A broadband panel array antenna includes a polarization layer, a radiating layer and a feed layer which are sequentially stacked from top to bottom. The feed layer is used for converting a single path of te10 mode signals into a plurality of paths of same-power in-phase te10 mode signals and transmitting the plurality of paths of te10 mode signals to the radiating layer. The radiating layer is used for radiating the plurality of paths of te10 mode signals from the feed layer to a free space. The polarization layer is used for rotating the polarization direction of an electric field generated by the radiating layer to reduce the side lobe in an e-plane direction diagram and an H-plane direction diagram. The broadband panel array antenna has the advantages of being low in side lobe, high in gain and efficiency, and low in machining cost.
|
1. A broadband panel array antenna comprising a polarization layer, a radiating layer and a feed layer which are sequentially stacked from top to bottom, wherein the feed layer is used for converting a single path of te10 mode signals into a plurality of paths of same-power in-phase te10 mode signals and transmitting the plurality of paths of te10 mode signals to the radiating layer, the radiating layer is used for radiating the plurality of paths of te10 mode signals from the feed layer to a free space, and the polarization layer is used for rotating a polarization direction of an electric field generated by the radiating layer to reduce a side lobe in an e-plane direction diagram and an H-plane direction diagram.
2. The broadband panel array antenna according to
3. The broadband panel array antenna according to
4. The broadband panel array antenna according to
first-stage H-type e-plane waveguide power dividing network units and a standard waveguide input port disposed on the second panel, wherein the second panel is rectangular; each of the first-stage H-type e-plane waveguide power dividing network units comprises a first-stage H-type e-plane waveguide power dividing network and a second-stage H-type e-plane waveguide power divider, wherein the second-stage H-type e-plane waveguide power divider has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal of the second-stage H-type e-plane waveguide power divider into four paths of same-power in-phase signals, which are then respectively output by the output terminals of the second-stage H-type e-plane waveguide power divider, the input terminal of the second-stage H-type e-plane waveguide power divider is used as an input terminal of the first-stage H-type e-plane waveguide power dividing network unit, the first-stage H-type e-plane waveguide power dividing network comprises two first H-type e-plane waveguide power dividing networks and two second H-type e-plane waveguide power dividing networks, the two first H-type e-plane waveguide power dividing networks are parallelly arranged left and right in a spaced manner, the first H-type e-plane waveguide power dividing network on the left overlaps with the first H-type e-plane waveguide power dividing network on the right after being moved rightwards by 1.8λ, the two second H-type e-plane waveguide power dividing networks are arranged left and right in a spaced manner, the second H-type e-plane waveguide power dividing network on the left overlaps with the second H-type e-plane waveguide power dividing network on the right after being moved rightwards by 1.8λ, the two second H-type e-plane waveguide power dividing networks are located behind the two first H-type e-plane waveguide power dividing networks, a center distance between the second H-type e-plane waveguide power dividing network on the left and the first H-type e-plane waveguide power dividing network on the left is 1.8λ, the second H-type e-plane waveguide power dividing network on the left and the first H-type e-plane waveguide power dividing network on the left are symmetrical front and back, a center distance between the second H-type e-plane waveguide power dividing network on the right and the first H-type e-plane waveguide power dividing network on the right is 1.8λ, and the second H-type e-plane waveguide power dividing network on the right and the first H-type e-plane waveguide power dividing network on the right are symmetrical front and back; the first H-type e-plane waveguide power dividing network comprises a first-stage H-type e-plane waveguide power divider and four e-plane rectangular waveguide-single ridge waveguide converters, wherein the first-stage H-type e-plane waveguide power divider has an input terminal and four output terminals and divides one path of signals input to the input terminal of the first-stage H-type e-plane waveguide power divider into four paths of same-power in-phase signals, which are then respectively output by the four output terminals of the first-stage H-type e-plane waveguide power divider, each of the e-plane rectangular waveguide-single ridge waveguide converters has an input terminal and an output terminal and is used for converting a rectangular waveguide accessed to the input terminal of the e-plane rectangular waveguide-single ridge waveguide converter into a single ridge waveguide, which is then output by the output terminal of the e-plane rectangular waveguide-single ridge waveguide converter, the input terminals of the four e-plane rectangular waveguide-single ridge waveguide converters are connected to the four output terminals of the first-stage H-type e-plane waveguide power divider in a one-to-one corresponding manner, the output terminal of each of the e-plane rectangular waveguide-single ridge waveguide converters is used as one of output terminals of the first H-type e-plane waveguide power dividing network, number of the output terminals of the first H-type e-plane waveguide power dividing network is four, the four output terminals of each of the two first H-type e-plane waveguide power dividing networks and four output terminals of each of the two second H-type e-plane waveguide power dividing networks are used as output terminals of the first-stage H-type e-plane waveguide power dividing network unit, number of the output terminals of each of the first-stage H-type e-plane waveguide power dividing network units is sixteen, number of the output terminals of the
first-stage H-type e-plane waveguide power dividing network units is
and the
output terminals of the
first-stage H-type e-plane waveguide power dividing network units are used as
output terminals of the feed layer and are connected to the 4n2 input terminals of the radiating layer in a one-to-one corresponding manner; the
first-stage H-type e-plane waveguide power dividing network units are uniformly distributed in
rows and
columns at intervals to form a first-stage feed network array, a center distance between every two adjacent first-stage H-type e-plane waveguide power dividing network units of the first-stage H-type e-plane waveguide power dividing network units in the same row is 3.6λ, and a center distance between every two adjacent first-stage H-type e-plane waveguide power dividing network units of the first-stage H-type e-plane waveguide power dividing network units in the same column is 3.6λ; from a first row and a first column of the first-stage feed network array, four first-stage H-type e-plane waveguide power dividing network units of the first-stage H-type e-plane waveguide power dividing network units in every two rows of the rows and two columns of the columns constitute one of first-stage network unit groups, number of the first-stage network unit groups of the first-stage feed network array is
in total, each of the first-stage network unit groups comprises a third-stage H-type e-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal of the third-stage H-type e-plane waveguide power divider into four paths of same-power in-phase signals, which are then output by the four output terminals of third-stage H-type e-plane waveguide power divider, the four output terminals of the third-stage H-type e-plane waveguide power divider are connected to the input terminals of the four first-stage H-type e-plane waveguide power dividing network units in the first-stage network unit group in a one-to-one corresponding manner, each of the first-stage network unit groups and the third-stage H-type e-plane waveguide power divider connected to the first-stage network unit group constitute a second-stage H-type e-plane waveguide power dividing network unit, the input terminal of the third-stage H-type e-plane waveguide power divider is used as an input terminal of the second-stage H-type e-plane waveguide power dividing network unit, and
second-stage H-type e-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a second-stage feed network array; from a first row and a first column of the second-stage feed network array, four second-stage H-type e-plane waveguide power dividing network units in every two rows of the rows and two columns of the columns constitute one of second-stage network unit groups, number of the second-stage network unit groups of the second-stage feed network array is
the input terminal of the third-stage H-type e-plane waveguide power divider of each of the second-stage H-type e-plane waveguide power dividing network units in the second-stage network unit group is used as one of input terminals of the second-stage network unit group, and number of the input terminals of the second-stage network unit group is four; each of the second-stage network unit groups comprises a fourth-stage H-type e-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal of the fourth-stage H-type e-plane waveguide power divider into four paths of same-power in-phase signals, which are then respectively output by the four output terminals of the fourth-stage H-type e-plane waveguide power divider, and the four output terminals of the fourth-stage H-type e-plane waveguide power divider are connected to the four input terminal of the second-stage network unit group in a one-to-one corresponding manner; each of the second-stage network unit groups and the fourth-stage H-type e-plane waveguide power divider connected to the second-stage network unit group constitute one of third-stage H-type e-plane waveguide power dividing network units, the input terminal of the fourth-stage H-type e-plane waveguide power divider is used as an input terminal of each of the third-stage H-type e-plane waveguide power dividing network units, and number of the third-stage H-type e-plane waveguide power dividing network units is
the
third-stage H-type e-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a third-stage feed network array; by analogy,
(k-2)th-stage H-type e-plane waveguide power dividing network units constitute a (k-2)th feed network array, a (k-1)th-stage H-type e-plane waveguide power divider is arranged among four of the (k-2)th-stage H-type e-plane waveguide power dividing network units in the (k-2)th feed network array, has an input terminal and four output terminals, and is used for dividing one path of signals input to the input terminal of the (k-1)th-stage H-type e-plane waveguide power divider into four paths of same-power in-phase signals, which are then respectively output by the four output terminals of the (k-1)th-stage H-type e-plane waveguide power divider, the four output terminals of the (k-1)th-stage H-type e-plane waveguide power divider are connected to input terminals of the four (k-2)th-stage H-type e-plane waveguide power dividing network units in a one-to-one corresponding manner, the input terminal of the (k-1)th-stage H-type e-plane waveguide power divider is connected to the standard waveguide input port, the standard waveguide input port is used as an input terminal of the feed layer, and the input terminal of the feed layer is connected to an external signal port.
5. The broadband panel array antenna according to
|
This application claims the priority benefit of China application serial no. 202010417843.7, filed on May 18, 2020. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The invention relates to a panel array antenna, in particular to broadband panel array antenna.
With the increase of the communication data size in unit time in the modern information society, the shortage of spectrum resources is becoming ever serious, and the lower side of the microwave frequency band has become very crowded. The MMW band has a pure electromagnetic environment and available broadband spectrum resources, thus having become the optimal choice of high-rate mobile communication systems. As a frequency band near 80 GHz, E-Band has two symmetrical frequency bands 71-76 GHz and 81-86 GHz, possesses a total bandwidth up to 10 GHz and can meet the requirement for back transmission of 10-20 Gbps 5G stations.
In a wireless communication system, the radiating efficiency and effective gain of the antenna in an RF terminal device have a crucial influence on the existence of the signal to noise ratio of the wireless communication system, and the antenna is one of the key devices determining the performance of the wireless communication system. To meet the application requirements of E-band, existing broadband antennas mainly include feed antennas and panel array antennas according to different design principles. Wherein, the feed antennas have an effective gain that can be flexibly controlled, and are widely applied to aerospace and satellite communication systems, such as reflector array antennas and lens array antennas. However, the focal-diameter ratio should be considered to improve the overall efficiency of the feed antennas, which makes the overall size of the feed antennas large and makes it difficult to guarantee a low profile. The panel array antennas have a low profile and a low weight and can be easily integrated with other components, thus having gained increased attention. Compared with the feed antennas, the feed network of the panel array antennas can accurately control the excitation amplitude and phase of the array unit, thus having higher aperture efficiency.
The existing panel array antennas typically include a feed network layer and a plurality of radiating layers, and the energy distribution of the radiating layers is adjusted by controlling the power distribution of the feed layer, so as to decrease the side lobe. However, the decrease of the side lobe of the existing panel array antennas may widen the main lobe and reduce the gain, which makes is impossible to gain an extremely low side lobe under the precondition that a narrow main lobe is guaranteed and the gain is not compromised. In addition, traditional panel array antennas have high requirements for the welding precision of the feed network layer and the plurality of radiating layer, which results in high machining costs and limits their production and application.
The technical issue to be settled by the invention is to provide a broadband panel array antenna which is low in side lobe, high in gain and efficiency, and low in machining cost.
The technical solution adopted by the invention to settle the aforesaid technical issues is as follows: a broadband panel array antenna includes a polarization layer, a radiating layer and a feed layer which are sequentially stacked from top to bottom; the feed layer is used for converting a single path of TE10 mode signals into a plurality of paths of same-power in-phase TE10 mode signals and transmitting the plurality of paths of TE10 mode signals to the radiating layer, the radiating layer is used for radiating the plurality of paths of TE10 mode signals from the feed layer to a free space, and the polarization layer is used for rotating the polarization direction of an electric field generated by the radiating layer to reduce the side lobe in an E-plane direction diagram and an H-plane direction diagram.
