surgical stapling apparatus
8016849, Oct 18 2004 Covidien LP Apparatus for applying wound treatment material using tissue-penetrating needles
8016855, Jan 08 2002 Covidien LP Surgical device
8016858, Jun 02 1999 Covidien LP Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
8020742, Mar 15 2007 Covidien LP Powered surgical stapling device
8020743, Oct 15 2008 Cilag GmbH International Powered articulatable surgical cutting and fastening instrument with flexible drive member
8025199, Feb 23 2004 Covidien LP Surgical cutting and stapling device
8028883, Oct 26 2006 Covidien LP Methods of using shape memory alloys for buttress attachment
8028884, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8033438, Oct 14 2005 Covidien LP Surgical stapling device
8033440, Oct 05 2001 Covidien LP Surgical stapling device
8034077, Jul 26 2005 Cilag GmbH International Method for surgical stapling and cutting device with dual actuating control knob
8035487, Aug 08 2001 Stryker Corporation Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components
8038045, May 25 2007 Covidien LP Staple buttress retention system
8047236, Sep 12 2008 Boston Scientific Scimed, Inc. Flexible conduit with locking element
8056787, Mar 28 2007 Cilag GmbH International Surgical stapling and cutting instrument with travel-indicating retraction member
8056788, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8061576, Aug 31 2007 Covidien LP Surgical instrument
8062330, Jun 27 2007 Covidien LP Buttress and surgical stapling apparatus
8066167, Mar 23 2009 Cilag GmbH International Circular surgical stapling instrument with anvil locking system
8066168, Apr 30 1993 Tyco Healthcare Group LP Surgical instrument having an articulated jaw structure and a detachable knife
8083118, Sep 23 1997 Covidien LP Surgical stapling apparatus
8083119, Jun 18 2007 Covidien LP Interlocking buttress material retention system
8083120, Sep 18 2008 Cilag GmbH International End effector for use with a surgical cutting and stapling instrument
8091756, May 09 2008 Covidien LP Varying tissue compression using take-up component
8092932, Oct 31 2005 Black & Decker Inc. Battery pack and internal component arrangement within the battery pack for cordless power tool system
8096458, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
8097017, Oct 18 2004 Covidien LP Surgical fasteners coated with wound treatment materials
8100310, Apr 14 2008 Covidien LP Variable compression surgical fastener apparatus
8105350, May 23 2006 ENDOBOTICS, LLC Surgical instrument
8109426, Aug 12 2008 Covidien LP Surgical tilt anvil assembly
8113405, Sep 03 2008 Covidien LP Surgical instrument with indicator
8113410, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features
8114100, Dec 06 2006 Ethicon Endo-Surgery, Inc Safety fastener for tissue apposition
8123103, Oct 17 2003 Covidien LP Adaptor for anvil delivery
8127975, Oct 04 2005 Covidien LP Staple drive assembly
8132703, Sep 03 2008 Covidien LP Surgical instrument with indicator
8132706, Jun 05 2009 Covidien LP Surgical stapling apparatus having articulation mechanism
8136712, Dec 10 2009 Cilag GmbH International Surgical stapler with discrete staple height adjustment and tactile feedback
8140417, May 10 2007 Sharp Kabushiki Kaisha Data transmission system and data transmitting method
8141762, Oct 09 2009 Cilag GmbH International Surgical stapler comprising a staple pocket
8146790, Jul 11 2009 Covidien LP Surgical instrument with safety mechanism
8152041, Oct 14 2009 Covidien LP Varying tissue compression aided by elastic members
8157145, May 31 2007 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with electrical feedback
8157148, Feb 17 2004 Covidien LP Surgical stapling apparatus with locking mechanism
8157152, Aug 15 2005 Covidien LP Surgical stapling instruments including a cartridge having multiple staples sizes
8157153, Jan 31 2006 Cilag GmbH International Surgical instrument with force-feedback capabilities
8161977, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8162197, Aug 28 1995 Covidien LP Surgical stapler
8162933, Apr 27 2000 Medtronic, Inc. Vibration sensitive ablation device and method
8167185, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8172120, May 16 2007 ENTERPRISE SCIENCE FUND, LLC Maneuverable surgical stapler
8172122, Jun 04 2008 Covidien LP Surgical stapling instrument with independent sequential firing
8172124, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8177797, Jul 17 2003 Gunze Limited Suture reinforement material for automatic suturing device
8186555, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with mechanical closure system
8186560, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
8191752, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8196795, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
8196796, Jun 04 2007 Cilag GmbH International Shaft based rotary drive system for surgical instruments
8201720, Nov 24 2008 Covidien LP Pouch used to deliver medication when ruptured
8201721, Oct 31 2007 Covidien LP Powered surgical instrument
8205780, Mar 22 2007 Covidien LP Apparatus for forming variable height surgical fasteners
8205781, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
8210411, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
8210414, Jan 05 2001 Covidien LP Staple buttress retention system
8214019, Feb 23 2004 Biosense Webster, Inc. Robotically guided catheter
8215531, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
8220688, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
8220690, Sep 29 2006 Ethicon Endo-Surgery, Inc Connected surgical staples and stapling instruments for deploying the same
8231040, Apr 14 2008 Covidien LP Variable compression surgical fastener cartridge
8236010, Mar 23 2006 Cilag GmbH International Surgical fastener and cutter with mimicking end effector
8241322, Jul 27 2005 Covidien LP Surgical device
8245898, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device
8245899, Feb 06 2009 Cilag GmbH International Driven surgical stapler improvements
8245900, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8245901, Oct 26 2006 Covidien LP Methods of using shape memory alloys for buttress attachment
8246637, Oct 05 2006 Covidien LP Flexible endoscopic stitching devices
8256654, May 25 2007 Covidien LP Staple buttress retention system
8256655, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8267300, Dec 30 2009 Cilag GmbH International Dampening device for endoscopic surgical stapler
8272553, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
8276801, Feb 01 2011 Covidien LP Surgical stapling apparatus
8286845, Nov 27 2000 Boston Scientific Scimed, Inc Full thickness resection device control handle
8286846, May 19 2006 Cilag GmbH International Method for operating an electrical surgical instrument with optimal tissue compression
8292151, Oct 04 2002 Covidien LP Tool assembly for surgical stapling device
8292155, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
8292888, Apr 20 2001 Covidien LP Bipolar or ultrasonic surgical device
8308040, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
8308042, Jun 18 2007 Covidien LP Structure for attachment of buttress material to anvils and cartridges of surgical stapler
8313496, Feb 02 2001 LSI Solutions, Inc System for endoscopic suturing
8317070, Aug 31 2005 Cilag GmbH International Surgical stapling devices that produce formed staples having different lengths
8317071, Mar 09 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Endocutter with auto-feed buttress
8317074, Jul 28 2004 Cilag GmbH International Electroactive polymer-based articulation mechanism for circular stapler
8322455, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
8322589, Jun 22 2007 Cilag GmbH International Surgical stapling instruments
8333313, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a firing member return mechanism
8333764, May 12 2004 Medtronic, Inc.; Medtronic, Inc Device and method for determining tissue thickness and creating cardiac ablation lesions
8336753, Oct 04 2005 Covidien LP Staple drive assembly
8348123, Apr 29 2003 Covidien LP Surgical stapling device with dissecting tip
8348129, Oct 09 2009 Cilag GmbH International Surgical stapler having a closure mechanism
8348130, Dec 10 2010 Covidien LP Surgical apparatus including surgical buttress
8348131, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument with mechanical indicator to show levels of tissue compression
8348972, Jul 11 2007 Covidien LP Surgical staple with augmented compression area
8353437, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with a geared return mechanism
8353438, Nov 19 2009 Cilag GmbH International Circular stapler introducer with rigid cap assembly configured for easy removal
8353439, Nov 19 2009 Cilag GmbH International Circular stapler introducer with radially-openable distal end portion
8360296, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
8360297, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical cutting and stapling instrument with self adjusting anvil
8360298, Sep 23 2008 Covidien LP Surgical instrument and loading unit for use therewith
8360299, Aug 11 2009 Covidien LP Surgical stapling apparatus
8365973, Jun 03 2009 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD D-shaped surgical staples
8365976, Sep 29 2006 Ethicon Endo-Surgery, Inc Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
8371491, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
8371492, Mar 06 2007 Covidien LP Surgical stapling apparatus
8371493, Mar 06 2007 Covidien LP Surgical stapling apparatus
8377029, Apr 23 2003 OTSUKA PHARMACEUTICAL FACTORY, INC Drug solution filling plastic ampoule and process for producing the same
8393513, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
8393514, Sep 30 2010 Cilag GmbH International Selectively orientable implantable fastener cartridge
8397971, Feb 05 2009 Cilag GmbH International Sterilizable surgical instrument
8403945, Feb 25 2010 Covidien LP Articulating endoscopic surgical clip applier
8408439, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
8413870, Jul 07 2006 Ethicon Endo-Surgery, Inc Surgical stapling instrument
8414577, Feb 05 2009 Cilag GmbH International Surgical instruments and components for use in sterile environments
8424737, Sep 11 2006 Covidien LP Rotating knob locking mechanism for surgical stapling device
8424739, Oct 17 2003 Covidien LP Surgical stapling device with independent tip rotation
8424740, Jun 04 2007 Cilag GmbH International Surgical instrument having a directional switching mechanism
8424741, Jan 31 2001 Rex Medical, L.P. Apparatus and method for resectioning gastro-esophageal tissue
8439246, Jul 20 2010 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Surgical stapler with cartridge-adjustable clamp gap
8444036, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
8453904, Oct 08 2007 W L GORE & ASSOCIATES, INC Apparatus for supplying surgical staple line reinforcement
8453907, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with cutting member reversing mechanism
8453908, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
8453912, Aug 28 1995 Covidien LP Surgical stapler
8453914, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
8459520, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8459525, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
8464922, May 09 2008 Covidien LP Variable compression surgical fastener cartridge
8464923, Aug 31 2005 Cilag GmbH International Surgical stapling devices for forming staples with different formed heights
8469973, Jan 27 2006 Intuitive Surgical Operations, Inc Apparatus and method for sternotomy closure
8470355, Oct 01 2009 Covidien LP Mesh implant
8474677, Sep 30 2010 Cilag GmbH International Fastener system comprising a retention matrix and a cover
8475454, Mar 01 2012 Electrosurgical midline clamping scissors
8479969, Jan 10 2007 Ethicon LLC Drive interface for operably coupling a manipulatable surgical tool to a robot
8485412, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
8485413, Feb 05 2009 Cilag GmbH International Surgical stapling instrument comprising an articulation joint
8496156, Apr 22 2008 Covidien LP Cartridge for applying varying amounts of tissue compression
8499993, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
8517239, Feb 05 2009 Cilag GmbH International Surgical stapling instrument comprising a magnetic element driver
8517241, Apr 16 2010 Covidien LP Hand-held surgical devices
8517243, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8517244, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
8523043, Dec 07 2010 Immersion Corporation Surgical stapler having haptic feedback
8529600, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a retention matrix
8534528, Jun 04 2007 Cilag GmbH International Surgical instrument having a multiple rate directional switching mechanism
8540128, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
8540129, Feb 13 2008 Cilag GmbH International Surgical stapling instrument with improved firing trigger arrangement
8540130, Feb 14 2008 Cilag GmbH International Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
8540131, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
8540133, Sep 19 2008 Cilag GmbH International Staple cartridge
8550984, Nov 27 2003 Olympus Corporation Insertion auxiliary implement
8556151, Sep 11 2007 Covidien LP Articulating joint for surgical instruments
8561870, Feb 13 2008 Cilag GmbH International Surgical stapling instrument
8561873, Oct 15 2009 Covidien LP Staple line reinforcement for anvil and cartridge
8567656, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
8573459, May 19 2006 Cilag GmbH International Optimal tissue compression electrical surgical instrument
8573461, Feb 14 2008 Cilag GmbH International Surgical stapling instruments with cam-driven staple deployment arrangements
8573465, Feb 14 2008 Cilag GmbH International Robotically-controlled surgical end effector system with rotary actuated closure systems
8579176, Jul 26 2005 Cilag GmbH International Surgical stapling and cutting device and method for using the device
8579937, Jul 31 2002 Covidien LP Tool member cover and cover deployment device
8584919, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with load-sensitive firing mechanism
8590760, May 25 2004 Abbott Vascular Inc Surgical stapler
8590762, Jun 29 2007 Cilag GmbH International Staple cartridge cavity configurations
8602287, Sep 23 2008 Cilag GmbH International Motor driven surgical cutting instrument
8602288, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
8608043, Oct 06 2006 Covidien LP Surgical instrument having a multi-layered drive beam
8608044, Feb 15 2008 Cilag GmbH International Feedback and lockout mechanism for surgical instrument
8608045, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
8608046, Jan 07 2010 Cilag GmbH International Test device for a surgical tool
8616431, Jun 04 2007 Cilag GmbH International Shiftable drive interface for robotically-controlled surgical tool
8622274, Feb 14 2008 Cilag GmbH International Motorized cutting and fastening instrument having control circuit for optimizing battery usage
8622275, Nov 19 2009 Cilag GmbH International Circular stapler introducer with rigid distal end portion
8627993, May 19 2006 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
8631987, Aug 02 2006 Cilag GmbH International Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
8631993, Jul 11 2009 Covidien LP Surgical instrument with double cartridge and anvil assemblies
8632462, Mar 14 2011 Cilag GmbH International Trans-rectum universal ports
8632525, Sep 17 2010 Cilag GmbH International Power control arrangements for surgical instruments and batteries
8632535, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
8632563, May 08 2003 Olympus Corporation Surgical instrument
8636187, Aug 31 2005 Cilag GmbH International Surgical stapling systems that produce formed staples having different lengths
8636191, May 09 2003 Covidien LP Anastomotic staple with capillary which expels a bonding agent upon deformation
8636736, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
8652120, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
8657174, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having handle based power source
8657176, Sep 30 2010 Ethicon Endo-Surgery, Inc Tissue thickness compensator for a surgical stapler
8657178, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus
8668129, Dec 16 2008 Covidien LP Surgical apparatus including surgical buttress
8668130, Jun 29 2007 Cilag GmbH International Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
8672206, Oct 25 2011 Covidien LP Apparatus for endoscopic procedures
8672207, Jul 30 2010 Ethicon Endo-Surgery, Inc Transwall visualization arrangements and methods for surgical circular staplers
8672208, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
8672209, Feb 25 2010 Design Standards Corporation Laproscopic stapler
8672951, Jul 26 2005 Cilag GmbH International Electrically self-powered surgical instrument with manual release
8678263, Sep 24 2007 Covidien LP Materials delivery system for stapling device
8679154, Jan 12 2007 Cilag GmbH International Adjustable compression staple and method for stapling with adjustable compression
8679156, Jan 12 2007 Cilag GmbH International Adjustable compression staple and method for stapling with adjustable compression
8684253, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
8695866, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
8701958, Jan 11 2007 Cilag GmbH International Curved end effector for a surgical stapling device
8701959, Jun 06 2008 Covidien LP Mechanically pivoting cartridge channel for surgical instrument
8708210, Oct 05 2006 Covidien LP Method and force-limiting handle mechanism for a surgical instrument
8708213, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
8720766, Sep 29 2006 Cilag GmbH International Surgical stapling instruments and staples
8721630, Mar 23 2006 Cilag GmbH International Methods and devices for controlling articulation
8727197, Jun 29 2007 Cilag GmbH International Staple cartridge cavity configuration with cooperative surgical staple
8727199, Jan 03 2008 Covidien LP Surgical stapler
8733612, Aug 17 2009 Covidien LP Safety method for powered surgical instruments
8733613, Sep 29 2010 Cilag GmbH International Staple cartridge
8734478, Mar 14 2011 Cilag GmbH International Rectal manipulation devices
8740034, Sep 30 2010 Cilag GmbH International Surgical stapling instrument with interchangeable staple cartridge arrangements
8740037, Sep 30 2010 Cilag GmbH International Compressible fastener cartridge
8740038, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a releasable portion
8746529, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8746530, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
8746535, Sep 30 2010 Ethicon Endo-Surgery, Inc Tissue thickness compensator comprising detachable portions
8747238, Jun 28 2012 Cilag GmbH International Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
8752699, Sep 30 2010 Ethicon Endo-Surgery, Inc Implantable fastener cartridge comprising bioabsorbable layers
8752747, Jan 31 2006 Cilag GmbH International Surgical instrument having recording capabilities
8752749, Feb 14 2008 Cilag GmbH International Robotically-controlled disposable motor-driven loading unit
8757465, Sep 30 2010 Cilag GmbH International Fastener system comprising a retention matrix and an alignment matrix
8758391, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
8763875, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
8763877, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical instruments with reconfigurable shaft segments
8763879, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of surgical instrument
8770458, Oct 06 2006 Covidien LP Surgical instrument having a plastic surface
8770459, Oct 17 2003 Covidien LP Surgical stapling device with independent tip rotation
8777004, Sep 30 2010 Ethicon Endo-Surgery, Inc Compressible staple cartridge comprising alignment members
8783541, Oct 03 2006 Cilag GmbH International Robotically-controlled surgical end effector system
8783542, Sep 30 2010 Ethicon Endo-Surgery, Inc Fasteners supported by a fastener cartridge support
8783543, Jul 30 2010 Ethicon Endo-Surgery, Inc Tissue acquisition arrangements and methods for surgical stapling devices
8789737, Apr 27 2011 Covidien LP Circular stapler and staple line reinforcement material
8789739, Sep 06 2011 Ethicon Endo-Surgery, Inc Continuous stapling instrument
8789740, Jul 30 2010 Ethicon Endo-Surgery, Inc Linear cutting and stapling device with selectively disengageable cutting member
8789741, Sep 24 2010 Cilag GmbH International Surgical instrument with trigger assembly for generating multiple actuation motions
8794497, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
8795308, May 09 2008 Laparoscopic gastric and intestinal trocar
8800837, Apr 13 2007 Covidien LP Powered surgical instrument
8800838, Aug 31 2005 Cilag GmbH International Robotically-controlled cable-based surgical end effectors
8800840, Apr 11 2002 Covidien LP Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
8800841, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical staple cartridges
8801734, Jul 30 2010 Ethicon Endo-Surgery, Inc Circular stapling instruments with secondary cutting arrangements and methods of using same
8801735, Jul 30 2010 Ethicon Endo-Surgery, Inc Surgical circular stapler with tissue retention arrangements
8801752, Aug 04 2008 Covidien LP Articulating surgical device
8806973, Dec 02 2009 Covidien LP Adapters for use between surgical handle assembly and surgical end effector
8808311, Apr 25 2002 Covidien LP Surgical instruments including MEMS devices
8808325, Sep 29 2006 Cilag GmbH International Surgical stapling instrument with staples having crown features for increasing formed staple footprint
8814024, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a plurality of connected retention matrix elements
8820603, Sep 23 2008 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
8820605, Jan 31 2006 Cilag GmbH International Robotically-controlled surgical instruments
8827133, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
8827134, Jun 19 2009 Covidien LP Flexible surgical stapler with motor in the head
8827903, Mar 14 2011 Cilag GmbH International Modular tool heads for use with circular surgical instruments
8833632, Sep 06 2011 Ethicon Endo-Surgery, Inc Firing member displacement system for a stapling instrument
8840003, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical stapling instrument with compact articulation control arrangement
8840603, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
8844789, Jan 31 2006 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
8851354, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
8857693, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical instruments with lockable articulating end effector
8857694, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge loading assembly
8858538, Feb 27 2009 MODULAR SURGICAL, INC Apparatus and methods for hybrid endoscopic and laparoscopic surgery
8858571, Nov 09 2005 Cilag GmbH International Hydraulically and electrically actuated articulation joints for surgical instruments
8858590, Mar 14 2011 Cilag GmbH International Tissue manipulation devices
8864007, Sep 30 2010 Cilag GmbH International Implantable fastener cartridge having a non-uniform arrangement
8864009, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
8875971, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
8875972, Feb 15 2008 Cilag GmbH International End effector coupling arrangements for a surgical cutting and stapling instrument
8876857, Nov 13 2009 Intuitive Surgical Operations, Inc End effector with redundant closing mechanisms
8893946, Mar 28 2007 Cilag GmbH International Laparoscopic tissue thickness and clamp load measuring devices
8893949, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
8899463, Sep 30 2010 Cilag GmbH International Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
8899465, Sep 29 2006 Cilag GmbH International Staple cartridge comprising drivers for deploying a plurality of staples
8899466, Nov 19 2009 Cilag GmbH International Devices and methods for introducing a surgical circular stapling instrument into a patient
8905977, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
8911471, Mar 23 2006 Cilag GmbH International Articulatable surgical device
8920435, Jul 26 2005 Cilag GmbH International Method for operating a surgial stapling and cutting device
8920443, Feb 17 2004 Cook Biotech Incorporated Medical devices and methods useful for applying bolster material
8925782, Sep 30 2010 Ethicon Endo-Surgery, Inc Implantable fastener cartridge comprising multiple layers
8925788, Jun 29 2007 Cilag GmbH International End effectors for surgical stapling instruments
8926598, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical instruments with articulatable and rotatable end effector
8931682, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
8945163, Apr 01 2009 Ethicon Endo-Surgery, Inc Methods and devices for cutting and fastening tissue
8956390, May 21 2008 Cook Biotech Incorporated Devices and methods for applying bolster materials to surgical fastening apparatuses
8967448, Dec 14 2011 Covidien LP Surgical stapling apparatus including buttress attachment via tabs
8968310, Nov 30 2011 Covidien LP Electrosurgical instrument with a knife blade lockout mechanism
8973803, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
8973804, Sep 29 2006 Cilag GmbH International Cartridge assembly having a buttressing member
8974440, Aug 15 2007 Board of Regents of the University of Nebraska Modular and cooperative medical devices and related systems and methods
8978954, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising an adjustable distal portion
8978955, Mar 14 2011 Cilag GmbH International Anvil assemblies with collapsible frames for circular staplers
8978956, Sep 30 2010 Ethicon Endo-Surgery, Inc Jaw closure arrangements for surgical instruments
8991676, Jun 29 2007 Cilag GmbH International Surgical staple having a slidable crown
8991677, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
8992422, Mar 23 2006 Cilag GmbH International Robotically-controlled endoscopic accessory channel
8998058, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9005230, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9005238, Aug 23 2007 Covidien LP Endoscopic surgical devices
9005243, Jun 27 2007 Covidien LP Buttress and surgical stapling apparatus
9010608, Dec 14 2011 Covidien LP Releasable buttress retention on a surgical stapler
9016542, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising compressible distortion resistant components
9028494, Jun 28 2012 Cilag GmbH International Interchangeable end effector coupling arrangement
9028495, Jun 23 2010 Covidien LP Surgical instrument with a separable coaxial joint
9028519, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9033203, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastening instrument for deploying a fastener system comprising a retention matrix
9033204, Mar 14 2011 Cilag GmbH International Circular stapling devices with tissue-puncturing anvil features
9044227, Sep 30 2010 Ethicon Endo-Surgery, Inc Collapsible fastener cartridge
9044228, Sep 30 2010 Ethicon Endo-Surgery, Inc Fastener system comprising a plurality of fastener cartridges
9044229, Mar 15 2011 Ethicon Endo-Surgery, Inc Surgical fastener instruments
9044230, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
9050083, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
9050084, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck arrangement
9055941, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck
9055944, Mar 10 2011 Covidien LP Surgical instrument buttress attachment
9060770, Oct 03 2006 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
9060894, Dec 03 2008 C R BARD, INC Catheter sheath for implant delivery
9072515, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus
9072535, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
9072536, Jun 28 2012 Cilag GmbH International Differential locking arrangements for rotary powered surgical instruments
9078653, Mar 26 2012 Cilag GmbH International Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
9084601, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9084602, Jan 26 2011 Covidien LP Buttress film with hemostatic action for surgical stapling apparatus
9089326, Oct 07 2011 Cilag GmbH International Dual staple cartridge for surgical stapler
9089330, Mar 14 2011 Cilag GmbH International Surgical bowel retractor devices
9089352, Oct 31 2008 Surgical robot system having tool for minimally invasive surgery
9095339, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9095362, Nov 15 2010 Intuitive Surgical Operations, Inc Method for passively decoupling torque applied by a remote actuator into an independently rotating member
9101358, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
9101385, Jun 28 2012 Cilag GmbH International Electrode connections for rotary driven surgical tools
9107663, Sep 06 2011 Ethicon Endo-Surgery, Inc Stapling instrument comprising resettable staple drivers
9113862, Sep 30 2010 Cilag GmbH International Surgical stapling instrument with a variable staple forming system
9113864, Sep 30 2010 Ethicon Endo-Surgery, Inc Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
9113865, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a layer
9113874, Jan 31 2006 Ethicon LLC Surgical instrument system
9113880, Oct 05 2007 Covidien LP Internal backbone structural chassis for a surgical device
9113883, Mar 14 2011 Cilag GmbH International Collapsible anvil plate assemblies for circular surgical stapling devices
9113884, Mar 14 2011 Cilag GmbH International Modular surgical tool systems
9119657, Jun 28 2012 Cilag GmbH International Rotary actuatable closure arrangement for surgical end effector
9125654, Mar 14 2011 Cilag GmbH International Multiple part anvil assemblies for circular surgical stapling devices
9125662, Jun 28 2012 Cilag GmbH International Multi-axis articulating and rotating surgical tools
9131940, Sep 29 2010 Cilag GmbH International Staple cartridge
9138225, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
9149274, Mar 23 2006 Cilag GmbH International Articulating endoscopic accessory channel
9168038, Sep 30 2010 Ethicon Endo-Surgery, Inc Staple cartridge comprising a tissue thickness compensator
9179911, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
9179912, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
9186143, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
9198661, Sep 06 2011 Ethicon Endo-Surgery, Inc Stapling instrument comprising a plurality of staple cartridges stored therein
9198662, Mar 28 2012 Cilag GmbH International Tissue thickness compensator having improved visibility
9204878, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
9204879, Jun 28 2012 Cilag GmbH International Flexible drive member
9204880, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising capsules defining a low pressure environment
9211120, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising a plurality of medicaments
9211122, Mar 14 2011 Cilag GmbH International Surgical access devices with anvil introduction and specimen retrieval structures
9216019, Sep 23 2011 Cilag GmbH International Surgical stapler with stationary staple drivers
9220500, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising structure to produce a resilient load
9220501, Sep 30 2010 Cilag GmbH International Tissue thickness compensators
9226751, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
9232941, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a reservoir
9232945, Sep 09 2010 Cilag GmbH International Surgical stapling head assembly with firing lockout for a surgical stapler
9237891, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
9241714, Mar 28 2012 Cilag GmbH International Tissue thickness compensator and method for making the same
9271799, May 27 2011 Cilag GmbH International Robotic surgical system with removable motor housing
9272406, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
9277919, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising fibers to produce a resilient load
9282962, Sep 30 2010 Cilag GmbH International Adhesive film laminate
9282966, Jul 28 2004 Cilag GmbH International Surgical stapling instrument
9282974, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
9289210, Sep 19 2008 Cilag GmbH International Surgical stapler with apparatus for adjusting staple height
9289212, Sep 17 2010 Cilag GmbH International Surgical instruments and batteries for surgical instruments
9289225, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
9289256, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
9295464, Sep 30 2010 Cilag GmbH International Surgical stapler anvil comprising a plurality of forming pockets
9301752, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of capsules
9301753, Sep 30 2010 Cilag GmbH International Expandable tissue thickness compensator
9301755, Sep 30 2010 Cilag GmbH International Compressible staple cartridge assembly
9301759, Mar 23 2006 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
9307965, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an anti-microbial agent
9307986, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
9307988, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
9307989, Mar 28 2012 Cilag GmbH International Tissue stapler having a thickness compensator incorportating a hydrophobic agent
9314246, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
9314247, Mar 28 2012 Cilag GmbH International Tissue stapler having a thickness compensator incorporating a hydrophilic agent
9320518, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator incorporating an oxygen generating agent
9320521, Jun 27 2006 Cilag GmbH International Surgical instrument
9320523, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
9326767, Mar 01 2013 Cilag GmbH International Joystick switch assemblies for surgical instruments
9326768, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
9326769, Jan 31 2006 Cilag GmbH International Surgical instrument
9326770, Jan 31 2006 Cilag GmbH International Surgical instrument
9326771, Sep 19 2008 Cilag GmbH International Staple cartridge
9332974, Sep 30 2010 Cilag GmbH International Layered tissue thickness compensator
9332984, Mar 27 2013 Cilag GmbH International Fastener cartridge assemblies
9332987, Mar 14 2013 Cilag GmbH International Control arrangements for a drive member of a surgical instrument
9345477, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
9345481, Mar 13 2013 Cilag GmbH International Staple cartridge tissue thickness sensor system
9351726, Mar 14 2013 Cilag GmbH International Articulation control system for articulatable surgical instruments
9351727, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
9351730, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising channels
9358003, Mar 01 2013 Cilag GmbH International Electromechanical surgical device with signal relay arrangement
9364219, Oct 04 2005 Covidien LP Staple drive assembly
9364230, Jun 28 2012 Cilag GmbH International Surgical stapling instruments with rotary joint assemblies
9364233, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for circular surgical staplers
9370358, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
9370364, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
9386983, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument
9386984, Feb 08 2013 Cilag GmbH International Staple cartridge comprising a releasable cover
9386988, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9393015, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with cutting member reversing mechanism
9398911, Mar 01 2013 Cilag GmbH International Rotary powered surgical instruments with multiple degrees of freedom
9402626, Mar 23 2006 Cilag GmbH International Rotary actuatable surgical fastener and cutter
9408604, Sep 29 2006 Cilag GmbH International Surgical instrument comprising a firing system including a compliant portion
9408606, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
9414838, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprised of a plurality of materials
9427223, Apr 09 2007 Creative Surgical, LLC Frame device
9433419, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
9439649, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
9439651, May 19 2006 Cilag GmbH International Methods for cryptographic identification of interchangeable parts for surgical instruments
9451958, Jan 31 2006 Cilag GmbH International Surgical instrument with firing actuator lockout
9463260, Jun 29 2009 Covidien LP Self-sealing compositions
9468438, Mar 01 2013 Cilag GmbH International Sensor straightened end effector during removal through trocar
9480476, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising resilient members
9486213, Nov 14 2011 THD Lap Ltd.; EASYLAP LTD Drive mechanism for articulating tacker
9486214, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
9492167, Mar 23 2006 Cilag GmbH International Articulatable surgical device with rotary driven cutting member
9492170, Aug 10 2011 Cilag GmbH International Device for applying adjunct in endoscopic procedure
9510925, Feb 02 2010 Covidien LP Surgical meshes
9517063, Mar 28 2012 Cilag GmbH International Movable member for use with a tissue thickness compensator
9517068, Jan 31 2006 Cilag GmbH International Surgical instrument with automatically-returned firing member
9522029, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument having handle based power source
9549732, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
9554794, Mar 01 2013 Cilag GmbH International Multiple processor motor control for modular surgical instruments
9561032, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
9561038, Jun 28 2012 Cilag GmbH International Interchangeable clip applier
9566061, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a releasably attached tissue thickness compensator
9572577, Mar 27 2013 Cilag GmbH International Fastener cartridge comprising a tissue thickness compensator including openings therein
9574644, May 30 2013 Cilag GmbH International Power module for use with a surgical instrument
9585657, Feb 15 2008 Cilag GmbH International Actuator for releasing a layer of material from a surgical end effector
9585660, Jan 07 2010 Cilag GmbH International Method for testing a surgical tool
9592050, Mar 28 2012 Cilag GmbH International End effector comprising a distal tissue abutment member
9592052, Aug 31 2005 Cilag GmbH International Stapling assembly for forming different formed staple heights
9592053, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
9592054, Sep 23 2011 Cilag GmbH International Surgical stapler with stationary staple drivers
9597075, Jul 30 2010 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
9597080, Sep 24 2007 Covidien LP Insertion shroud for surgical instrument
9603595, Sep 29 2006 Cilag GmbH International Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
9603598, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9603991, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
9615826, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
9629623, Mar 14 2013 Cilag GmbH International Drive system lockout arrangements for modular surgical instruments
9629626, Feb 02 2006 Covidien LP Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
9629629, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
9629814, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
9642620, Dec 23 2013 Cilag GmbH International Surgical cutting and stapling instruments with articulatable end effectors
9649110, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
9649111, Jun 28 2012 Cilag GmbH International Replaceable clip cartridge for a clip applier
9655614, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
9655624, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9675355, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9675372, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
9675375, Mar 29 2006 Cilag GmbH International Ultrasonic surgical system and method
9681873, May 19 2006 Cilag GmbH International Electrical surgical stapling instrument with tissue compressive force control
9687230, Mar 14 2013 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
9687231, Feb 13 2008 Cilag GmbH International Surgical stapling instrument
9687236, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
9700309, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
9700315, Dec 16 2010 TOUCHSTONE INTERNATIONAL MEDICAL SCIENCE CO , LTD Linear cutting stapler
9700317, Sep 30 2010 Cilag GmbH International Fastener cartridge comprising a releasable tissue thickness compensator
9700321, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
9706991, Sep 29 2006 Cilag GmbH International Staple cartridge comprising staples including a lateral base
9724091, Jan 11 2007 Cilag GmbH International Surgical stapling device
9730692, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved staple cartridge
9743928, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
9757123, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
9757130, Feb 28 2007 Cilag GmbH International Stapling assembly for forming different formed staple heights
9770245, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
9775613, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9782169, Mar 01 2013 Cilag GmbH International Rotary powered articulation joints for surgical instruments
9788834, Mar 28 2012 Cilag GmbH International Layer comprising deployable attachment members
9795382, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
9795384, Mar 27 2013 Cilag GmbH International Fastener cartridge comprising a tissue thickness compensator and a gap setting element
9801626, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
9808244, Mar 14 2013 Cilag GmbH International Sensor arrangements for absolute positioning system for surgical instruments
9814460, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with status indication arrangements
9814462, Sep 30 2010 Cilag GmbH International Assembly for fastening tissue comprising a compressible layer
9826976, Apr 16 2013 Cilag GmbH International Motor driven surgical instruments with lockable dual drive shafts
9833236, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for surgical staplers
9839420, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising at least one medicament
9839427, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
9844368, Apr 16 2013 Cilag GmbH International Surgical system comprising first and second drive systems
9844373, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a driver row arrangement
9848873, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a driver and staple cavity arrangement
9848875, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
9848877, Sep 02 2014 Ethicon LLC Methods and devices for adjusting a tissue gap of an end effector of a surgical device
9861359, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
9861361, Sep 30 2010 Cilag GmbH International Releasable tissue thickness compensator and fastener cartridge having the same
9867612, Apr 16 2013 Cilag GmbH International Powered surgical stapler
9883860, Mar 14 2013 Cilag GmbH International Interchangeable shaft assemblies for use with a surgical instrument
9888919, Mar 14 2013 Cilag GmbH International Method and system for operating a surgical instrument
9888924, Mar 06 2007 Covidien LP Wound closure material
9980630, Jun 13 2006 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
9999408, Sep 14 2011 Ethicon Endo-Surgery, Inc Surgical instrument with fluid fillable buttress
20020117534,
20030009193,
20030039689,
20030096158,
20030181900,
20030236505,
20040068161,
20040102783,
20040108357,
20040147909,
20040164123,
20040167572,
20040225186,
20040232201,
20040267310,
20050059997,
20050070929,
20050080342,
20050125897,
20050139636,
20050143759,
20050216055,
20050228224,
20050263563,
20060049229,
20060052825,
20060089535,
20060173470,
20060180634,
20060201989,
20060235368,
20060271102,
20060287576,
20060289602,
20060291981,
20070027468,
20070051375,
20070073341,
20070084896,
20070084897,
20070093869,
20070102472,
20070106317,
20070134251,
20070170225,
20070173687,
20070175950,
20070175951,
20070175955,
20070194079,
20070194082,
20070203510,
20070225562,
20070246505,
20070276409,
20070279011,
20080029570,
20080029573,
20080029574,
20080029575,
20080078802,
20080082125,
20080086078,
20080135600,
20080140115,
20080169328,
20080169332,
20080169333,
20080172087,
20080190989,
20080197167,
20080200762,
20080249536,
20080296346,
20080308602,
20080308603,
20090001121,
20090001130,
20090005809,
20090078736,
20090090763,
20090099876,
20090149871,
20090188964,
20090204108,
20090206125,
20090206126,
20090206131,
20090206133,
20090206137,
20090206139,
20090206141,
20090206142,
20090242610,
20090255974,
20090308907,
20100069942,
20100133317,
20100147921,
20100147922,
20100193566,
20100222901,
20110006101,
20110024477,
20110024478,
20110036891,
20110060363,
20110087276,
20110091515,
20110114697,
20110125176,
20110147433,
20110163146,
20110174861,
20110192882,
20110275901,
20110276083,
20110278343,
20110290856,
20110293690,
20110295295,
20120029272,
20120074200,
20120080336,
20120080344,
20120080478,
20120080498,
20120125792,
20120175398,
20120199632,
20120234895,
20120234897,
20120248169,
20120283707,
20120292367,
20120298722,
20130020375,
20130020376,
20130023861,
20130026208,
20130026210,
20130087597,
20130116669,
20130138102,
20130153641,
20130175317,
20130233906,
20130248577,
20130256373,
20130256380,
20130270322,
20130334283,
20130334285,
20130341374,
20140001231,
20140001234,
20140005640,
20140005678,
20140005718,
20140014705,
20140048580,
20140151433,
20140166724,
20140166725,
20140166726,
20140175152,
20140224857,
20140243865,
20140246475,
20140249557,
20140263541,
20140263552,
20140284371,
20140291379,
20140291383,
20140299648,
20140303645,
20140330161,
20150173755,
20150173756,
20150289874,
20150359536,
20160174969,
20190192161,
20220133299,
20220133300,
AU2012200178,
CN1634601,
CN201949071,
CN2488482,
D650074, Oct 01 2010 Ethicon Endo-Surgery, Inc Surgical instrument
DE10314072,
DE1775926,
DE19851291,
DE19924311,
DE20016423,
DE20112837,
DE20121753,
DE202007003114,
DE273689,
DE3036217,
DE3210466,
DE3709067,
EP756,
EP122046,
EP129442,
EP169044,
EP484677,
EP505036,
EP528478,
EP594148,
EP625335,
EP646357,
EP650701,
EP669104,
EP705571,
EP770355,
EP806914,
EP869742,
EP879742,
EP880338,
EP922435,
EP923907,
EP996378,
EP1011494,
EP1034747,
EP1034748,
EP1053719,
EP1055399,
EP1055400,
EP1080694,
EP1082944,
EP1090592,
EP1095627,
EP1157666,
EP1158917,
EP1253866,
EP1284120,
EP1285633,
EP1330201,
EP1330989,
EP1344498,
EP1374788,
EP1407719,
EP1599146,
EP1627605,
EP1632191,
EP1719461,
EP1767163,
EP1769754,
EP1837041,
EP2039302,
EP2517638,
FR1112936,
FR2598905,
FR2765794,
FR2815842,
FR459743,
FR999646,
GB1210522,
GB1217159,
GB1339394,
GB2024012,
GB2109241,
GB2272159,
GB2336214,
GB939929,
GR930100110,
H2037,
JP10118090,
JP2000014632,
JP2000033071,
JP2000112002,
JP2000166932,
JP2000171730,
JP2000287987,
JP2000325303,
JP2001087272,
JP2001514541,
JP2002051974,
JP2002143078,
JP2002528161,
JP2003135473,
JP2003521301,
JP2004147702,
JP2004162035,
JP2004229976,
JP2005131163,
JP2005131164,
JP2005131173,
JP2005131211,
JP2005131212,
JP2005137423,
JP2005328882,
JP2005335432,
JP2005342267,
JP2006187649,
JP2006281405,
JP2006346445,
JP2009189838,
JP2009539420,
JP2010098844,
JP5033988,
JP5130998,
JP584252,
JP6237937,
JP630945,
JP7124166,
JP7255735,
JP7285089,
JP8164141,
JP8182684,
JP8229050,
JP833642,
JP8507708,
RE28932, May 08 1975 United States Surgical Corporation Surgical stapling instrument
RE37814, Sep 12 1996 Dean Allgeyer, M.D., Inc. Staple and staple applicator for use in skin fixation of catheters
RE40514, Aug 28 1995 Tyco Healthcare Group LP Surgical stapler
RU1814161,
RU2008830,
RU2052979,
RU2098025,
RU2141279,
RU2144791,
RU2161450,
RU2181566,
RU2187249,
RU2225170,
RU32984,
RU42750,
RU61114,
RU61122,
SU1009439,
SU1333319,
SU1377053,
SU1509051,
SU1561964,
SU1708312,
SU1722476,
SU1752361,
SU1814161,
SU189517,
SU328636,
SU674747,
WO24322,
WO24330,
WO53112,
WO57796,
WO105702,
WO154594,
WO158371,
WO162164,
WO162169,
WO191646,
WO219932,
WO226143,
WO236028,
WO3055402,
WO3079909,
WO3094747,
WO2004019803,
WO2004032783,
WO2004047626,
WO2004047653,
WO2004056277,
WO2004078050,
WO2004078051,
WO2004096015,
WO2006044581,
WO2006051252,
WO2006059067,
WO2007137304,
WO2007142625,
WO2008021969,
WO2008089404,
WO2009067649,
WO2009091497,
WO2011008672,
WO2011044343,
WO2012044606,
WO9315648,
WO9420030,
WO9517855,
WO9520360,
WO9623448,
WO9635464,
WO9639086,
WO9639088,
WO9724073,
WO9734533,
WO9903407,
WO9903409,
WO9948430,
//////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 21 2014DUGAN, JOHN R Ethicon Endo-Surgery, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0598090170 pdf
Dec 09 2015Ethicon Endo-Surgery, IncEthicon Endo-Surgery, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0598090247 pdf
Dec 30 2016Ethicon Endo-Surgery, LLCEthicon LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0598090323 pdf
Sep 17 2019PATEL, SUDHIR B Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0603220188 pdf
Sep 18 2019JAMISON, BARRY T Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0603220188 pdf
Sep 18 2019CROPPER, MICHAEL S Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0603220188 pdf
Sep 19 2019SETSER, MICHAEL E Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0603220188 pdf
Sep 26 2019KISTLER, PAUL H Ethicon LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0603220188 pdf
Jul 23 2020Cilag GmbH International(assignment on the face of the patent)
Apr 05 2021Ethicon LLCCilag GmbH InternationalASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0566010339 pdf
Date Maintenance Fee Events
Jul 23 2020BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Jan 10 20264 years fee payment window open
Jul 10 20266 months grace period start (w surcharge)
Jan 10 2027patent expiry (for year 4)
Jan 10 20292 years to revive unintentionally abandoned end. (for year 4)
Jan 10 20308 years fee payment window open
Jul 10 20306 months grace period start (w surcharge)
Jan 10 2031patent expiry (for year 8)
Jan 10 20332 years to revive unintentionally abandoned end. (for year 8)
Jan 10 203412 years fee payment window open
Jul 10 20346 months grace period start (w surcharge)
Jan 10 2035patent expiry (for year 12)
Jan 10 20372 years to revive unintentionally abandoned end. (for year 12)