The present invention relates to solid oral pharmaceutical compositions comprising amorphous dapagliflozin. The invention further relates to a process for the preparation of the said pharmaceutical compositions. The said compositions are administered orally for the treatment of diabetes mellitus. The said compositions provide the desired immediate release of dapagliflozin and were found to be stable under accelerated conditions.

Patent
   11660308
Priority
Mar 16 2017
Filed
May 14 2021
Issued
May 30 2023
Expiry
Sep 05 2038

TERM.DISCL.
Extension
190 days
Assg.orig
Entity
Large
0
70
currently ok
1. A solid oral composition comprising:
a) amorphous dapagliflozin, as a first active ingredient, having a d(0.5) in the range from 20 μm to 75 μm;
b) a second active ingredient selected from the group consisting of biguanides, sulfonylureas, thiazolidinediones, alpha-glucosidase inhibitors, DPP4 inhibitors, PPAR agonists, meglitinides, and SGLT2 inhibitors; and
c) one or more surfactants,
wherein the weight ratio of dapagliflozin to the surfactant is from about 1:0.1 to 1:10.
12. A solid oral composition comprising:
a) amorphous dapagliflozin, as a first active ingredient, having a d(0.5) in the range from 20 μm to 75 μm;
b) a second active ingredient i-s selected from the group consisting of metformin, phenformin, glyburide, glimepiride, glipizide, gliclazide, chlorpropamide, pioglitazone, rosiglitazone, troglitazone, acarabose, voglibose, miglitolol, sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin, saraglitazar, muraglitazar, peliglitazar, tesaglitazar, repaglinide, nateglinide, canagliflozin and ertugliflozin; and
c) one or more surfactants;
wherein the weight ratio of dapagliflozin to the surfactant is from about 1:0.1 to 1:10.
2. The composition as claimed in claim 1, wherein the one or more surfactants are selected from the group consisting of micro-encapsulated polysorbate 80, polysorbate 80, polysorbate 85, polysorbate 65, polysorbate 60, polysorbate 40, polysorbate 20, polyoxyethylene castor oil derivatives, polyoxyethylene hydrogenated castor oil, ethoxylated hydrogenated castor oil, phosphatidyl choline, phospholipids, medium chain triglycerides, docusate sodium, lecithin, glyceryl monostearate, sorbitan monostearate, sorbitan monopalmitate, sorbitan monolaurate, poloxamers, sodium lauryl sulfate, polyoxyethylene alkyl ethers, polyoxyethylene stearates, sorbitan fatty acid esters, sucrose esters of fatty acids, PEG-8 caprylic-capric glycerides, saturated polyglycolized glycerides, tocopherol PEG succinate, and mixtures of distinct surfactants thereof.
3. The composition as claimed in claim 2, wherein the one or more surfactants are selected from the group consisting of micro-encapsulated polysorbate 80, polysorbate 80 and PEG-8 caprylic-capric glycerides.
4. The composition as claimed in claim 1, wherein the one or more surfactants are present from about 0.1% to about 25% by weight of the composition.
5. The composition as claimed in claim 1, wherein the amorphous dapagliflozin is present from about 0.1% to about 25% by weight of the composition.
6. The composition as claimed in claim 1, wherein the composition further comprises at least one excipient selected from the group consisting of diluent, binder, disintegrating agent, lubricant, and glidant.
7. The composition as claimed in claim 6, wherein the disintegrating agent is selected from the group consisting of sodium starch glycolate, crospovidone, croscarmellose sodium, croscarmellose calcium, croscarmellose potassium, sodium carbonate, starch, starch 1500, modified starch, pregelatinized starch, crosslinked carboxymethyl starch, sodium hydrogen carbonate, hydroxypropyl cellulose, and mixtures of distinct disintegrating agents thereof.
8. The composition as claimed in claim 1, wherein the composition is in the form of powders, granules, pellets, mini-tablets, tablets, or capsules.
9. The composition as claimed in claim 8, wherein the tablet is in the form of an immediate release tablet.
10. The composition as claimed in claim 1, wherein the composition releases at least about 70% of dapagliflozin within 30 minutes.
11. The composition as claimed in claim 1, wherein the composition is prepared by wet granulation, dry granulation, or direct compression.
13. The composition as claimed in claim 1, wherein the second active ingredient is metformin.

This application is a continuation of U.S. patent application Ser. No. 16/484,344, filed Aug. 7, 2019, which is the U.S. national stage of International Patent Application No. PCT/IB2018/051221, filed Feb. 27, 2018, which claims the benefit of Indian Patent Application No. 201721009146, filed Mar. 16, 2017.

The present invention relates to solid oral pharmaceutical compositions comprising amorphous dapagliflozin. The invention further relates to a process for the preparation of the said pharmaceutical compositions.

Dapagliflozin is a sodium-glucose cotransporter 2 inhibitor (SGLT2) indicated in the treatment of diabetes mellitus, in particular type 2 diabetes. It prevents reabsorption of at least 90% of the glucose in the kidney and facilitates elimination of the glucose through the urine. In the United States of America, it is available as immediate release tablets in the dose strengths of 5 mg and 10 mg under the brand name FARXIGA®. The active ingredient in FARXIGA® is a crystalline form of dapagliflozin propylene glycol hydrate.

U.S. Pat. No. 6,515,117 discloses SGLT2 inhibitor compound dapagliflozin and provides a method for treating diabetes and related disease.

U.S. Pat. No. 7,919,598 and WO2008/002824 disclose the crystalline solvates and complexes of (IS)-1, 5-anhydro-L-C-[3-((phenyl)methyl) phenyl)-D-glucitol derivatives with amino acids. In particular, the crystalline polymorphs of dapagliflozin propylene glycol hydrate is disclosed.

U.S. Pat. Nos. 8,221,786, 7,851,502, 8,716,251 and 8,361,972 disclose immediate release pharmaceutical formulation comprising dapagliflozin propylene glycol hydrate and a pharmaceutical acceptable carrier.

U.S. publication no. 2013/0237487 discloses an amorphous form of dapagliflozin.

PCT publication no. WO2015/104658 discloses amorphous form of dapagliflozin, amorphous solid dispersion of dapagliflozin together with one or more pharmaceutically acceptable carriers, process for its preparation and pharmaceutical composition thereof.

The said carriers are selected from polyvinylpyrrolidones, hydroxypropylmethylcellulose, hydroxypropylcellulose, or hydroxypropylmethylcellulose acetate succinate.

U.S. publication no. 2016/0256433 discloses an amorphous solid dispersion comprising dapagliflozin and at least one polymer, a pharmaceutical composition comprising said amorphous solid dispersion and the process for its preparation. These compositions of dapagliflozin under stress and accelerated storage conditions were found to be stable for a period of 3 months.

PCT publication no. WO2015/128853 discloses pharmaceutical compositions comprising solid dispersion of dapagliflozin and one or more pharmaceutically acceptable excipients and the process for their preparation.

There is a need to provide an immediate release pharmaceutical composition comprising amorphous dapagliflozin which is

The object of present invention is to provide a stable pharmaceutical composition of amorphous dapagliflozin.

Another object of the present invention is to provide the said composition in the form of an immediate release dosage form.

It is yet another object of the present invention to provide the said composition which is bioequivalent to FARXIGA®.

It is yet another object of the present invention to provide the said composition in the form of powders, granules, pellets, mini-tablets, tablets, or capsules.

It is yet another object of the present invention to provide a process for the preparation of the said compositions comprising amorphous dapagliflozin.

The present invention provides pharmaceutical compositions comprising amorphous dapagliflozin and at least one surfactant.

It has surprisingly been found that the said compositions comprising amorphous dapagliflozin and at least one surfactant are stable under accelerated storage conditions of 40° C. and 75% relative humidity, for a period of at least 6 months as per the recommendation of the ICH guidelines.

It has surprisingly been found that the said compositions comprising amorphous dapagliflozin and at least one surfactant are bioequivalent to FARXIGA®.

The said compositions of the present invention provide immediate release of dapagliflozin.

The said compositions of the present invention are administered orally for the treatment of diabetes mellitus.

The compositions of the present invention further comprise at least one excipient selected from diluent, binder, disintegrating agent, antioxidant, lubricant, glidant, pigments, colouring agent, and mixtures thereof.

Dapagliflozin in accordance with the present invention is characterized by particle size distribution (PSD) as determined by the laser diffraction method (e.g. in Malvern Master Sizer). The term particle size distribution (PSD) as used herein means cumulative volume size distribution of equivalent spherical diameter.

The particle size distribution of dapagliflozin used in the preparation of the pharmaceutical composition of the present invention has d (0.9) value<250 μm, preferably in the range of 1 μm to 225 μm, more preferably in the range of 25 μm to 200 μm, and most preferably in the range of 50 μm to 175 μm.

The particle size distribution of dapagliflozin used in the preparation of the pharmaceutical composition of the present invention has d (0.5) value<100 μm, preferably in the range of 0.5 μm to 90 μm, more preferably in the range of 5 μm to 80 μm, and most preferably in the range of 10 μm to 70 μm.

The particle size distribution of dapagliflozin used in the preparation of the pharmaceutical composition of the present invention has d (0.1) value<25 μm, preferably in the range of 0.1 μm to 20 μm, more preferably in the range of 0.5 μm to 15 μm, and most preferably in the range of 1 μm to 10 μm.

In one of the embodiments the particle size distribution of the dapagliflozin used in the preparation of the pharmaceutical composition may have

d (0.1) value in the range from 2 μm to 12 μm,

d (0.5) value in the range from 20 μm to 75 μm, and

d (0.9) value in the range from 75 μm to 200 μm.

Dapagliflozin is present in an amount from 0.1% to 25% by weight of the composition, preferably from 0.5% to 15%, more preferably from 1% to 7.5%, and most preferably from 2.5% to 5% by weight of the composition.

Surfactant is selected from polysorbates (for example polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 65, polysorbate 80, polysorbate 85, micro-encapsulated polysorbate 80 such as SEPITRAP™ 80, micro-encapsulated polyoxyl 40 hydrogenated castor oil such as SEPITRAP™ 4000), polyoxyethylene castor oil derivatives polyoxyethylene hydrogenated castor oil (for example CREMOPHOR®), ethoxylated hydrogenated castor oil, phosphatidyl choline, phospholipids, medium chain triglycerides, docusate sodium, lecithin, glyceryl monostearate, sorbitan monostearate (SPAN® 60), sorbitan monopalmitate (SPAN® 40), sorbitan monolaurate (SPAN® 20), poloxamers (polyoxyethylene polyoxypropylene block copolymers), sodium lauryl sulfate, polyoxyethylene alkyl ethers, polyoxyethylene stearates, sorbitan fatty acid esters, sucrose esters of fatty acids, PEG-8 Caprylic-Capric glycerides (DUBCARE GPE 810), saturated polyglycolized glycerides, tocopherol PEG succinate, and mixtures thereof.

The surfactant is present in an amount from 0.1% to 25% by weight of the composition, preferably from 0.5% to 20%, more preferably from 1% to 15%, and most preferably from 2.5% to 10% by weight of the composition.

The ratio of dapagliflozin to the surfactant is usually in the range of about 1:0.1 to 1:10.

In one of the embodiments of the invention, the ratio of dapagliflozin to surfactant is in range of about 1:0.2 to 1:5, preferably in the range of about 1:0.25 to 1:3, more preferably in the range of about 1:0.3 to 1:1.5 and most preferably in the range of about 1:0.4 to 1.1.3.

Diluent is selected from anhydrous lactose, lactose monohydrate, cellulose derivatives (e.g. cellulose, microcrystalline cellulose, silicified microcrystalline cellulose) sugar, mannitol, glucose, sucrose, dextrose, fructose, compressible sugar, starches, modified starches, inorganic salts, calcium sulfate, calcium silicate, calcium phosphate, dibasic calcium phosphate, tribasic calcium phosphate, magnesium aluminometasilicate, sorbitol, xylitol, lactitol, dextran, maltodextrin, cetyl alcohol, stearyl alcohol, waxes, and mixtures thereof.

The diluent is present in an amount from 5% to 90% by weight of the composition, preferably from 10% to 85% and more preferably from 15% to 80% by weight of the composition.

Binder is selected from povidone, hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methylcellulose (MC), carboxymethylcellulose (CMC), sodium carboxymethylcellulose, calcium carboxymethylcellulose, starch paste, ethylcellulose, polymethacrylates, gelatin, polyethylene oxide, gums (example xanthan gum, guar gum, acacia, locust bean gum or alginates), polyvinyl alcohol, and mixtures thereof.

The binder is present in an amount from 0.1% to 35% by weight of the composition, preferably from 0.5% to 20%, more preferably from 1% to 10%, and most preferably from 2.5% to 7.5% by weight of the composition.

Disintegrating agent is selected from sodium starch glycolate, crospovidone, croscarmellose sodium, croscarmellose calcium, croscarmellose potassium, starch, starch 1500, modified starch, pregelatinized starch, crosslinked carboxymethyl starch, sodium hydrogen carbonate, sodium carbonate, low substituted hydroxypropyl cellulose, and mixtures thereof.

The disintegrating agent is present in an amount from 0.1% to 25% by weight of the composition, preferably from 0.5% to 15%, more preferably from 1% to 10%, and most preferably from 2.5% to 7.5% by weight of the composition.

Antioxidant is selected from butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), sodium ascorbate, potassium sorbate, sorbic acid, sodium sulfite, tocopherol, Vitamin E derivatives, citric acid, malic acid, ascorbic acid, and mixtures thereof. The antioxidants may be present in an amount from 0.05% to 5% by weight of the composition.

Lubricant is selected from magnesium stearate, calcium stearate, stearic acid, sodium stearyl fumarate, sodium benzoate, palmitic acid, glyceryl monostearate, glyceryl behenate, and mixtures thereof. The lubricant may be present in an amount from 0.25% to 5% by weight of the composition.

Glidant is selected from suitable glidants known in the art. Examples of suitable pharmaceutically acceptable glidant are talc and colloidal silicon dioxide. The glidants may be present in an amount from 0.1% to 10% by weight of the composition.

Pigment is selected from titanium dioxide, iron oxide (e.g. iron oxide yellow, iron oxide red, iron oxide brown, iron oxide black or mixtures thereof) or mixtures thereof.

Any suitable pharmaceutically acceptable natural, semi-synthetic, or synthetic colors, and flavors may be used. Preferred colors, and flavors are those listed in the handbook of excipients.

The compositions of the present invention may be provided in the form of powders, granules, pellets, mini-tablets, tablets, or capsules.

The compositions in the form of granules, pellets, mini-tablets or tablets may optionally be coated with a film coating layer comprising film coating materials, and optionally plasticizers, colorants, pigments, lubricants, diluents and surfactants.

The film coating material is selected from hydroxypropylmethyl cellulose, hydroxypropyl cellulose, ethylcellulose, polymethacrylates, polyvinyl alcohol, Opadry®, Opadry® AMB, povidone, polyvinyl acetate, gums, waxes, and mixtures thereof. The film coating material is in the range of 0.1% to 20% by weight of the composition.

Plasticizers are selected from propylene glycol, polyethylene glycol, triacetin, triethylcitrate, acetyl triethylcitrate, acetyltributylcitrate, diethyl phthalate, dibutyl phthalate, dibutylsebacate, miglyol, hydrogenated oils, or mixtures thereof.

The plasticizer in the coating layer is present in an amount from 2.5% to 30% by weight of the coating layer, preferably from 5% to 20% by weight, more preferably from 7.5% to 15% by weight, and most preferably from 9% to 11% by weight of the coating layer.

Coating layer may be deposited on the composition using a solvent selected from water, methanol, ethanol, isopropanol, acetone, dichloromethane, ethylacetate or mixtures thereof.

The composition provides immediate release of dapagliflozin when analysed in-vitro using USP II paddle apparatus, at 60 rpm, using 1000 ml of acetate buffer having pH 4.5.

In one of the embodiments, the immediate release composition releases at least about 70% of dapagliflozin within 30 minutes.

In another embodiment, the immediate release composition releases at least about 70% of dapagliflozin within 15 minutes.

In yet another embodiment, the immediate release composition releases at least about 80% of dapagliflozin within 30 minutes.

In yet another embodiment, the immediate release composition releases at least about 80% of dapagliflozin within 15 minutes.

In yet another embodiment, the immediate release composition releases at least about 85% of dapagliflozin within 30 minutes.

In yet another embodiment, the immediate release composition releases at least about 85% of dapagliflozin within 15 minutes.

In yet another embodiment, the immediate release composition releases at least about 90% of dapagliflozin within 30 minutes.

In yet another embodiment, the immediate release composition releases at least about 90% of dapagliflozin preferably within 15 minutes.

In yet another embodiment, the immediate release composition releases at least about 90% of dapagliflozin more preferably within 10 minutes.

In yet another embodiment, the immediate release composition releases at least about 90% of dapagliflozin most preferably within 5 minutes.

In one of the embodiments, the present invention provides a method for treating type II diabetes comprising administering to a mammal in need of such treatment a pharmaceutical composition comprising therapeutically effective amount of dapagliflozin.

The composition of the present invention comprising dapagliflozin, further comprises at least one additional active ingredient.

In another embodiment, the present invention provides a method for treating type II diabetes comprising administering to a mammal in need of such treatment a pharmaceutical composition comprising therapeutically effective amount of dapagliflozin in combination with additional active ingredient(s).

The additional active ingredient may be selected from an anti-diabetic agent, an anti-hyperlipidemic agent, an anti-hypertensive agent, an anti-obesity agent, or mixtures thereof.

Examples of suitable active ingredients that can be used in combination with the dapagliflozin compositions of the present invention include: biguanides (e.g. metformin, phenformin), insulin, sulfonylureas (e.g. glyburide, glimepiride, glipizide, gliclazide, chlorpropamide), thiazolidinediones (e.g. pioglitazone, rosiglitazone, troglitazone), alpha-glucosidase inhibitors (e.g. acarabose, voglibose, miglitolol), DPP4 inhibitors (e.g. sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), PPAR agonist (for e.g. saraglitazar, muraglitazar, peliglitazar, tesaglitazar), meglitinides (e.g. repaglinide, nateglinide), and or other SGLT2 inhibitors (e.g. canagliflozin, ertugliflozin).

In one aspect, dapagliflozin in the compositions of the present invention is not in the form of a solid dispersion.

In another aspect, dapagliflozin in the compositions of the present invention is not in the form of a co-crystals.

The invention further relates to a process for the preparation of the said pharmaceutical compositions.

The pharmaceutical composition of the present invention may be prepared by various methods such as wet granulation, dry granulation, or direct compression.

In one aspect, the composition of the present invention is not prepared using solid dispersion technique.

In another aspect, the composition of the present invention is not prepared using co-crystals technique.

In one of the embodiments, the process for preparing the said compositions comprise steps of:

In another embodiment of the invention, the process for preparing the said compositions comprise steps of:

In another embodiment of the invention, the process for preparing the said compositions comprise steps of:

The invention is now illustrated with non-limiting examples.

TABLE 1
Composition of dapagliflozin tablets
No. Ingredients % w/w
1 Amorphous Dapagliflozin 3.92
[d(0.1) = 7.27 μm; d(0.5) = 58.7 μm; d(0.9) = 168 μm]
2 Microcrystalline cellulose PH-101 54.91
3 SEPITRAP ™ 80 4.90
4 Anhydrous lactose 19.61
5 Low-substituted hydroxypropyl cellulose LH11 5.88
6 Microcrystalline cellulose PH-112 6.47
7 Colloidal silicon dioxide 1.37
8 Magnesium stearate 0.98
9 Opadry II yellow 1.96

The composition of example I can be prepared by any of the manufacturing techniques as disclosed below:

Manufacturing Process (Ia):

Manufacturing Process (Ib):

Manufacturing Process (Ic):

TABLE 2
Composition of dapagliflozin tablets
No. Ingredients % w/w
1 Amorphous Dapagliflozin 3.92
[d(0.1) = 3.6 μm; d(0.5) = 13 μm; d(0.9) = 27 μm]
2 SEPITRAP ™ 80 4.90
3 Anhydrous lactose 19.61
4 Crospovidone 3.92
5 Microcrystalline cellulose PH-112 63.34
6 Colloidal silicon dioxide 1.37
7 Magnesium stearate 0.98
8 Opadry II yellow 1.96

Manufacturing Process (II):

TABLE 3
Composition of dapagliflozin tablets
No. Ingredients % w/w
1 Amorphous Dapagliflozin 3.92
[d(0.1) = 5.36 μm; d(0.5) = 48.8 μm; d(0.9) = 135.04 μm]
2 Anhydrous lactose 19.61
3 Dubcare GPE810 3.92
4 Povidone K 30 3.92
5 Microcrystalline cellulose PH-112 58.44
6 Low-Substituted Hydroxypropyl Cellulose LH11 5.88
7 Colloidal silicon dioxide 1.37
8 Magnesium stearate 0.98
9 Opadry II yellow 1.96

Manufacturing Process (III):

Dissolution Profile:

The tablets prepared as per examples I to III were analysed in-vitro using USP II paddle apparatus, at 60 rpm, using 1000 ml of acetate buffer pH 4.5. The results of the dissolution testing are provided in table 4.

TABLE 4
Dissolution profile of tablets of examples I to III
Time % Cumulative Dissolution Profile
(mins.) Example Ia Example Ib Example Ie Example II Example III
5 54 68 93 33 66
10 78 95 100 48 92
15 85 96 100 57 98
20 89 96 100 62 97
30 90 96 101 72 97

It is evident from table 4 that the dapagliflozin compositions of the present invention provided the desired immediate release dissolution in 5 minutes to 30 minutes.

Stability Studies:

Tablet composition in accordance with example I, containing 10 mg of dapagliflozin, were packed in

i) HDPE container with 2 g silica gel and

ii) Alu-Alu blister.

These packs were subjected to accelerated storage conditions of 40° C./75% RH for a period of six months. The tablets were analysed for in-vitro dissolution, related substances and assay. The results of the accelerated stability testing at the end of six months are disclosed in table 5.

TABLE 5
Stability Study Data
Related Substances
In-vitro Dapagliflozin Individual
Condition (15 mins) Hydroxy Unspecified Total
dissolution Impurity Impurity Impurities Assay
Limits NLT NMT NMT NMT 90.0-
80% 0.5% 0.2% 1.0% 110.0%
Pack Initial 98% Not detected BQL Nil 100.30%
HDPE 6M 93% 0.29% 0.06% 0.35% 98.10%
Bottle 40° C./
75% RH
Alu- 6M 95% 0.36% 0.08% 0.50% 97.50%
Alu 40° C/
Blister 75% RH
BQL: Below quantification limit
NMT: Not more than
NLT: Not less than

The stability data in table 5 reveals that there is no significant change in the in-vitro dissolution, related substances and assay value, of the dapagliflozin tablets, in both the packs, on storage. The said tablets were found to be stable for a period of at least 6 months at accelerated storage conditions (40° C./75% RH) as per the recommendation of the ICH guidelines.

Bioequivalence Study:

A randomized, open label, balanced, two treatment, two period, two sequence, single dose, crossover bioequivalence study of dapagliflozin tablets 10 mg of example I was carried out in normal healthy human subjects using Farxiga® (Dapagliflozin) tablets 10 mg of AstraZeneca Pharmaceuticals LP as the reference product.

The bioequivalence studies were carried out under fasting (n=48) and fed conditions (n=48). The % ratio of the geometric mean and the 90% CI for log transformed data are presented in table 6.

TABLE 6
Bioequivalence Data
Fasting Condition Fed Condition
% Ratio 90% CI for log % Ratio 90% CI for log
Param- Test/ transformed data Test/ transformed data
eters Reference Lower Upper Reference Lower Upper
Cmax 98.6772 91.1410 106.8366 95.8633 88.6893 103.6176
AUC0-72 99.7096 96.2435 103.3005 99.7835 96.7729 102.8878
AUC0-∞ 98.1155 94.5895 101.7729 99.4335 96.4915 102.4652

Based on the results of the bioequivalence studies, the dapagliflozin tablets were found to be bioequivalent to commercially available FARXIGA® tablets.

Thus, the compositions of the present invention provides the desired immediate release of dapagliflozin and was found to be bioequivalent to FARXIGA® tablets. The composition was found to be stable under accelerated conditions (40° C./75% RH) for a period of at least 6 months.

Shah, Vaibhavi, Redasani, Vijayendrakumar, Ghongade, Anant

Patent Priority Assignee Title
Patent Priority Assignee Title
11020412, Mar 16 2017 INVENTIA HEALTHCARE LIMITED Pharmaceutical composition comprising dapagliflozin
6414126, Oct 12 1999 AstraZeneca AB C-aryl glucoside SGLT2 inhibitors and method
6515117, Oct 12 1999 AstraZeneca AB C-aryl glucoside SGLT2 inhibitors and method
6936590, Mar 13 2001 AstraZeneca AB C-aryl glucoside SGLT2 inhibitors and method
7375213, Jan 03 2003 AstraZeneca AB Methods of producing C-aryl glucoside SGLT2 inhibitors
7851502, Mar 22 2007 AstraZeneca AB Pharmaceutical formulations containing an SGLT2 inhibitor
7919598, Jun 28 2006 AstraZeneca AB Crystal structures of SGLT2 inhibitors and processes for preparing same
7932379, Jan 03 2003 AstraZeneca AB Methods of producing C-aryl glucoside SGLT2 inhibitors
8088743, Mar 22 2007 AstraZeneca AB Methods for treating obesity employing an SGLT2 inhibitor
8143289, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
8221786, Mar 22 2007 AstraZeneca AB Pharmaceutical formulations containing an SGLT2 inhibitor
8361972, Mar 22 2007 AstraZeneca AB Pharmaceutical formulations containing an SGLT2 inhibitor
8415297, Nov 12 2009 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
8450286, Mar 18 2008 AstraZeneca AB Method for treating cancers having high glucose requirements employing an SGLT2 inhibitor and compositions thereof
8501698, Jun 28 2006 AstraZeneca AB Crystal structures of SGLT2 inhibitors and processes for preparing same
8518895, May 22 2008 AstraZeneca AB Method for treating hyponatremia employing an SGLT2 inhibitor and composition containing same
8535715, Nov 13 2009 AstraZeneca AB Bilayer tablet formulations
8592371, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
8603989, May 22 2008 AstraZeneca AB Method for treating and preventing kidney stones employing an SGLT2 inhibitor and composition containing same
8685934, May 27 2009 AstraZeneca AB Methods for treating extreme insulin resistance in patients resistant to previous treatment with other anti-diabetic drugs employing an SGLT2 inhibitor and compositions thereof
8716251, Mar 22 2007 AstraZeneca AB Pharmaceutical formulations containing an SGLT2 inhibitor
8772328, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
8791077, May 22 2008 AstraZeneca AB Method for treating hyperuricemia employing an SGLT2 inhibitor and composition containing same
8853385, Jan 17 2008 MITSUBISHI TANABE PHARMA CORPORATION Combination therapy comprising SGLT inhibitors and DPP4 inhibitors
8871264, Nov 13 2009 AstraZeneca AB Immediate release tablet formulations
8951965, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
8952139, Nov 07 2011 ScinoPharm Taiwan, Ltd Process for the preparation of β-C-aryl glucosides
8999941, Oct 31 2011 ScinoPharm Taiwan, Ltd Crystalline and non-crystalline forms of SGLT2 inhibitors
9006188, Apr 29 2013 Mapi Pharma Ltd. Co-crystals of dapagliflozin
9050258, Nov 13 2009 AstraZeneca AB Bilayer tablet formulations
9198925, Mar 22 2007 AstraZeneca AB Pharmaceutical formulations containing an SGLT2 inhibitor
9278976, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment of diabetes
9394328, Nov 28 2011 Sandoz AG Crystalline dapagliflozin hydrate
9403790, Nov 13 2008 Merck Sharp & Dohme LLC Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
9453039, Jun 28 2006 AstraZeneca AB Crystal structures of SGLT2 inhibitors and processes for preparing same
9480755, Jun 03 2011 ratiopharm GmbH Pharmaceutical composition comprising dapagliflozin and cyclodextrin
9550747, Feb 10 2014 JIANGSU HANSOH PHARMACEUTICAL GROUP CO , LTD Dapagliflozin crystalline form and preparation method thereof
9616028, Nov 13 2009 AstraZeneca AB Bilayer tablet formulations
9676741, Jun 23 2014 SUN PHARMACEUTICAL INDUSTRIES LIMITED Co-crystal of dapagliflozin with citric acid
9834533, Feb 19 2016 ScinoPharm Taiwan, Ltd Process for preparing SGLT2 inhibitors and intermediates thereof
9845303, Oct 19 2015 ZYDUS LIFESCIENCES LIMITED Process for the preparation of dapagliflozin
20100167988,
20110003757,
20110098240,
20110201795,
20120041069,
20130096076,
20130237487,
20140243517,
20150307540,
20160000816,
20160214953,
20160256433,
20170056365,
20180127391,
20190038654,
20190110994,
20190169152,
20190175543,
EP2529742,
WO2008002824,
WO2008116179,
WO2015011113,
WO2015104658,
WO2015128853,
WO2015166473,
WO2015198227,
WO2016098016,
WO2016161995,
WO2017118945,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 22 2019SHAH, VAIBHAVIINVENTIA HEALTHCARE LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0633830480 pdf
Jul 22 2019REDASANI, VIJAYENDRAKUMARINVENTIA HEALTHCARE LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0633830480 pdf
Jul 22 2019GHONGADE, ANANTINVENTIA HEALTHCARE LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0633830480 pdf
May 14 2021INVENTIA HEALTHCARE LIMITED(assignment on the face of the patent)
Jul 16 2023INVENTIA HEALTHCARE LIMITEDINVENTIA HEALTHCARE LIMITEDCHANGE OF ADDRESS0647460415 pdf
Date Maintenance Fee Events
May 14 2021BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
May 30 20264 years fee payment window open
Nov 30 20266 months grace period start (w surcharge)
May 30 2027patent expiry (for year 4)
May 30 20292 years to revive unintentionally abandoned end. (for year 4)
May 30 20308 years fee payment window open
Nov 30 20306 months grace period start (w surcharge)
May 30 2031patent expiry (for year 8)
May 30 20332 years to revive unintentionally abandoned end. (for year 8)
May 30 203412 years fee payment window open
Nov 30 20346 months grace period start (w surcharge)
May 30 2035patent expiry (for year 12)
May 30 20372 years to revive unintentionally abandoned end. (for year 12)