The polarization layer includes a dielectric substrate, a first metal layer disposed on a lower surface of the dielectric substrate, and a second metal layer disposed on an upper surface of the dielectric substrate, wherein the dielectric substrate is made of plastic and is of a rectangular structure, the lengthwise direction of the dielectric substrate is defined as a left-right direction, and the widthwise direction of the dielectric substrate is defined as a front-back direction; the first metal layer includes M first metal strips attached to the lower surface of the dielectric substrate, M is an integer which is greater than or equal to 2, each first metal strip is of a rectangular structure, the M first metal strips are identical in size and are regularly disposed at intervals from front to back, the left end face of each first metal strip is located on the same plane as the left end face of the dielectric substrate, the right end face of each first metal strip is located on the same plane as the right end face of the dielectric substrate, the front end face of the foremost first metal strip is located on the same plane as the front end face of the dielectric substrate, and the rear end face of the rearmost first metal strip is located on the same plane as the rear end face of the dielectric substrate; the center distance between every two adjacent first metal strips is 0.1λ, λ=c/f, c is the wave velocity and meets: c=3*10{circumflex over ( )}8 m/s, and f is the center operating frequency of the broadband panel array antenna; the second metal layer includes M second metal strips attached to the upper surface of the dielectric substrate, each second metal strip is in an isosceles trapezoid shape, a connecting line between the midpoint of an upper line and the midpoint of a lower line of each second metal strip is located on a vertical plane where a diagonal line of the upper surface of the dielectric substrate is located, planes where two legs of each second metal strip are located overlap with planes where two adjacent end faces of the dielectric substrate are located, and the M first metal strips are in one-to-one correspondence with the M second metal strips; and regarding the first metal strips and the second metal strips corresponding to the first metal strips, if the first metal strips are mapped onto the upper surface of the dielectric substrate and are then anticlockwise rotated by 45°, the front end faces of the first metal strips overlap with the upper lines of the second metal strips, and the rear end faces of the first metal strips overlap with the lower lines of the second metal strips. The polarization layer enables the polarization direction of the electric field generated by the radiating layer to rotate in the rotating direction of the first metal strips and the second metal strips, so that energy in the diagonal direction of the panel array antenna represents a good tapered distribution, and the side lobe in the E-plane direction diagram and the H-plane direction diagram is reduced to realize a low side lobe.
The radiating layer includes a first panel and a radiating array disposed on the first panel, wherein the first panel is rectangular, the radiating array is formed by n2 radiating units which are distributed in 2(k-1) rows and 2(k-1) columns, n=2(k-1), k is an integer which is greater than or equal to 3, the center distance between every two adjacent radiating units in the same row is 1.8λ, and the center distance between every two adjacent radiating units in the same column is 1.8λ; the radiating unit includes two first radiating elements and two second radiating elements, wherein the two first radiating elements are parallelly arranged left and right in a spaced manner, the first radiating element on the left overlaps with the first radiating element on the right after being moved rightwards by 0.9λ, the two second radiating elements are arranged left and right in a spaced manner, the second radiating element on the left overlaps with the second radiating element on the right after being moved rightwards by 0.9λ, the two second radiating elements are located behind the two first radiating elements, the center distance between the second radiating element on the left and the first radiating element on the left is 0.9λ, the second radiating element on the left and the first radiating element on the left are symmetrical front and back, the center distance between the second radiating element on the right and the first radiating element on the right is 0.9λ, and the second radiating element on the right and the first radiating element on the right are symmetrical front and back; the first radiating element includes a first rectangular cavity, a second rectangular cavity, a third rectangular cavity, a fourth rectangular cavity, a first rectangular matching board, a second rectangular matching board and a third rectangular matching board, wherein the first rectangular cavity, the second rectangular cavity, the third rectangular cavity and the fourth rectangular cavity are formed in the first panel and are sequentially stacked and communicated from top to bottom, the center of the first rectangular cavity, the center of the second rectangular cavity, the center of the third rectangular cavity and the center of the fourth rectangular cavity are located on the same straight line, the front end face of the first rectangular cavity, the front end face of the second rectangular cavity, the front end face of the third rectangular cavity and the front end face of the fourth rectangular cavity are parallel to the front end face of the first panel, the upper end face of the first rectangular cavity is located on the same plane as the upper end face of the first panel, the upper end face of the second rectangular cavity is located on the same plane as the lower end face of the first rectangular cavity, the upper end face of the third rectangular cavity is located on the same plane as the lower end face of the second rectangular cavity, the upper end face of the fourth rectangular cavity is located on the same plane as the lower end face of the third rectangular cavity, the lower end face of the fourth rectangular cavity is located on the same plane as the lower end face of the first panel, the left-right length of the first rectangular cavity is 0.8λ, the front-back length of the first rectangular cavity is 0.7λ, the height of the first rectangular cavity is 0.25λ, the left-right length of the second rectangular cavity is 0.6λ, the front-back length of the second rectangular cavity is 0.5λ, the height of the second rectangular cavity is 0.125 λ, the left-right length of the third rectangular cavity is 0.6λ, the front-back length of the third rectangular cavity is less than 0.5λ, the height of the third rectangular cavity is 0.25λ, the left-right length of the fourth rectangular cavity is half that of the first rectangular cavity, the front-back length of the fourth rectangular cavity is two fifths that of the first rectangular cavity, the first rectangular matching board and the second rectangular matching board are located in the third rectangular cavity, the rear wall of the first rectangular matching board is attached and integrally connected to the rear wall of the third rectangular cavity, the distance from the left end face of the first rectangular matching board to the left end face of the third rectangular cavity is equal to the distance from the right end face of the first rectangular matching board to the right end face of the third rectangular cavity, the left-right length of the first rectangular matching board is a quarter that of the third rectangular cavity, the front-back length of the first rectangular matching board is one-tenth that of the third rectangular cavity, the upper end face of the first rectangular matching board is located on the same plane as the upper end face of the third rectangular cavity, the lower end face of the first rectangular matching board is located on the same plane as the lower end face of the third rectangular cavity, the second rectangular matching board and the first rectangular matching board are symmetrical front and back with respect to a front-back bisection plane of the third rectangular cavity, the third rectangular matching board is located in the fourth rectangular cavity, the front wall of the third rectangular matching board is attached and integrally connected to the front wall of the fourth rectangular cavity, the distance from the left end face of the third rectangular matching board to the left end face of the fourth rectangular cavity is equal to the distance from the right end face of the third rectangular matching board to the right end face of the fourth rectangular cavity, the upper end face of the third rectangular matching board is located on the same plane as the upper end face of the fourth rectangular cavity, the lower end face of the third rectangular matching board is located on the same plane as the lower end face of the fourth rectangular cavity, the left-right length of the third rectangular matching board is three tenths that of the fourth rectangular cavity, the front-back length of the third rectangular matching board is half that of the fourth rectangular cavity, and the lower end face of the fourth rectangular cavity is used as an input terminal of the first radiating element; the input terminals of the two first radiating elements and input terminals of the two second radiating elements are used as fourth input terminals of the radiating unit, the four input terminals of each radiating unit are used as four input terminals of the radiating layer, the radiating layer has 4*n2 input terminals, the upper end face of the first rectangular cavity is used as an output terminal of the first radiating element, the output terminals of the two first radiating elements and output terminals of the two second radiating elements are used as four output terminals of the radiating unit, the four output terminals of each radiating unit are used as four output terminals of the radiating layer, the radiating layer has 4*n2 output terminals, 4*n2 paths of TE10 mode signals output by the feed layer are accessed to the 4*n2 input terminals of the radiating layer in a one-to-one corresponding manner, and the 4*n2 output terminals of the radiating layer are used for radiating the 4*n2 paths of TE10 mode signals output by the feed layer to the free space in a one-to-one corresponding manner. Each radiating unit in the radiating layer is constructed based on a multiplayer coupling structure formed by the first rectangular cavity, the second rectangular cavity, the third rectangular cavity and the fourth rectangular cavity which are stacked from top to bottom, so that the radiating layer guarantees a broadband and a high gain, has low cost and can realize miniaturization.
The feed layer includes a second panel, and
first-stage H-type E-plane waveguide power dividing network units and a standard waveguide input port disposed on the second panel, wherein the second panel is rectangular; each first-stage H-type E-plane waveguide power dividing network unit includes a first-stage H-type E-plane waveguide power dividing network and a second-stage H-type E-plane waveguide power divider, wherein the second-stage H-type E-plane waveguide power divider has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the output terminals thereof, the input terminal of the second-stage H-type E-plane waveguide power divider is used as an input terminal of the first-stage H-type E-plane waveguide power dividing network unit, the first-stage H-type E-plane waveguide power dividing network includes two first H-type E-plane waveguide power dividing networks and two second H-type E-plane waveguide power dividing networks, the two first H-type E-plane waveguide power dividing networks are parallelly arranged left and right in a spaced manner, the first H-type E-plane waveguide power dividing network on the left overlaps with the first H-type E-plane waveguide power dividing network on the right after being moved rightwards by 1.8λ, the two second H-type E-plane waveguide power dividing networks are arranged left and right in a spaced manner, the second H-type E-plane waveguide power dividing network on the left overlaps with the second H-type E-plane waveguide power dividing network on the right after being moved rightwards by 1.8λ, the two second H-type E-plane waveguide power dividing networks are located behind the two first H-type E-plane waveguide power dividing networks, the center distance between the second H-type E-plane waveguide power dividing network on the left and the first H-type E-plane waveguide power dividing network on the left is 1.8λ, the second H-type E-plane waveguide power dividing network on the left and the first H-type E-plane waveguide power dividing network on the left are symmetrical front and back, the center distance between the second H-type E-plane waveguide power dividing network on the right and the first H-type E-plane waveguide power dividing network on the right is 1.8λ, and the second H-type E-plane waveguide power dividing network on the right and the first H-type E-plane waveguide power dividing network on the right are symmetrical front and back; the first H-type E-plane waveguide power dividing network includes a first-stage H-type E-plane waveguide power divider and four E-plane rectangular waveguide-single ridge waveguide converters, wherein the first-stage H-type E-plane waveguide power divider has an input terminal and four output terminals and divides one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, each E-plane rectangular waveguide-single ridge waveguide converter has an input terminal and an output terminal and is used for converting a rectangular waveguide accessed to the input terminal thereof into a single ridge waveguide, which is then output by the output terminal thereof, the input terminals of the four E-plane rectangular waveguide-single ridge waveguide converters are connected to the four output terminals of the first-stage H-type E-plane waveguide power divider in a one-to-one corresponding manner, the output terminal of each E-plane rectangular waveguide-single ridge waveguide converter is used as an output terminal of the first H-type E-plane waveguide power dividing network, the first H-type E-plane waveguide power dividing network has four output terminals, the four output terminals of each of the two first H-type E-plane waveguide power dividing networks and four output terminals of each of the two second H-type E-plane waveguide power dividing networks are used as the output terminals of the first-stage H-type E-plane waveguide power dividing network unit, each first-stage H-type E-plane waveguide power dividing network unit has sixteen output terminals, the
first-stage H-type E-plane waveguide power dividing network units has
output terminals, and the
output terminals of the
first-stage H-type E-plane waveguide power dividing network units are used as
output terminals of the feed layer and are connected to the 4n2 input terminals of the radiating layer in a one-to-one corresponding manner; the
first-stage H-type E-plane waveguide power dividing network units are uniformly distributed in
rows and
columns at intervals to form a first-stage feed network array, the center distance between every two adjacent first-stage H-type E-plane waveguide power dividing network units in the same row is 3.6λ, and the center distance between every two adjacent first-stage H-type E-plane waveguide power dividing network units in the same column is 3.6λ; from the first row and the first column of the first-stage feed network array, the four first-stage H-type E-plane waveguide power dividing network units in every two rows and columns constitute a first-stage network unit group, the first-stage feed network array includes
first-stage network unit groups in total, each first-stage network unit group includes a third-stage H-type E-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then output by the four output terminals thereof, the four output terminals of the third-stage H-type E-plane waveguide power divider are connected to the input terminals of the four first-stage H-type E-plane waveguide power dividing network units in the first-stage network unit group in a one-to-one corresponding manner, each first-stage network unit group and the third-stage H-type E-plane waveguide power divider connected to the first-stage network unit group constitute a second-stage H-type E-plane waveguide power dividing network unit, the input terminal of the third-stage H-type E-plane waveguide power divider is used as an input terminal of the second-stage H-type E-plane waveguide power dividing network unit, and
second-stage H-type E-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a second-stage feed network array; from the first row and the first column of the second-stage feed network array, the four second-stage H-type E-plane waveguide power dividing network unit in every two rows and columns constitute a second-stage network unit group, the second-stage feed network array includes
second-stage network unit groups, the input terminal of the third-stage H-type E-plane waveguide power divider of each second-stage H-type E-plane waveguide power dividing network unit in the second-stage network unit group is used as an input terminal of the second-stage network unit group, and the second-stage network unit group has four input terminals; each second-stage network unit group includes a fourth-stage H-type E-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, and the four output terminals of the fourth-stage H-type E-plane waveguide power divider are connected to the four input terminal of the second-stage network unit group in a one-to-one corresponding manner; each second-stage network unit group and the fourth-stage H-type E-plane waveguide power divider connected to the second-stage network unit group constitute a third-stage H-type E-plane waveguide power dividing network unit, the input terminal of the fourth-stage H-type E-plane waveguide power divider is used as an input terminal of the third-stage H-type E-plane waveguide power dividing network unit, and
third-stage H-type E-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a third-stage feed network array; by analogy,
(k-2)th-stage H-type E-plane waveguide power dividing network units constitute a (k-2)th feed network array, a (k-1)th-stage H-type E-plane waveguide power divider is arranged among the four (k-2)th-stage H-type E-plane waveguide power dividing network units in the (k-2)th feed network array, has an input terminal and four output terminals, and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, the four output terminals of the (k-1)th-stage H-type E-plane waveguide power divider are connected to the input terminals of the four (k-2)th-stage H-type E-plane waveguide power dividing network units in a one-to-one corresponding manner, the input terminal of the (k-1)th-stage H-type E-plane waveguide power divider is connected to the standard waveguide input port, the standard waveguide input port is used as an input terminal of the feed layer, and the input terminal of the feed layer is connected to an external signal port.
The E-plane rectangular waveguide-single ridge converter includes a first rectangular metal block, wherein a rectangular port and a fifth rectangular cavity are formed in the first rectangular metal block, the rectangular port is the input terminal of the E-plane rectangular waveguide-single ridge converter, the upper end face of the rectangular port is a certain distance away from the upper end face of the first rectangular metal block, the front end face of the rectangular port is located on the same plane as the front end face of the first rectangular metal block, the upper end face of the fifth rectangular cavity is located on the same plane as the upper end face of the first rectangular metal block, the right end face of the fifth rectangular cavity is located on the same plane as the right end face of the rectangular port, the front end face of the fifth rectangular cavity is connected and attached to the rear end face of the rectangular port, the lower end face of the fifth rectangular cavity is located on the same plane as the lower end face of the rectangular port, a plane where the left end face of the rectangular port is located is a certain distance away from a plane where the left end face of the fifth rectangular cavity is located, the left end face of the fifth rectangular cavity is a certain distance away from the left end face of the first rectangular metal block, the distance from the left end face of the fifth rectangular cavity to the left end face of the first rectangular metal block is equal to the distance from the right end face of the fifth rectangular cavity to the right end face of the first rectangular metal block, the lower end face of the fifth rectangular cavity is a certain distance away from the lower end face of the first rectangular metal block, a single-ridge step, an E-plane step and an H-plane step are disposed in the fifth rectangular cavity and are all rectangular blocks, the right end face of the H-plane step is connected and attached to the right end face of the fifth rectangular cavity, the lower end face of the H-plane step is connected and attached to the lower end face of the fifth rectangular cavity, the left end face of the H-plane step is connected and attached to the right end face of the single-ridge step, the lower end face of the single-ridge step is connected and attached to the lower end face of the fifth rectangular cavity, the upper end face of the single-ridge step is located on the same plane as the upper end face of the fifth rectangular cavity, the left end face of the single-ridge step is connected and attached to the right end face of the E-plane step, the left end face of the E-plane step is connected and attached to the left end face of the fifth rectangular cavity, and the lower end face of the E-plane step is connected and attached to the lower end face of the fifth rectangular cavity; the front-back length of the H-plane step is half that of the fifth rectangular cavity, the left-right length of the H-plane step is one third that of the fifth rectangular cavity, the vertical length of the H-plane step is two fifths that of the fifth rectangular cavity, the front-back length of the single-ridge step is half that of the fifth rectangular cavity, the left-right length of the single-ridge step is one third that of the fifth rectangular cavity, the vertical length of the single-ridge step is equal to that of the fifth rectangular cavity, the front-back length of the E-plane step is equal to that of the fifth rectangular cavity, the left-right length of the E-plane step is one third that of the fifth rectangular cavity, the vertical length of the E-plane step is a quarter that of the fifth rectangular cavity, and the upper end face of the fifth rectangular cavity is the output terminal of the E-plane rectangular waveguide-single ridge converter; the first-stage H-type E-plane waveguide power divider includes a first rectangular block, a second rectangular block, a third rectangular block, a first matching block, a second matching block and a fourth rectangular block, wherein the upper end face of the first rectangular block, the upper end face of the second rectangular block, the upper end face of the third rectangular block, the upper end face of the first matching block, the upper end face of the second matching block and the upper end face of the fourth matching block are located on the same plane, the left end face of the first rectangular block is parallel to the left end face of the second panel, the front-back length of the first rectangular block is 0.7λ, the left-right length of the first rectangular block is 0.125λ, the vertical length of the first rectangular block is 0.8λ, the left end face of the third rectangular block is connected and attached to the right end face of the first rectangular block, the front-back length of the third rectangular block is 0.125λ, the left-right length of the third rectangular block is 0.9λ, the vertical length of the third rectangular block is 0.8λ, the distance from a plane where the front end face of the third rectangular block is located to a plane where the front end face of the first rectangular block is located is equal to the distance from a plane where the rear end face of the third rectangular block is located to a plane where the rear end face of the first rectangular block is located, the right end face of the third rectangular block is connected and attached to the left end face of the second rectangular block, the front-back length of the second rectangular block is 0.7λ, the left-right length of the second rectangular block is 0.125λ, the vertical length of the second rectangular block is 0.8λ, the distance from a plane where the front end face of the third rectangular block is located to a plane where the front end face of the second rectangular block is located is equal to the distance from a plane where the rear end face of the third rectangular block is located to a plane where the rear end face of the second rectangular block is located, the first matching block is a rectangular block, the left end face of the first matching block is connected and attached to the right end face of the first rectangular block, the rear end face of the first matching block is connected and attached to the front end face of the third rectangular block, the front-back length of the first matching block is one-tenth that of the first rectangular block, the left-right length of the first matching block is four fifths that of the first rectangular block, the vertical length of the first matching block is 0.8λ, the second matching block and the first matching block are symmetrical left and right with respect to a front-back midline of the third rectangular block, the front end face of the fourth rectangular block is connected and attached to the rear end face of the third rectangular block, the distance from the left end face of the fourth rectangular block to the right end face of the first rectangular block is equal to the distance from the right end face of the fourth rectangular block to the left end face of the second rectangular block, the left-right length of the fourth rectangular block is 1.25 times that of the first rectangular block, the vertical length of the fourth rectangular block is 0.8λ, and the front end face of the first rectangular block, the rear end face of the first rectangular block, the front end face of the second rectangular block and the rear end face of the second rectangular block are used as the four output terminals of the first-stage H-type E-plane waveguide power divider respectively; the second-stage H-type E-plane waveguide power divider includes a fifth rectangular block, a sixth rectangular block, a seventh rectangular block, an eighth rectangular block, a first conversion block, a second conversion block, a third conversion block and a fourth conversion block, wherein the upper end face of the fifth rectangular block, the upper end face of the sixth rectangular block, the upper end face of the seventh rectangular block, the upper end face of the first conversion block, the upper end face of the second conversion block, the upper end face of the third conversion block, the upper end face of the fourth conversion block and the upper end face of the eighth rectangular block are located on the same plane, the front-back length of the fifth rectangular block is 1.2λ, the left-right length of the fifth rectangular block is 0.125λ, the vertical length of the fifth rectangular block is 0.8λ, a first rectangular recess is formed in the left end face of the fifth rectangular block, the vertical length of the first rectangular recess is equal to that of the fifth rectangular block, the front-back length of the first rectangular recess is smaller than that of the fifth rectangular cavity, the left-right length of the first rectangular recess is smaller than that of the fifth rectangular cavity, the distance from a plane where the front end face of the first rectangular recess is located to a plane where the front end face of the fifth rectangular block is located is equal to the distance from a plane where the rear end face of the first rectangular recess to a plane where the rear end face of the fifth rectangular block is located, the sixth rectangular block and the fifth rectangular block are symmetrical left and right, the center distance between the sixth rectangular block and the fifth rectangular block is 1.9λ, the left end face of the seventh rectangular block is connected and attached to the right end face of the fifth rectangular block, the right end face of the seventh rectangular block is connected and attached to the left end face of the sixth rectangular block, the front-back length of the seventh rectangular block is 0.2λ, the left-right length of the seventh rectangular block is 1.9λ, the vertical length of the seventh rectangular block is 0.8λ, the distance from a plane where the front end face of the seventh rectangular block is located to a plane where the front end face of the fifth rectangular block is located is equal to the distance from a plane where the rear end face of the seventh rectangular block is located to a plane where the rear end face of the fifth rectangular block is located, a stepped recess is formed in the front end face of the seventh rectangular cavity and includes a second rectangular recess and a third rectangular recess which are communicated with each other, the vertical length of the second rectangular recess and the third rectangular recess is equal to that of the seventh rectangular block, the left-right length of the second rectangular recess is smaller than that of the third rectangular recess, the left-right length of the third rectangular recess is smaller than that of the seventh rectangular block, the front-back length of the second rectangular recess is smaller than that of the third rectangular recess, the sum of the front-back length of the second rectangular recess and the front-back length of the third rectangular recess is smaller than the front-back length of the seventh rectangular block, the front end face of the third rectangular recess is located on the same plane as the front end face of the seventh rectangular block, the rear end face of the third rectangular recess is connected and attached to the front end face of the second rectangular recess, the distance from the left end face of the third rectangular recess to the left end face of the seventh rectangular block is equal to the distance from the right end face of the third rectangular recess to the right end face of the seventh rectangular block, and the distance from the left end face of the second rectangular recess to the left end face of the seventh rectangular block is equal to the distance from the right end face of the second rectangular recess to the right end face of the seventh rectangular block; the left-right length of the eighth rectangular block is 1.1 times that of the fifth rectangular block, the front end face of the eighth rectangular block is connected and attached to the rear end face of the seventh rectangular block, the distance from the left end face of the eighth rectangular block to the right end face of the fifth rectangular block is equal to the distance from the right end face of the eighth rectangular block to the left end face of the sixth rectangular block, the vertical length of the eighth rectangular block is 0.8λ, the front-back length of the eighth rectangular block is 0.2λ, the left-right length of the eighth rectangular block is 0.2λ, and the rear end face of the eighth rectangular block is the input terminal of the second-stage H-type E-plane waveguide power divider; the first conversion block consists of a ninth rectangular block, a first right-angle triangular block, a second right-angle triangular block and a parallelogram block, wherein the ninth rectangular block, the first right-angle triangular block, the second right-angle triangular block and the parallelogram block are located on the same plane, the front end face of the ninth rectangular block is the front end face of the first conversion block, the left-right length of the ninth rectangular block is equal to 0.2λ, the vertical length of the ninth rectangular block is equal to 0.8λ, the end face where a first right-angle side of the first right-angle triangular block is located is connected and attached to the rear end face of the ninth rectangular block, the length of the end face where the first right-angle side of the first right-angle triangular block is located is equal to the left-right length of the ninth rectangular block, the end face, where a second right-angle side of the first right-angle triangular block is located, is located on the same plane as the left end face of the ninth rectangular block, the vertical length of the first right-angle triangular block is equal to that of the ninth rectangular block, the end face where a first right-angle side of the second right-angle triangular block is located is connected and attached to the front end face of the fifth rectangular block, the end face, where a second right-angle side of the second right-angle triangular block is located, is located on the same plane as the right end face of the fifth rectangular block, the length of the end face where the first right-angle side of the second right-angle triangular block is located is equal to the left-right length of the fifth rectangular block, the vertical length of the second right-angle triangular block is equal to that of the fifth rectangular block, the front end face of the parallelogram block completely overlaps with the end face where a hypotenuse of the second right-angle second triangular block is located, the distance between the front end face and the rear end face of the parallelogram block is 0.2λ, the vertical length of the parallelogram block is equal to that of the second right-angle triangular block, an angle between the end face where the first right-angle side of the first right-angle triangular block is located and the end face where a hypotenuse of the first right-angle second triangular block is located is 22.5°, and an angle between the end face where the first right-angle side of the second right-angle triangular block is located and the end face where the hypotenuse of the second right-angle second triangular block is located is 22.5°; the second conversion block and the first conversion block are symmetrical left and right, the third conversion block overlaps with the second conversion block after being moved rightward by 1.9λ, the third conversion block and the first conversion block are symmetrical front and back, the center distance between the third conversion block and the first conversion block is 1.2λ, the fourth conversion block and the second conversion block are symmetrical front and back, and the front end face of the first conversion block, the front end face of the second conversion block, the front end face of the third conversion block and the front end face of the fourth conversion block are used as the four output terminals of the second-stage H-type E-plane waveguide power divider; the hth-stage H-type E-plane waveguide power divider is identical in structure with the second-stage H-type E-plane waveguide power divider, but the size is increased gradually, and h=3, 4, . . . , k-1; when the four output terminals of each first-stage H-type E-plane waveguide power divider are connected to the input terminals of four E-plane rectangular waveguide-single ridge waveguide converters in a one-to-one corresponding manner, each output terminal of the first-stage H-type E-plane waveguide power divider is attached to and completely overlaps with the input terminal of one E-plane rectangular waveguide-single ridge waveguide converter; when the four output terminals of each second-stage H-type E-plane waveguide power divider are connected to the input terminals of four first-stage H-type E-plane waveguide power dividers in a one-to-one corresponding manner, each output terminal of the second-stage H-type E-plane waveguide power divider is attached to and completely overlaps with the input terminal of one first-stage H-type E-plane waveguide power divider; and when the four output terminals of the hth-stage H-type E-plane waveguide power divider are connected to the input terminals of four (h-1)th-stage H-type E-plane waveguide power dividers in a one-to-one corresponding manner, each output terminal of the hth-stage H-type E-plane waveguide power divider is attached to and completely overlaps with the input terminal of one (h-1)th-stage H-type E-plane waveguide power divider. In the structure, the single-ridge steps, the H-plane steps and the E-plane steps arranged in the E-plane rectangular waveguide-single ridge waveguide converters realize impedance matching, reduce the return loss caused by the discontinuity of the structure, so that the panel array antenna has good broadband transmission properties and can uniformly feed power to the radiating units in the radiating layer and broaden the dominant-mode bandwidth, and ultra-wideband and high-efficiency feed of the array antenna is realized.
Compared with the prior art, the invention has the following advantages: the polarization layer is additionally disposed over the radiating layer and enables the polarization direction of the electric field generated by the radiating layer to rotate to reduce the side lobe in the E-plane direction diagram and the H-plane direction diagram is reduced to realize a low side lobe; in addition, a multi-stage radiating structure of traditional panel antennas is optimized into one radiating layer, so that the profile height of the panel antenna is greatly reduced under the condition that a broadband structure is realized, machining and assembly requirements are effectively reduced, high assembly precision can be realized more easily, and the low-profile and small-sized design reduces the loss of an interlayer coupling structure of the traditional panel antennas and significantly improves the gain and aperture efficiency of the antenna, so the broadband panel array antenna is low in side lobe, high in gain and efficiency, and low in machining cost.
The invention will be described in further detail below in conjunction with the accompanying drawings.
Embodiment: As shown in
In this embodiment, as shown in
In this embodiment, as shown in
In this embodiment, as shown in
first-stage H-type E-plane waveguide power dividing network units 19 and a standard waveguide input port disposed on the second panel 18, wherein the second panel 18 is rectangular; each first-stage H-type E-plane waveguide power dividing network unit 19 includes a first-stage H-type E-plane waveguide power dividing network and a second-stage H-type E-plane waveguide power divider, wherein the second-stage H-type E-plane waveguide power divider has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the output terminals thereof, the input terminal of the second-stage H-type E-plane waveguide power divider is used as an input terminal of the first-stage H-type E-plane waveguide power dividing network unit 19, the first-stage H-type E-plane waveguide power dividing network includes two first H-type E-plane waveguide power dividing networks 21 and two second H-type E-plane waveguide power dividing networks 22, the two first H-type E-plane waveguide power dividing networks 21 are parallelly arranged left and right in a spaced manner, the first H-type E-plane waveguide power dividing network 21 on the left overlaps with the first H-type E-plane waveguide power dividing network 21 on the right after being moved rightwards by 1.8λ, the two second H-type E-plane waveguide power dividing networks 22 are arranged left and right in a spaced manner, the second H-type E-plane waveguide power dividing network 22 on the left overlaps with the second H-type E-plane waveguide power dividing network 22 on the right after being moved rightwards by 1.8λ, the two second H-type E-plane waveguide power dividing networks 22 are located behind the two first H-type E-plane waveguide power dividing networks 21, the center distance between the second H-type E-plane waveguide power dividing network 22 on the left and the first H-type E-plane waveguide power dividing network 21 on the left is 1.8λ, the second H-type E-plane waveguide power dividing network 22 on the left and the first H-type E-plane waveguide power dividing network 21 on the left are symmetrical front and back, the center distance between the second H-type E-plane waveguide power dividing network 22 on the right and the first H-type E-plane waveguide power dividing network 21 on the right is 1.8λ, and the second H-type E-plane waveguide power dividing network 22 on the right and the first H-type E-plane waveguide power dividing network 21 on the right are symmetrical front and back; the first H-type E-plane waveguide power dividing network 21 includes a first-stage H-type E-plane waveguide power divider 23 and four E-plane rectangular waveguide-single ridge waveguide converters 24, wherein the first-stage H-type E-plane waveguide power divider 23 has an input terminal and four output terminals and divides one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, each E-plane rectangular waveguide-single ridge waveguide converter 24 has an input terminal and an output terminal and is used for converting a rectangular waveguide accessed to the input terminal thereof into a single ridge waveguide, which is then output by the output terminal thereof, the input terminals of the four E-plane rectangular waveguide-single ridge waveguide converters 24 are connected to the four output terminals of the first-stage H-type E-plane waveguide power divider 23 in a one-to-one corresponding manner, the output terminal of each E-plane rectangular waveguide-single ridge waveguide converter 24 is used as an output terminal of the first H-type E-plane waveguide power dividing network 21, the first H-type E-plane waveguide power dividing network 21 has four output terminals, the four output terminals of each of the two first H-type E-plane waveguide power dividing networks 21 and four output terminals of each of the two second H-type E-plane waveguide power dividing networks 22 are used as the output terminals of the first-stage H-type E-plane waveguide power dividing network unit 19, each first-stage H-type E-plane waveguide power dividing network unit 19 has sixteen output terminals, the
first-stage H-type E-plane waveguide power dividing network units 19 has
output terminals, and the
output terminals of the
first-stage H-type E-plane waveguide power dividing network units 19 are used as
output terminals of the feed layer 3 and are connected to the 4n2 input terminals of the radiating layer 2 in a one-to-one corresponding manner; the
first-stage H-type E-plane waveguide power dividing network units 19 are uniformly distributed in
rows and
columns at intervals to form a first-stage feed network array, the center distance between every two adjacent first-stage H-type E-plane waveguide power dividing network units 19 in the same row is 3.6λ, and the center distance between every two adjacent first-stage H-type E-plane waveguide power dividing network units 19 in the same column is 3.6λ; from the first row and the first column of the first-stage feed network array, the four first-stage H-type E-plane waveguide power dividing network units 19 in every two rows and columns constitute a first-stage network unit group, the first-stage feed network array includes
first-stage network unit groups in total, each first-stage network unit group includes a third-stage H-type E-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then output by the four output terminals thereof, the four output terminals of the third-stage H-type E-plane waveguide power divider are connected to the input terminals of the four first-stage H-type E-plane waveguide power dividing network units 19 in the first-stage network unit group in a one-to-one corresponding manner, each first-stage network unit group and the third-stage H-type E-plane waveguide power divider connected to the first-stage network unit group constitute a second-stage H-type E-plane waveguide power dividing network unit, the input terminal of the third-stage H-type E-plane waveguide power divider is used as an input terminal of the second-stage H-type E-plane waveguide power dividing network unit, and
second-stage H-type E-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a second-stage feed network array; from the first row and the first column of the second-stage feed network array, the four second-stage H-type E-plane waveguide power dividing network unit in every two rows and columns constitute a second-stage network unit group, the second-stage feed network array includes
second-stage network unit groups, the input terminal of the third-stage H-type E-plane waveguide power divider of each second-stage H-type E-plane waveguide power dividing network unit in the second-stage network unit group is used as an input terminal of the second-stage network unit group, and the second-stage network unit group has four input terminals; each second-stage network unit group includes a fourth-stage H-type E-plane waveguide power divider which has an input terminal and four output terminals and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, and the four output terminals of the fourth-stage H-type E-plane waveguide power divider are connected to the four input terminal of the second-stage network unit group in a one-to-one corresponding manner; each second-stage network unit group and the fourth-stage H-type E-plane waveguide power divider connected to the second-stage network unit group constitute a third-stage H-type E-plane waveguide power dividing network unit, the input terminal of the fourth-stage H-type E-plane waveguide power divider is used as an input terminal of the third-stage H-type E-plane waveguide power dividing network unit, and
third-stage H-type E-plane waveguide power dividing network units which are distributed in
rows and
columns are obtained in total and constitute a third-stage feed network array; by analogy,
(k-2)th-stage H-type E-plane waveguide power dividing network units constitute a (k-2)th feed network array, a (k-1)th-stage H-type E-plane waveguide power divider is arranged among the four (k-2)th-stage H-type E-plane waveguide power dividing network units in the (k-2)th feed network array, has an input terminal and four output terminals, and is used for dividing one path of signals input to the input terminal thereof into four paths of same-power in-phase signals, which are then respectively output by the four output terminals thereof, the four output terminals of the (k-1)th-stage H-type E-plane waveguide power divider are connected to the input terminals of the four (k-2)th-stage H-type E-plane waveguide power dividing network units in a one-to-one corresponding manner, the input terminal of the (k-1)th-stage H-type E-plane waveguide power divider is connected to the standard waveguide input port 20, the standard waveguide input port 20 is used as an input terminal of the feed layer 3, and the input terminal of the feed layer 3 is connected to an external signal port.
In this embodiment, as shown in
Zhang, Ling, You, Yang, Huang, Jifu, You, Qingchun, Lu, Yunlong
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10784579, | Jul 09 2018 | Ningbo University | Ultra-wideband CTS flat-plate array antenna |
10790592, | Jul 09 2018 | Ningbo University | Low-profile CTS flat-plate array antenna |
10862210, | May 11 2018 | Wisconsin Alumni Research Foundation | Multiple band polarization rotating phased array element |
11165138, | Apr 09 2018 | Qorvo US, Inc.; Qorvo US, Inc | Antenna element and related apparatus |
11381000, | May 18 2020 | Ningbo University | Low-sidelobe plate array antenna |
WO2020133321, | |||
WO2021150384, | |||
WO2022099585, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 13 2021 | YOU, YANG | Ningbo University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056335 | /0649 | |
May 13 2021 | HUANG, JIFU | Ningbo University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056335 | /0649 | |
May 13 2021 | ZHANG, LING | Ningbo University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056335 | /0649 | |
May 13 2021 | YOU, QINGCHUN | Ningbo University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056335 | /0649 | |
May 13 2021 | LU, YUNLONG | Ningbo University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056335 | /0649 | |
May 17 2021 | Ningbo University | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 17 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 21 2021 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Mar 07 2026 | 4 years fee payment window open |
Sep 07 2026 | 6 months grace period start (w surcharge) |
Mar 07 2027 | patent expiry (for year 4) |
Mar 07 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 07 2030 | 8 years fee payment window open |
Sep 07 2030 | 6 months grace period start (w surcharge) |
Mar 07 2031 | patent expiry (for year 8) |
Mar 07 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 07 2034 | 12 years fee payment window open |
Sep 07 2034 | 6 months grace period start (w surcharge) |
Mar 07 2035 | patent expiry (for year 12) |
Mar 07 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |