A power outage detection system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the status of electrical power at a plurality of locations within a geographic region; determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations; determining a boundary of an area in which electrical power is unavailable; and preparing a map that illustrates the boundary.
|
1. A power outage detection system, comprising:
a device processor; and
a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps:
receiving information indicative of the status of electrical power at a plurality of locations within a geographic region;
determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations;
determining a boundary of an area in which electrical power is unavailable; and
preparing a map that illustrates the boundary;
wherein the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding operating status of Internet of Things devices in the geographic region.
7. A power outage detection system, comprising:
a device processor; and
a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps:
receiving information indicative of the status of electrical power at a plurality of locations within a geographic region;
determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations;
determining that a user within the geographic region does not have electrical power available based the information received; and
preparing a map that indicates that an area proximate to the user in the geographic region does not have electrical power available;
wherein the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding battery state of a portable electronic device; and
wherein determining the status of electrical power in the geographic region is performed based on the battery state of the portable electronic device.
18. A power outage detection system, comprising:
a device processor; and
a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps:
receiving information indicative of the status of electrical power at a plurality of locations within a geographic region;
determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations;
determining that a user within the geographic region does not have electrical power available based the information received; and
preparing a map that indicates that an area proximate to the user in the geographic region does not have electrical power available;
wherein the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding operating status of Internet of Things devices in the geographic region; and
wherein determining the status of electrical power in the geographic region is performed based on the information regarding operating status of Internet of Things devices.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
determining that there is a power outage in the geographic area.
17. The system of
19. The system of
20. The system of
|
This application is a Divisional of Lecocke et al., U.S. Pat. No. 11,125,800, issued on Sep. 21, 2021, and titled “Electrical Power Outage Detection System”, which claimed the benefit of U.S. Provisional Patent Application Ser. No. 62/753,629 filed Oct. 31, 2018 and titled “Electrical Power Outage Detection System”. The disclosures of which are incorporated by reference in their entirety.
The present disclosure generally relates to post-disaster condition monitoring systems and, more particularly, to an electrical power outage detection system.
Following disasters, such as hurricanes, tornados, floods, etc., it can be difficult to assess the conditions in a disaster area. Disaster response can be better tailored to the conditions if the conditions are known.
There is a need in the art for a system and method that addresses the shortcomings discussed above. In particular, there is a need in the art for a disaster condition monitoring system.
The present disclosure is directed to systems and methods for monitoring the conditions following a disaster. In some embodiments, the disclosed system may be configured to detect power outages. In some embodiments, the system may be configured to detect water contamination. In some embodiments, the system may be configured to collect data regarding post-disaster conditions from pre-existing networks. In some embodiments, the system may be configured to utilize crowd sourced imagery to determine post-disaster conditions. In some embodiments, the system may be configured to utilize drones to collect imagery to determine post-disaster conditions. Further, the disclosed system may include an app or website interface to enable users to upload imagery and/or volunteer the services of their personal drone.
In one aspect, the present disclosure is directed to a power outage detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the status of electrical power at a plurality of locations within a geographic region; determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations; and sending information regarding the status of electrical power to a plurality of users of the system.
In another aspect, the present disclosure is directed to a power outage detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the status of electrical power at a plurality of locations within a geographic region; determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations; determining a boundary of an area in which electrical power is unavailable; and preparing a map that illustrates the boundary.
In another aspect, the present disclosure is directed to a power outage detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the status of electrical power at a plurality of locations within a geographic region; determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations; determining that a user within the geographic region has electrical power available based the information received; and preparing a map that indicates that an area proximate to the user in the geographic region has electrical power available.
In another aspect, the present disclosure is directed to a water contamination detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the presence of one or more contaminants in water within a geographic region; determining a characterization of water contamination within the geographic region; and sending information regarding water contamination to a plurality of users of the system.
In another aspect, the present disclosure is directed to a water contamination detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the presence of one or more contaminants in water within a geographic region; determining a characterization of water contamination within the geographic region; and preparing a map indicating the location of contamination in the water in the geographic region.
In another aspect, the present disclosure is directed to a water contamination detection system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information indicative of the presence of one or more contaminants in a body of water within a geographic region; determining a characterization of water contamination within the geographic region; and sending information regarding water contamination to a plurality of users of the system.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information from one or more pre-existing networks; determining conditions in a geographic region based on the information received from the one or more pre-existing networks; and preparing a map indicating the conditions within the geographic region.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information from one or more pre-existing networks; determining conditions in a geographic region based on the information received from the one or more pre-existing networks; and sending information regarding the determined conditions to a third party associated with disaster response.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving information from one or more pre-existing networks; determining conditions in a geographic region based on the information received from the one or more pre-existing networks; and sending information regarding the determined conditions to one or more users of the system.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving a plurality of images from a plurality of personal devices in a geographic region; determining conditions in a geographic region based on the information received from the plurality of images; and preparing a map indicating the determined conditions within the geographic region.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving a plurality of images from a plurality of personal devices in a geographic region; determining conditions in a geographic region based on the information received from the plurality of images; determining, based on the images, locations where images are needed to complete the determination of conditions in the geographic region; and preparing a map identifying one or more locations where imagery is needed.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: displaying information regarding locations where images are needed to complete a post-disaster conditions determination; selecting at least one location of the one or more locations where images are needed; uploading images of the at least one location; and sending the images to a conditions monitoring center.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include plurality of aircraft drones configured to take photographic images; a conditions monitoring center having a controller including a device processor and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving images from the plurality of aircraft drones in a geographic region; determining conditions in the geographic region based on the images received from the plurality of aircraft drones; and sending information regarding the determined conditions to one or more users of the system.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include device processor; and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: selecting an option to volunteer the services of a personal drone; and sending a registration for the volunteer drone services to a conditions monitoring center.
In another aspect, the present disclosure is directed to a post-disaster conditions monitoring system. The system may include a plurality of land vehicle drones equipped with air quality sensors: a conditions monitoring center having a controller including a device processor and a non-transitory computer readable medium including instructions executable by the device processor to perform the following steps: receiving data from the air quality sensors; determining conditions in a geographic region based on the data received from the air quality sensors; and sending information regarding the determined conditions to one or more users of the system.
Other systems, methods, features, and advantages of the disclosure will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description and this summary, be within the scope of the disclosure, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
The disclosed post-disaster condition monitoring systems may include several features for assessing the conditions in a disaster area, which may enable more effective, efficient, and prioritized disaster response. The disclosed systems may be configured to detect power outages and/or water contamination by collecting information from various sources. In some embodiments, the system may be configured to collect data regarding post-disaster conditions from pre-existing networks, such as traffic lights, and residential services, such as Internet service. In some embodiments, the system may be configured to utilize crowd sourced imagery, e.g., by collecting images from the smart phones of person in a disaster area in order to determine post-disaster conditions. These images may be combined and analyzed in order to provide a clear illustration of the conditions across the various regions of a disaster area. Similarly, in some embodiments, the system may be configured to utilize drones to collect imagery to determine post-disaster conditions. Further, the disclosed system may include an app or website interface to enable users to upload imagery and/or volunteer the services of their personal drone, as well as interact with a conditions monitoring center performing the analyses.
As shown in
The non-transitory computer readable medium may include any suitable computer readable medium, such as a memory, e.g., RAM, ROM, flash memory, or any other type of memory known in the art. In some embodiments, the non-transitory computer readable medium may include, for example, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of such devices. More specific examples of the non-transitory computer readable medium may include a portable computer diskette, a floppy disk, a hard disk, a read-only memory (ROM), a random access memory (RAM), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), an erasable programmable read-only memory (EPROM or Flash memory), a digital versatile disk (DVD), a memory stick, and any suitable combination of these exemplary media. A non-transitory computer readable medium, as used herein, is not to be construed as being transitory signals, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Instructions stored on the non-transitory computer readable medium for carrying out operations of the present invention may be instruction-set-architecture (ISA) instructions, assembler instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, configuration data for integrated circuitry, state-setting data, or source code or object code written in any of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or suitable language, and procedural programming languages, such as the “C” programming language or similar programming languages.
Aspects of the present disclosure are described in association with figures illustrating flowcharts and/or block diagrams of methods, apparatus (systems), and computing products. It will be understood that each block of the flowcharts and/or block diagrams can be implemented by computer readable instructions. The flowcharts and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of various disclosed embodiments. Accordingly, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions. In some implementations, the functions set forth in the figures and claims may occur in an alternative order than listed and/or illustrated.
Controller 105 may include networking hardware configured to interface with other nodes of a network, such as a LAN, WLAN, or other networks. In Further, controller 105 may be configured to receive data from a plurality of sources and communicate information to one or more external destinations. Accordingly, controller 105 may include a receiver 120 and a transmitter 125. (It will be appreciated that, in some embodiments, the receiver and transmitter may be combined in a transceiver.)
Any suitable communication platforms and/or protocols may be utilized for communication between controller 105 and other components of the system. Since the various sources of information may each have their own platform and/or protocol, system 100 may be configured to interface with each platform and/or protocol to receive the data.
As shown in
As also shown in
In some embodiments, system 100 may be configured to receive information reported by users. For example, as shown in
In some embodiments, system 100 may include a plurality of drones utilized to take photographic images of the disaster area. For example, as shown in
One or more of the drones may include photography equipment, such as a camera 190, as shown in
The drones may be manually controlled or autonomously controlled. In some cases, controller 105 or another controller associated with the conditions monitoring center may communicate with the drones to control their operation and/or to receive the images taken by the drones. In some embodiments, a global positioning system (GPS) navigation system may be utilized to fly the drones to the desired location for taking photographs and back. For example, in some embodiments, the user may either input a location to which they would like the drone to fly. Alternatively, controller 105 may obtain location information recorded and transmitted by the user's personal electronic device. Controller 105 may be configured to dispatch and command the drones to complete reconnaissance flights to take images of a disaster area. Accordingly, computer readable medium 115 may include instructions for receiving this location information from any of a variety of sources and completing the drone mission to the designated location.
Information from other sources may be received by controller 105 in order to assess the conditions in a disaster area or any other area in which conditions are desired to be determined. For example, it may be desirable to monitor large crowds of people in order to maintain effective and efficient security and service among the crowd. Accordingly, system 100 may be utilized to monitor geographic regions and/or venues under circumstances other than disasters.
Based on the information received and processed by controller 105, system 100 may prepare a map illustrating conditions in the monitored geographic area. Information regarding multiple different conditions may be indicated on the map. In some embodiments, the information may be provided in layers. The layers may be selectable by the user as to which layers of information are shown on the map at a given time.
In some embodiments, either the “danger” layer or the water contamination layer of information may be deselected as desired. While map 200 is shown with only two layers for clarity, additional layers may be added. For example, other conditions for which alternative or additional layers could be added may include flooding, landslides, hail damage, flood damage, etc., as well as outages for various services, such as electrical power, landline telephone service, cellular (mobile phone and Internet) service, Wifi, etc.
A significant condition that dictates disaster response is the status of electrical power in a geographic region. In areas where select homes and buildings may be damaged by floods, fires, hurricanes, etc., some homes may be without electrical power, even though the electrical power grid as a whole in that area remains operational. That is, if a resident's home is damaged severely enough, they can lose electrical power even though the main power lines may be intact. Various other types of damage to buildings and their surroundings can cause power outages to select buildings in a geographic region.
The status of electrical power availability can be inferred based on several different sources of information. For example, if Internet of Things devices remain online and operational, it can be determined that at least one portion of that building has electrical power. Similarly, if residential services, such as Internet service, cable television, Satellite television, or other networked services, are detected to be online and operational, it can be inferred that the building in which these services are operational has electrical power. Conversely, if Internet of Things devices and residential services are not detected to be operational, it can be determined that a power outage is possible.
Because the absence of signals from such services may not be conclusive (i.e. those services may simply be turned off at the moment), the system may be configured to consider other information as well, to more definitively determine whether electrical power is truly unavailable. For example, emergency calling records (i.e., 911 calls), as well as other types of reporting, can be considered. If a user reported an outage, or if they reported that no lights are on in their neighbor's home, that information can be considered to piece together the conditions in the region. Other such sources of data may include vehicle communications systems. For example, many vehicles have monitoring systems to which a plurality of data is reported. If a vehicle reports an electrical short, or moisture, then it may indicate flood conditions, which could indicate a likely loss of electrical power in the region. Also, personal electronic devices, such as mobile phones, can have the battery charge state monitored remotely by the phone/data service provider. If a user's phone has a significant charge, particularly after a long duration following the occurrence of a disaster, that could indicate that they have a power source available from which they are able to charge their device.
Computer readable medium 315 may include instructions to perform the following steps: receiving information indicative of the status of electrical power at a plurality of locations within a geographic region; and determining the status of electrical power in the geographic region based on the status of electrical power at the plurality of locations.
As shown in
In addition, system 300 may receive Internet of Things information 335, as indicated in
Additionally, or alternatively, in some cases, contamination of the flood water may be detected. The stippling of flood water 345 indicates contamination of flood water 345 with any of a variety of contaminants. Data indicating the presence and, in some cases magnitude, of contamination of water may be received by controller 305.
In some embodiments, the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding usage of services that are trackable remotely. For example, information pertaining to outages of services 350, such as Internet service, electrical service, cable television service, satellite television, etc., may be received by controller 305.
In some embodiments, the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding user reports 355 of conditions in the geographic region. For example, as shown in
In some embodiments, the information indicative of the status of electrical power for which the computer readable medium includes instructions to receive includes information regarding emergency telephone calls 360 (e.g., 911 calls). Emergency call records may include reports of power outages in the caller's home or in buildings nearby.
System 300, or a third party system, may analyze the information received regarding possible power outages, and may make determinations regarding the conditions in the geographic region from which the information is received. System 300 may be configured to send information regarding the status of electrical power to inform organizations and residents of the situation. For, example, in some embodiments, computer readable medium 315 may include instructions for sending information regarding the status of electrical power to a plurality of users of system 300. For instance, users may access a website or an app on their personal electronic device to which system 300 may send reports of electrical power outages.
Another way in which the determined conditions may be communicated to others is via the preparation and distribution of a map showing the localities in which electrical power is unavailable. Accordingly, in some embodiments, computer readable medium 315 may include instructions for determining a boundary of an area in which electrical power is unavailable, and preparing a map that illustrates the boundary.
Affirmative data and reports regarding the availability of power are beneficial to determining power outage conditions in a given geographic area. Data and reports that positively indicate the availability of power are definitive, whereas the data and reports indicative of the absence of power can be inconclusive. In some embodiments, computer readable medium 415 may include instructions for determining that a user within the geographic region has electrical power available based the information received, and preparing a map that indicates that an area proximate to the user in the geographic region has electrical power available. Accordingly, preparing the map include determining a boundary of an area in which electrical power is available.
Other sources of information indicative of power outages may include information regarding operating status of onboard automobile diagnostics. Vehicle diagnostics monitoring and reporting systems may indicate electrical shorts and/or a complete lack of signal, either of which may indicate a possible flood. If the flood has damaged the electrical system of the vehicle, it may also render electrical power unavailable in local building structures.
The broadcast of information may be sent to any suitable groups of persons. For example, in some cases, the information may be sent to users of the system. For example, users may register for access to the information broadcast by the system. Such broadcasts may be sent via email, text message, or simply made available via a website or an application for a personal electronic device. Such information could also be made available to the general public, via a webpage. In some cases, the broadcasts may be targeted to cellular users in a geographic region, whether they are registered with the system or not. For example, warnings or alerts may be sent to the users for all cellular carriers in the region.
A monitoring system can be used to detect whether contaminants, such as organic pollutants, such as sewage or biohazardous waste; chemical pollutants, such as petroleum based compounds (e.g., oil, gasoline, etc.), coal ash, and other chemical compositions; or other dangerous or otherwise undesirable items, are found in water. Alternatively, or additionally, the monitoring system may be configured to detect whether animals, such as snakes or insects (e.g., fire ants), are found in water. Contamination may be monitored in flood waters and/or pre-existing bodies of water (i.e., bodies of water that existed prior to a disaster occurred). In some cases, contamination sensors that are disposable may be used. Such sensors can feed back information and ultimately wash away out of range and/or run out of battery. This can be done for fires or other disasters as well.
Computer readable medium 715 may include instructions to perform the following steps: receiving information indicative of the presence of one or more contaminants in water within a geographic region; and determining a characterization of water contamination within the geographic region.
As shown in
In addition, system 700 may receive Internet of Things information 735, as indicated in
In some embodiments, the information indicative of water contamination may be sent to one or more parties. For example, computer readable medium 715 may include instructions for sending information regarding water contamination to a plurality of users of system 700.
When flooding occurs, the presence of various types of dangerous animals in the flood waters can be a concern. Accordingly, in some embodiments, computer readable medium 715 may include instructions for receiving information 750 regarding the presence of one or more predetermined types of animals in water. Such information may be received in the form of reports from system users, 911 callers, or other reporting platforms. For example, as shown in
Flooded coal ash ponds can contaminate not only flood waters, but also pre-existing bodies of water and local water supplies. Accordingly, computer readable medium 715 may also include instructions for receiving information regarding coal ash content 765, illustrated in
In some embodiments, system 700 may be configured to send information regarding the water contamination to inform organizations and residents of the situation. For, example, in some embodiments, computer readable medium 715 may include instructions for sending information regarding water contamination to a plurality of users of system 700. For instance, users may access a website or an app on their personal electronic device to which system 700 may send reports of electrical power outages.
Another way in which the determined conditions may be communicated to others is via the preparation and distribution of a map showing the localities in which water contamination has been detected. Accordingly, in some embodiments, computer readable medium 715 may include instructions for preparing a map indicating the location of contamination in the water in the geographic region.
As noted above, contamination may be detected in drinking water, flood water, and/or pre-existing bodies of water.
Information from various pre-existing networks may be utilized to determine the status of geographic regions following a disaster. For example, networks such as traffic lights, utilities info, road closures, service providers (cable, internet, etc.), and other sources can be considered. Also, information from Internet of Things sensors can be reviewed. This information can be used to determine disaster response strategies. Information from vehicle diagnostics and reporting systems can also be used. For example, glass breakage detectors, car alarms, or even a lack of reporting from a vehicle can indicate a noteworthy status.
Computer readable medium 1215 may include instructions to perform the following steps: receiving information from one or more pre-existing networks; and determining conditions in a geographic region based on the information received from the one or more pre-existing networks.
As shown in
In addition, system 1200 may receive Internet of Things information 1235, as indicated in
In some embodiments, among the information from pre-existing networks which computer readable medium 1215 has instructions to receive is service provider information 1250 from residential service provider networks. Such networks may be associated with various monitored services provided to homes and businesses, such as cable television, satellite television, Internet service, and other such services. Similarly, the pre-existing networks from which system 1200 may receive information may include public utilities networks.
In some embodiments, among the information from pre-existing networks which computer readable medium 1215 has instructions to receive is vehicle information 1260 from vehicle diagnostics and reporting systems. Information such as poor electrical system health may indicate flooding. Information such as vehicle alarm tripping and/or glass breakage may indicate hail damage. Additionally, some information may be collectively analyzed across multiple vehicles to make determinations of general conditions within a geographic region. For example, in the days following a disaster, if a majority of vehicles in the region have low fuel levels, this may indicate a lack of availability of fuel in the area. The same may be true for electrical vehicles with respect to charging.
In some embodiments, system 1200 may be configured to send information regarding the determined conditions to inform organizations and residents of the situation. For, example, in some embodiments, computer readable medium 1215 may include instructions for sending information regarding water contamination to a plurality of users of system 1200. For instance, users may access a website or an app on their personal electronic device to which system 1200 may send reports of electrical power outages.
Another way in which the determined conditions may be communicated to others is via the preparation and distribution of a map showing the conditions in the area. Accordingly, in some embodiments, computer readable medium 1215 may include instructions for preparing a map indicating the conditions within the geographic region.
In some embodiments, the map may include multiple layers of information regarding post-disaster conditions, with each layer providing more detailed information regarding various conditions.
Crowd source imagery can be collected to determine information about post-disaster conditions in a geographic area. Information can be collected from personal electronic devices, such as mobile phones and other devices. In some embodiments, a platform may be provided for users to upload their images.
Computer readable medium 1815 may include instructions to perform the following steps: receiving a plurality of images from a plurality of personal devices in a geographic region; and determining conditions in a geographic region based on the information received from the plurality of images. In some embodiments, the personal devices may include personal electronic devices, such as smart phones or tablet computers. In some embodiments, the personal devices may include other types of devices, such as drones with photographic capability.
As shown in
As also shown in
In some embodiments, the images may be delivered directly from the drones to controller 1805. In such embodiments, the drones may include equipment configured to complete such transmission of image files to a remote location, such as controller 1805. In some embodiments, the images may be delivered through an intermediate device, such as the drone user's smart phone or personal computer. The images may then be delivered from the smart phone or personal computer. In some cases, one or more drones of fleet 1860 may be brought back to the condition monitoring center to be plugged directly into controller 1805 for download of the images stored on board the drone.
In some embodiments, the photos from personal electronic devices and/or from drones may be received with time and/or location information embedded with the image file. This may facilitate the analysis of the imagery in order to determine the collective implication with respect to post-disaster conditions in the geographic area from which the images are collected.
Various post-disaster conditions may be detectable via the analysis of crowd sourced imagery. For example, in some embodiments, computer readable medium 1815 may include instructions for detecting flooding from the plurality of images. In some embodiments, computer readable medium 1815 may include instructions for detecting wind damage from the plurality of images. In some embodiments, computer readable medium 1815 may include instructions for detecting hail damage from the plurality of images. In some embodiments, computer readable medium 1815 may include instructions for detecting electrical power outages from the plurality of images.
In some embodiments, system 1800 may be configured to send information regarding the determined conditions to inform organizations and residents of the situation. Another way in which the determined conditions may be communicated to others is via the preparation and distribution of a map showing the conditions in the area. Accordingly, in some embodiments, computer readable medium 1815 may include instructions for preparing a map indicating the conditions within the geographic region.
Map 1900 may include multiple layers of information regarding various post-disaster conditions. For example, in addition to indicating the locations of power outages, map 1900 may include a second symbol 1920 indicating the locations of flood waters. Other layers of information may also be included on map 1900. For example, in some embodiments, map 1900 may include information regarding population density in the geographic region. These layers may be selected and deselected in order to customize the display of map 1900 to show the information desired by the user.
In some embodiments, the system may be configured to determine the areas of a given geographic region for which images are still needed in order to assess the conditions in those areas. Users of the system may be able to volunteer their services in obtaining photographic images in one or more areas identified by the system as being in need of images.
In some embodiments, the system may produce a map, viewable by users of the system, that indicates the areas from with imagery is needed.
In some embodiments, the system may provide a platform that users may utilize to submit their images for consideration. For example, a website or mobile app may be configured to facilitate uploading images to a conditions monitoring center or other interested party for consideration in determining post-disaster conditions and preparing disaster response strategies.
Personal electronic device 2300 may include a device processor and a non-transitory computer readable medium including instructions executable by the device processor. These components may have the same or similar attributes discussed above with respect to similar components in other embodiments.
The computer readable medium of device 2300 may include instructions for registering the user with a disaster response system, e.g., via a menu item 2310. In addition, the app may be configured to display locations from which images are needed, e.g., via menu item 2315. By selecting menu item 2315, a map may be displayed illustrating the areas from which images are needed. Such a map may appear similar to map 2000 shown in
In some embodiments, the computer readable medium may include instructions for receiving information regarding disaster conditions from the conditions monitoring center. The computer readable medium may further include instructions for displaying a map including the information received from the conditions monitoring center. The map includes multiple layers of the information received from the conditions monitoring center. In addition, the computer readable medium may include instructions for updating the map including the information regarding locations where images are needed by removing the locations for which the user sent images.
Drones may be used for several tasks following disasters. On-board cameras and sensors can help collect data. In some cases, fleets of drones may be deployed. The fleets may be pre-assembled, or may be simply collections of volunteer drones assembled after the disaster has occurred. The drones may be auto-controlled. In some cases, the auto-control may operate the drones collectively as a fleet.
A network may be provided to feed the data (e.g., images) captured by the drones back to a centralized location such as a conditions monitoring center. The drones themselves may serve as repeaters to pass along the data. In some cases, dedicated repeaters may be provided on land or on other vehicles such as emergency trucks in the area.
In some cases, other types of robots or drones, such as unmanned land vehicles or watercraft may be used in a similar way as aerial drones. Such land and water vehicles may be useful in disasters such as fires, where smoke prevents the collection of useful imagery from the air. Drones may also be configured to collect air quality or water quality samples and, in some cases, perform testing on such samples.
The specifications of the drones associated with system 2400 may be suited for the type of terrain, routes, imagery, data collection, etc. for which the drones are to be used. The drones may have enough power to carry the necessary photography, film, and/or data collection equipment. In some embodiments, such equipment may include various types of photography and/or film equipment, including standard visual, infrared, night vision, and other types of imagery equipment. Infrared imagery may facilitate searches for humans and/or animals in a disaster area, particularly among damaged buildings and other structures. In addition, thermal imagery, such as infrared, may be combined with standard visual images to detect water conditions. Further, in some embodiments, the drones may include other types of data collection equipment such as Light Detection and Ranging (LIDAR), which is a remote sensing system configured to map the surface of the earth, and may penetrate vegetation in order to provide an accurate topographical scan of the ground surface. This may be used to determine structural damage to buildings, roadways, and other infrastructure, as well as ground conditions, such as mudslides, flooding, extreme erosion, etc. Additionally, or alternatively, the drones may include air quality sensors, water quality sensors, or other data collection devices.
In addition, the drones may have enough range, both in terms of controllability/navigation and battery life in order to travel the required distance to the location to be photographed. For example, drones may be configured with capability to fly from an edge of a disaster area to locations that are centrally located within the disaster area. In some cases, the drones may be capable of flying from an edge of a disaster area to an opposite edge of the disaster area. For example, if a disaster area falls along a coastline or lake, the shoreline may form the edge of the disaster area on one side. Accordingly, the closest a drone may be deployed to the location to be photographed may be the opposite edge of the disaster area. Accordingly, the drones may be capable of traversing the full distance across the disaster area to complete certain reconnaissance missions. The system may be configured to dispatch the drones according to the specifications of each drone.
Further, the communication capabilities shall also be duly suited for each drone's intended use. In some embodiments, the drones may be autonomous. That is, the drones may be programmable to execute imaging runs to designated locations. In other embodiments, the drones may be piloted remotely.
Any suitable system may be utilized for video and/or audio communication. For example, radio, satellite, cellular, Internet, or other communication networks may be utilized.
As shown in
As shown in
The photographs may be processed by the system to assess the conditions in the disaster area. In addition, the system may be configured to send information regarding the determined conditions to one or more users of the system. In some embodiments, the computer readable medium of the system may include instructions for preparing a map indicating the determined conditions within the geographic region. In some cases, the map may include multiple layers of information. In some embodiments, one or more of the layers of information may include information regarding population density in the geographic region.
In some embodiments, the computer readable medium may include instructions for determining whether the battery charge of a dispatched drone is below a predetermined threshold (step 2610). If not, the system may continue to receive data from the drone as it captures additional images, as indicated by the return of the process to step 2600 in
In some cases, the system may be configured for the drones to send the images back to a control center without having to physically return to the center for download of the images. In some cases, the system may be configured to utilize one or more repeaters to relay the delivery of imaging data from the drones to the control center. In some cases, one or more of the drones may be configured to relay data from other drones to the control center. In some cases, a land vehicle, such as vehicle 2405 may be configured to relay the data to a condition monitoring center or other facility.
The system may include a platform, such as a website or app, with which drone owners can volunteer the services of their personally owned drone. Through the app, the users can obtain an assignment to complete a reconnaissance mission using their drone. Such a platform may facilitate the organization of a large number of drones to photograph a disaster area without needing a large fleet of dedicated disaster response drones to be owned and operated by disaster relief organizations.
Personal electronic device 2800 may include a device processor and a non-transitory computer readable medium including instructions executable by the device processor. These components may have the same or similar attributes discussed above with respect to similar components in other embodiments.
The computer readable medium of device 2800 may include instructions for registering the user with a disaster response system, e.g., via a menu item 2810. In addition, the app may be configured to indicate, e.g., via menu item 2815, that they have a drone the services of which they are willing to volunteer for disaster relief purposes. By selecting menu item 2815, a map may be displayed illustrating the areas from which images are needed. Such a map may appear similar to map 2000 shown in
The user may also indicate, via a menu item 2820 whether they have battery charging services available that they are willing to share with other drone operators. In addition, the user may utilize menu item 2825 to select various specifications of their drone, in order to ensure that the system assigns a reconnaissance mission that is suitable for the capabilities of the volunteer's drone. For example, the user may select whether their drone is remotely operated or programmable/autonomous. The computer readable medium of device 2800 may include instructions for executing the tasks described above. In addition, the computer readable medium may also include instructions for uploading images taken during the volunteer drone service. The image upload feature may be executed according to the description above with respect to
In some embodiments, land vehicle drones and/or watercraft drones may be utilized in a similar manner as described above with respect to aerial drones.
System 2900 may also include a plurality of land vehicle drones, such as a first drone 2905 and a second drone 2910. In some embodiments, these drones may be operated remotely. In some embodiments, these drones may be operated autonomously. Further, in some embodiments, these drones may be equipped with air quality sensors. Such sensors may be usable to determine the conditions in various disaster situations, such as a fire with voluminous smoke, or a chemical plant explosion, where there may be dangerous aerosols in the air.
In some embodiments, the drones may include photography equipment for acquiring images of a disaster area. Such ground-based drones may be useful in obtaining images in situations like fires where the smoke may limit the effectiveness of aerial imagery. As shown in
The control center or conditions monitoring center may include having a controller including a device processor and a non-transitory computer readable medium including instructions executable by the device processor to receiving data from the air quality sensors or photography equipment and determine conditions in a geographic region based on the received data. In addition, the computer readable medium may include instructions for sending information regarding the determined conditions to one or more users of the system.
As shown in
The embodiments discussed herein may make use of methods and systems in artificial intelligence to improve efficiency and effectiveness of the disclosed systems. As used herein, “artificial intelligence” may include any known methods in machine learning and related fields. As examples, artificial intelligence may include systems and methods used in deep learning and machine vision.
While various embodiments have been described, the description is intended to be exemplary, rather than limiting, and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Although many possible combinations of features are shown in the accompanying figures and discussed in this detailed description, many other combinations of the disclosed features are possible. Any feature of any embodiment may be used in combination with, or substituted for, any other feature or element in any other embodiment unless specifically restricted. Therefore, it will be understood that any of the features shown and/or discussed in the present disclosure may be implemented together in any suitable combination. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
Gray, Emily Margaret, Amann, Manfred, Bitsis, Jr., Daniel Christopher, Simpson, Robert Wiseman, Brown, Donnette Moncrief, Maciolek, Michael J., Mohs, Bobby Lawrence, Beveridge, Meredith
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10467885, | Sep 30 2015 | ALARM COM INCORPORATED | Drone-augmented emergency response services |
10635903, | Jun 13 2017 | State Farm Mutual Automobile Insurance Company | Systems and methods for hail damage verification on rooftops using computer vision and artificial intelligence |
10807591, | Nov 02 2017 | ZOOX, INC | Vehicle disaster detection and response |
9576309, | Nov 12 2014 | SNERGY INC | Dynamic power sharing system and map view graphical user interface |
9679539, | Oct 14 2016 | AZTEK SECURITIES LLC | Real-time presentation of geolocated entities for emergency response |
9773398, | Nov 03 2015 | Sunrex Technology Corp | Localized flood alert system |
9947233, | Jul 12 2016 | Hyundai Motor Company; Kia Corporation | Method and system to improve safety concerning drones |
20030083786, | |||
20100227582, | |||
20120039400, | |||
20120050524, | |||
20130222369, | |||
20130268196, | |||
20150112773, | |||
20150140954, | |||
20150310275, | |||
20170061660, | |||
20170083979, | |||
20170353346, | |||
20180114174, | |||
20180314995, | |||
20180322197, | |||
20180327091, | |||
20190120640, | |||
20190303990, | |||
20190362523, | |||
20200034620, | |||
20210192629, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 01 2019 | MOHS, BOBBY LAWRENCE | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 01 2019 | LECOCKE, MEREDITH BEVERIDGE | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 01 2019 | MACIOLEK, MICHAEL J | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 01 2019 | SIMPSON, ROBERT WISEMAN | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 01 2019 | AMANN, MANFRED | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 01 2019 | BROWN, DONNETTE MONCRIEF | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 02 2019 | GRAY, EMILY MARGARET | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Apr 07 2019 | BITSIS, DANIEL CHRISTOPHER, JR | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061842 | /0080 | |
Aug 11 2021 | BEVERIDGE, MEREDITH | UIPCO, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061863 | /0440 | |
Aug 23 2021 | United Services Automobile Association (USAA) | (assignment on the face of the patent) | / | |||
Dec 05 2022 | UIPCO, LLC | UNITED SERVICES AUTOMOBILE ASSOCIATION USAA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 062037 | /0271 |
Date | Maintenance Fee Events |
Aug 23 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 28 2026 | 4 years fee payment window open |
Sep 28 2026 | 6 months grace period start (w surcharge) |
Mar 28 2027 | patent expiry (for year 4) |
Mar 28 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 28 2030 | 8 years fee payment window open |
Sep 28 2030 | 6 months grace period start (w surcharge) |
Mar 28 2031 | patent expiry (for year 8) |
Mar 28 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 28 2034 | 12 years fee payment window open |
Sep 28 2034 | 6 months grace period start (w surcharge) |
Mar 28 2035 | patent expiry (for year 12) |
Mar 28 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |