An estimation method suitable for a receiver and includes the following steps: calculating a relative signal-to-noise ratio, and determining whether the relative signal-to-noise ratio is higher than, lower than or within a threshold range; in response to determining that the relative signal-to-noise ratio is higher than the threshold range, estimating the signal quality indicator as a first preset value, wherein the first preset value represents a best signal quality; in response to determining that the relative signal-to-noise ratio is higher than the threshold range, estimating the signal quality indicator as a first preset value, wherein the first preset value represents a best signal quality; in response to determining that the relative signal-to-noise ratio is within the threshold range, estimating the signal quality indicator as an output value of a function according to a bit error rate, wherein an input value of the function is the relative signal-to-noise ratio.
|
1. An estimation method for a signal quality indicator of the Advanced Television Systems Committee (ATSC) standard, suitable for a receiver, and the estimation method comprising:
calculating a relative signal-to-noise ratio, and determining whether the relative signal-to-noise ratio is higher than, lower than or within a threshold range;
in response to determining that the relative signal-to-noise ratio is higher than the threshold range, estimating the signal quality indicator as a first preset value, wherein the first preset value represents a best signal quality;
in response to determining that the relative signal-to-noise ratio is lower than the threshold range, estimating the signal quality indicator as a second preset value, wherein the second preset value represents a worst signal quality; and
in response to determining that the relative signal-to-noise ratio is within the threshold range, estimating the signal quality indicator as an output value of a function according to a bit error rate, wherein an input value of the function is the relative signal-to-noise ratio.
2. The estimation method according to
3. The estimation method according to
4. The estimation method according to
5. The estimation method according to
6. The estimation method according to
determining whether the bit error rate is smaller than the first reference bit error rate, between the first reference bit error rate and the second reference bit error rate, or greater than the second reference bit error rate;
in response to determining that the bit error rate is smaller than the first reference bit error rate, estimating the signal quality indicator as an output value of a first linear function, wherein the first linear function is ƒ1(x)=x×[(d1−d2)/2α]+[(d1−d2)/2], and d1 and d2 are the first preset value and the second preset value, respectively;
in response to determining that the bit error rate is between the first reference bit error rate and the second reference bit error rate, estimating the signal quality indicator as the output value of a second linear function, wherein the second linear function is ƒ2(x)=x×(β/α)+β, where β is a positive number greater than 0 and less than (d1−d2)/2; and
in response to determining that the bit error rate is greater than the second reference bit error rate, estimating the signal quality indicator as an output value of a constant function, the constant function being ƒ3(x)=d2.
|
This application claims the benefit of priority to Taiwan Patent Application No. 110130983, filed on Aug. 23, 2021. The entire content of the above identified application is incorporated herein by reference.
Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The present disclosure relates to an estimation method for a signal quality indicator (SQI) of the Advanced Television Systems Committee (ATSC) standard, and more particularly to an estimation method that uses a signal-to-noise ratio (SNR) to calculate the signal quality indicator of the ATSC standard.
The ATSC standard is a mainstream digital TV standard in North America, with latest versions thereof having evolved from ATSC 1.0 to ATSC 3.0. However, a method for representing signal quality in ATSC 3.0 has not yet been defined, so that the quality of the signal is difficult to be quantized.
In response to the above-referenced technical inadequacies, the present disclosure provides an estimation method for a signal quality indicator of the ATSC standard.
In one aspect, the present disclosure provides an estimation method suitable for a receiver, and the estimation method includes the following steps: calculating a relative signal-to-noise ratio, and determining whether the relative signal-to-noise ratio is higher than, lower than or within a threshold range; in response to determining that the relative signal-to-noise ratio is higher than the threshold range, estimating the signal quality indicator as a first preset value, wherein the first preset value represents a best signal quality; in response to determining that the relative signal-to-noise ratio is higher than the threshold range, estimating the signal quality indicator as a first preset value, wherein the first preset value represents a best signal quality; in response to the relative signal-to-noise ratio is within the threshold range, estimating the signal quality indicator as an output value of a function according to a bit error rate, wherein an input value of the function is the relative signal-to-noise ratio.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The described embodiments may be better understood by reference to the following description and the accompanying drawings, in which:
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Referring to
On the other hand, since the ATSC 3.0 utilizes error correction codes to encode the data, the receiver can correct errors of the data during a decoding process, and can also calculate the bit error rate after demodulation. It should be noted that, the better the transmission quality of the channel, the higher the signal-to-noise ratio and the lower the bit error rate. On the contrary, the poorer the transmission quality of the channel, the lower the signal-to-noise ratio and the higher the bit error rate. Furthermore, channel conditions required for different modulation parameters and different error correction code parameters are different. For example, the higher the modulation mode, the better the channel conditions that are required will be. Therefore, the receiver defines a reference signal-to-noise ratio and a relative signal-to-noise ratio threshold according to modulation parameters and error-correction code parameters that are used by the transmitter to transmit the signal.
In one embodiment of the present disclosure, the reference SNR is defined to be 2.5 decibels (dB) to 3 dB higher than the minimum SNR that the receiver can withstand when the bit error rate is equal to 0, and the relative SNR threshold is usually 3. However, for a higher modulation mode (e.g., 4096 QAM), the RSNR threshold can be slightly less than 3 dB, and for a lower modulation mode (e.g., QPSK), the RSNR threshold can be slightly greater than 3 dB. The present disclosure does not limit the specific values of the reference SNR and the relative SNR thresholds. In addition, in one embodiment of the present disclosure, the relative signal-to-noise ratio (SNRrel) is defined as a difference obtained by subtracting the reference signal-to-noise ratio from the actual signal-to-noise ratio of the receiver. Therefore, as shown in
In other words, the threshold range ranges from α to −α, and α is the relative signal-to-noise ratio threshold defined by the receiver according to the modulation parameters. Next, in response to determining that the relative signal-to-noise ratio is higher than the threshold range (i.e., SNRrel>α), the receiver proceeds to step S130 to estimate the signal quality indicator as a first preset value. The first preset value represents a best signal quality, meaning that a transmission quality of a current channel is very good, and that the signal-to-noise ratio is very high. In addition, in response to determining that the relative signal-to-noise ratio is lower than the threshold range (i.e., SNRrel<−α), the receiver proceeds to step S140 to estimate the signal quality indicator as a second preset value. The second preset value represents a worst signal quality, meaning that the transmission quality of the current channel is very poor, and that the signal-to-noise ratio is very low. For the ease of illustration in the following description, as shown in
On the other hand, in response to determining that the relative signal-to-noise ratio is within the threshold range (i.e., −α≤SNRrel≤α), the receiver proceeds to step S150 to estimate the signal quality indicator as an output value of a function according to the calculated bit error rate (BER), and an input value of the function is the relative signal-to-noise ratio. It should be noted that since the bit error rate in the threshold range changes drastically, as shown in
In response to determining that the bit error rate is lower than the first reference bit error rate, i.e., BER<BERA, the receiver executes step S320 to estimate the signal quality indicator as an output value of a first linear function, and the first linear function is ƒ1(x)=x×[(d1−d2)/2α]+[(d1−d2)/2]. It should be noted that d1 and d2 are the first preset value and the second preset value, respectively, but the present disclosure does not limit the specific values of the first preset value and the second preset value. That is, the receiver can substitute the relative signal-to-noise ratio as x into the first linear function to obtain ƒ1(x) taken as the signal quality indicator of the ATSC standard, and in a case of this embodiment where the first preset value and the second preset values are exemplified as being 100 and 0, respectively, the first linear function can be simplified to ƒ1(x)=x×(50/α)+50, as is represented by a dotted line in
In addition, in response to determining that the calculated bit error rate is between the first reference bit error rate and the second reference bit error rate, that is, BERA≤BER≤BERB, the receiver executes step S330 to estimate the signal quality indicator as an output value of a second linear function, and the second linear function is ƒ2(x)=x×(β/α)+β, that is, a one-point chain line in
On the other hand, in response to determining that the calculated bit error rate is greater than the second reference bit error rate, that is, BER>BERB, the receiver executes step S340 to estimate the signal quality indicator as an output value of a constant function, and the constant function is ƒ3(x)=d2. It should be noted that, similar to the case where the relative signal-to-noise ratio is lower than the threshold range, the bit error rate greater than the second reference bit error rate can also represent that the transmission quality of the current channel is very poor. That is to say, the receiver also estimates the signal quality indicator of the ATSC standard as the second preset value to represent the worst signal quality. Further, in a case where the second preset value is 0 in the present disclosure, the constant function can be simplified to ƒ3(x)=0 (or referred to as a zero function), as is represented by a two-point chain line in
Finally, reference is made to
In conclusion, in the estimation method for the signal quality indicator of the ATSC standard provided by the present disclosure, the above-referenced technical inadequacies that the signal quality cannot be expressed can be overcome, making it easier for the transmission quality of the current channel to be identified, such as to allow the receiver and the transmitter are able to make appropriate transmission adjustments.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7646805, | Apr 29 2005 | British Telecommunications plc | Digital broadcasting receiving terminal with reception quality indicator |
8134598, | Mar 06 2006 | KDDI Corporation | Picture quality monitoring apparatus |
20080074497, | |||
20130038739, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 18 2022 | HUANG, WEN-YU | Realtek Semiconductor Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060860 | /0470 | |
Aug 18 2022 | LEE, HSIN-PEI | Realtek Semiconductor Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060860 | /0470 | |
Aug 22 2022 | Realtek Semiconductor Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 22 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
May 30 2026 | 4 years fee payment window open |
Nov 30 2026 | 6 months grace period start (w surcharge) |
May 30 2027 | patent expiry (for year 4) |
May 30 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 30 2030 | 8 years fee payment window open |
Nov 30 2030 | 6 months grace period start (w surcharge) |
May 30 2031 | patent expiry (for year 8) |
May 30 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 30 2034 | 12 years fee payment window open |
Nov 30 2034 | 6 months grace period start (w surcharge) |
May 30 2035 | patent expiry (for year 12) |
May 30 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |