A cargo restraint assembly may comprise a first bracket slidingly coupled to a housing. A retention block may be pivotably coupled to the first bracket. A second bracket may be slidingly coupled to the housing. The first bracket may be coupled to the second bracket via a spring. The first bracket and the second bracket may be configured to attenuate in response to a cargo deck bending during transportation of cargo in an aircraft.
|
18. A method of attenuating a cargo retention assembly, the method comprising:
translating a first guide block and a second guide block in a lateral direction away from each other via a spring in response to a cargo deck bending; and
translating the first guide block and the second guide block towards each other in response to the cargo deck no longer bending, wherein the first guide block and the second guide block are slidingly coupled to a housing via a first bracket and a second bracket, and wherein the spring is disposed between the first bracket and the second bracket.
9. A cargo loading system, comprising:
a cargo deck;
a first tray extending longitudinally along the cargo deck;
a second tray disposed laterally adjacent to the first tray, the second tray extending longitudinally along the cargo deck;
a cargo restraint assembly disposed between the first tray and the second tray, the cargo restraint assembly coupled to the cargo deck, the cargo restraint assembly comprising:
a housing;
a first bracket slidingly coupled to the housing;
a second bracket slidingly coupled to the housing;
a spring extending between the first bracket and the second bracket;
a first guide block pivotably coupled to the first bracket; and
a second guide block pivotably coupled to the second bracket.
1. A cargo restraint assembly comprising:
a housing having a first end wall, a second end wall, a first base, and a second base, the first end wall extending from the first base to the second base, the second end wall extending from the first base and the second base, the first end wall disposed opposite the second end wall;
a first bracket disposed between the first end wall and the second end wall, the first bracket slidably coupled to the first end wall and the second end wall, the first bracket comprising a first flange and a second flange, the first flange disposed adjacent to the first end wall, the second flange disposed adjacent to the second end wall; and
a first guide block pivotably coupled to the first bracket, the first guide block comprising a lateral retention portion, a vertical retention portion, a first wing portion, and a second wing portion, the lateral retention portion extending from the first flange to the second flange, the vertical retention portion extending from the lateral retention portion in a lateral direction, the first wing portion extending in a longitudinal direction away from the lateral retention portion past the first end wall, and the second wing portion extending in a negative longitudinal direction away from the lateral retention portion past the second end wall.
2. The cargo restraint assembly of
3. The cargo restraint assembly of
4. The cargo restraint assembly of
5. The cargo restraint assembly of
6. The cargo restraint assembly of
7. The cargo restraint assembly of
8. The cargo restraint assembly of
10. The cargo loading system of
11. The cargo loading system of
12. The cargo loading system of
13. The cargo loading system of
14. The cargo loading system of
15. The cargo loading system of
16. The cargo loading system of
17. The cargo loading system of
|
The present disclosure relates generally to cargo handling systems, and more specifically, to a cargo restraint assembly, which can be mounted to along a centerline of adjacent cargo systems.
Cargo handling systems, such as those used by aircraft for transport of containerized cargo or pallets, also referred to as unit load devices (ULDs), typically include longitudinal trays containing transport rollers positioned along a cargo deck floor to facilitate movement of the ULDs relative to the deck floor. The cargo handling systems may include cargo guides configured to provide longitudinal guidance and/or lateral restraint of ULDs through the cargo deck. The cargo handling systems may include cargo restraints configured to restrain ULDs in various combinations of the longitudinal, lateral, and vertical directions during transport.
A cargo restraint assembly is disclosed herein. The cargo restraint assembly may comprise: a housing having a first end wall, a second end wall, a first base, and a second base, the first end wall extending from the first base to the second base, the second end wall extending from the first base to the second base, the first end wall disposed opposite the second end wall; a first bracket disposed between the first end wall and the second end wall, the first bracket slidably coupled to the first end wall and the second end wall; and a first guide block pivotably coupled to the first bracket.
In various embodiments, the cargo restraint assembly may further comprise a second bracket disposed between the first end wall and the second end wall, the second bracket slidably coupled to the first end wall and the second end wall. The cargo restraint assembly may further comprise a second guide block pivotably coupled to the second bracket. The cargo restraint assembly may further comprise a spring disposed between the first bracket and the second bracket. The first bracket and the second bracket may each comprise an H-shape. The cargo restraint assembly may further comprise a first shaft and a first pin, wherein the first bracket comprises a first flange and a second flange, wherein the first flange is disposed adjacent to the first end wall, wherein the second flange is disposed adjacent to the second end wall, wherein the first shaft extends from a first slot in the first end wall through the first flange through the second flange and through a second slot in the second end wall, and wherein the first pin extends from a third slot in the first end wall through the first flange. The first guide block may comprise a lateral retention portion, a vertical retention portion, a first wing portion and a second wing portion, the lateral retention portion extending from the first flange to the second flange, the vertical retention portion extending from the lateral retention portion in a lateral direction, the first wing portion extending in a longitudinal direction away from the lateral retention portion past the first end wall, and the second wing portion extending in a negative longitudinal direction away from the lateral retention portion past the second end wall. The cargo restraint assembly may further comprise a first shaft extending from a first flange of the first bracket to a second flange of the first bracket, wherein the first guide block is configured to rotate about the first shaft. The cargo restraint assembly may further comprise a torsion spring coupled to the first shaft and the first guide block.
A cargo loading system is disclosed herein. The cargo loading system may comprise: a cargo deck; a first tray extending longitudinally along the cargo deck; a second tray disposed laterally adjacent to the first tray, the second tray extending longitudinally along the cargo deck; a cargo restraint assembly disposed between the first tray and the second tray, the cargo restraint assembly coupled to the cargo deck, the cargo restraint assembly comprising: a housing; a first bracket slidingly coupled to the housing; a second bracket slidingly coupled to the housing; a spring extending between the first bracket and the second bracket; a first guide block pivotably coupled to the first bracket; and a second guide block pivotably coupled to the second bracket.
In various embodiments, the housing may comprise a first end wall, a second end wall, a first base, and a second base, the first end wall extending from the first base to the second base, the second end wall extending from the first base to the second base, the first end wall disposed opposite the second end wall, wherein the first base and the second base are coupled to the cargo deck. The first end wall and the second end wall may comprise a plurality of slots, and the first bracket and the second bracket may be slidingly coupled to the plurality of slots. The cargo restraint assembly may further comprise a first shaft, a first pin, and a second pin, wherein the first bracket and the second bracket each comprise a first flange and a second flange, wherein the first flange is disposed adjacent to the first end wall, wherein the second flange disposed adjacent to the second end wall, wherein the first shaft extends from a first slot in the plurality of slots through the first flange and through the second flange into a first slot in the plurality of slots in the second end wall, wherein a first pin extends from a second slot in the first end wall through the first flange, and a second pin extends from the second flange through a second slot in the plurality of slots in the second end wall. The first guide block and the second guide block may each comprise a lateral retention portion, a vertical retention portion, a first wing portion and a second wing portion, the lateral retention portion extending from the first flange to the second flange, the vertical retention portion extending from the lateral retention portion in a lateral direction, the first wing portion extending in a longitudinal direction away from the lateral retention portion past the first end wall, and the second wing portion extending in a negative longitudinal direction away from the lateral retention portion past the second end wall. The first bracket, the second bracket, the first guide block and the second guide block may be configured to attenuate in response to the cargo deck bending. The first bracket and the second bracket may each comprise an H-shape. The cargo loading system may further comprising a first shaft extending from a first flange of the first bracket to a second flange of the second bracket, wherein the first guide block is configured to rotate about the first shaft. The cargo loading system may further comprising a torsion spring coupled to the first shaft and the first guide block.
A method of attenuating a cargo retention assembly is disclosed herein. The method may comprise: translating a first guide block and a second guide block in a lateral direction away from each other via a spring in response to a cargo deck bending; and translating the first guide block and the second guide block towards each other in response to the cargo deck no longer bending.
In various embodiments, the first guide block and the second guide block may be slidingly coupled to a housing via a first bracket and a second bracket, wherein the spring is disposed between the first bracket and the second bracket.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures.
The detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected, or the like may include permanent, removable, temporary, partial, full, and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
Throughout the present disclosure, like reference numbers denote like elements. Accordingly, elements with like element numbering may be shown in the figures but may not necessarily be repeated herein for the sake of clarity.
As used herein, “aft” refers to the direction associated with the tail (i.e., the back end) of an aircraft, or generally, to the direction of exhaust of a gas turbine engine. As used herein, “forward” refers to the direction associated with the nose (i.e., the front end) of an aircraft, or generally, to the direction of flight or motion.
Cargo handling systems, as disclosed herein, may comprise cargo restraint assemblies configured to guide and restrain the movement of ULDs or other cargo across the floor or “cargo deck” of an aircraft. In accordance with various embodiments, the cargo restraint assemblies may be coupled to a cargo deck and disposed between a first row of a cargo system and a second row of a cargo system. In this regard, the cargo restraint assembly may restrain a first cargo in the first row and a second cargo in the second row in the vertical and lateral directions. The cargo restraint assembly may comprise a first guide block and a second guide block. The first guide block may comprise a width greater than a gap between tabs of a respective cargo edge/lip. Similarly, the second guide block may comprise a width greater than a gap between tabs of a respective cargo edge/lip. In this regard, the first guide block and the second guide block may restrain a first cargo and a second cargo vertically and laterally regardless of where the tabs of the respective cargo aligns longitudinally. The cargo restraint assembly may be configured for attenuation during transport of the first cargo and second cargo. For example, a cargo deck may bend during operation of an aircraft and the first guide block and the second guide block may extend away from each other in response and maintain contact with the tabs of the corresponding cargo.
With reference to
Referring now to
Cargo handling system 100 may include a cargo restraint assembly 200. The cargo restraint assembly 200 may be disposed between the first cargo row 102 and the second cargo row 104. In various embodiments, cargo restraint assembly 200 may be mounted to the cargo deck 18, a roller tray 120, or the like. In various embodiments, the cargo 16 may comprise a plurality of tabs 192 disposed around a perimeter of cargo 16. In various embodiments, a width W1 of the cargo restraint assembly 200 may be greater than a gap G1 between adjacent tabs in the plurality of tabs 192 from cargo 16. In this regard, if a cargo restraint assembly 200 ends up between two adjacent tabs in the plurality of tabs 192, the cargo restraint assembly 200 may maintain restriction of vertical and lateral movement of the cargo 16 during transport. To handle larger cargo, the cargo restraint assembly 200 may be positioned in stowed position. In the stowed position, a corresponding cargo may translate over roller trays 120 without contacting the cargo restraint assembly 200.
Referring now to
In various embodiments, the first bracket 240 and the second bracket 250 may be disposed between first end wall 212 and second end wall 214. Each bracket may comprise a first flange, a second flange, and a wall extending from the first flange to the second flange. For example, the first bracket 240 may comprise a first flange 241, a second flange 242, and a wall 243 extending between the first flange 241 and the second flange 242. The first flange 241 may be disposed adjacent to the first end wall 212 of the housing 210. The second flange 242 may be disposed adjacent to the second end wall 214 of the housing 210. The first flange 241 and the second flange 242 may be slidably coupled to the first end wall 212 and the second end wall 214 of the housing 210. For example, a first end 271 of the first shaft 270 and a first pin 272 may engage respective slots in the plurality of slots 213 in the first end wall 212 of the housing 210. On the opposite side, a second end (not visible) of the first shaft 270 and a second pin 273 may engage respective slots in the plurality of slots 213 in the second end wall 214 of the housing 210. Similarly, the second bracket 250 may comprise a first flange 251, a second flange 252, and a wall 253 extending between the first flange 251 and the second flange 252. The first flange 251 may be disposed adjacent to the first end wall 212 of the housing 210. The second flange 252 may be disposed adjacent to the second end wall 214 of the housing 210. The first flange 251 and the second flange 252 may be slidably coupled to the first end wall 212 and the second end wall 214 of the housing 210. For example, a first end 281 of the first shaft 280 and a first pin 282 may engage a respective slot in the plurality of slots 213 in the first end wall 212 of the housing 210. On the opposite side, a second end (not visible) of the first shaft 270 and a second pin (not visible) may engage respective slots in the plurality of slots 213 in the second end wall 214 of the housing 210.
In various embodiments, the first guide block 220 may comprise a lateral retention portion 223, a vertical retention portion 224, a first flange 221, and a second flange 222. Similarly, the second guide block 230 may comprise a lateral retention portion 233, a vertical retention portion 234, a first flange 231, and a second flange 232. The first guide block 220 may be pivotably coupled to the first bracket 240, and the second guide block 230 may be pivotably coupled to the second bracket 250. For example, the first flange 221 of the first guide block 220 may be coupled to the first flange 241 of the first bracket 240 via the shaft 270 that extends through the respective holes in each, and the second flange 222 of the first guide block 220 may be coupled to the second flange 242 of the first bracket 240 via the shaft 270 that extends through respective holes in each. Similarly, the first flange 231 of the second guide block 230 may be coupled to the first flange 251 of the second bracket 250 via the shaft 280 that extends through respective holes in each, and the second flange 232 of the second guide block 230 may be coupled to the second flange 252 of the second bracket 250 via the shaft 280 that extends through respective holes in each.
In various embodiments, the cargo restraint assembly 200 may further comprise a first shaft 270 and a second shaft 280. The first shaft 270 may slidingly couple the first bracket 240 and the first guide block 220 to the housing 210. For example, the first shaft 270 may extend through a respective slot in the plurality of slots 213 on the first end wall 212 through the first flange 241 of the first bracket 240 through the first flange 221 of the first guide block 220 through the second flange 222 of the first guide block 220 through the the second flange 242 of the first bracket 240 to the a respective slot in the plurality of slots 213 on the second end wall 214. Similarly, the second shaft 280 may extend from a respective slot in the plurality of slots 213 on the first end wall 212 through the first flange 251 of the second bracket 250 through the first flange 231 of the second guide block 230 through the second flange 232 of the second guide block 230 through the second flange 252 of the second bracket 250 to a respective slot in the plurality of slots 213 on the second end wall 214.
In various embodiments, the cargo restraint assembly 200 may further comprise a first torsional spring 292 and a second torsional spring 294. The first torsional spring 292 may be operably coupled to the first guide block 220 and the second torsional spring 294 may be operably coupled to the second guide block 230. For example, the first torsional spring 292 may be coupled to the first shaft 270 and have its functional ends in contact with the first guide block 220 and first bracket 240, and the second torsional spring 294 may be coupled to the second shaft 280 and have its functional ends in contact with the second guide block 230 and the second bracket 250. In this regard, the first torsional spring 292 may bias the first guide block 220 in a vertical direction to an extracted state by torsionally pushing off of the first bracket 240, and the second torsional spring 294 may bias the second guide block 230 in a vertical direction to an extracted state by torsionally pushing off of the second bracket 250. As such, the cargo restraint assembly 200 may further comprise retaining mechanisms to retain the first guide block 220 and the second guide block 230 in a stowed position, such as a releasable tab, or the like. Thus, a default position for the cargo restraint assembly 200 may be an extracted state, as described further herein.
In various embodiments, the first spring 260 may be disposed between, and coupled to, the wall 243 of the first bracket 240 and the wall 253 of the second bracket 250. The first spring 260 may be configured to allow the first bracket 240, the second bracket 250, the first guide block 220, and the second guide block 230 to attenuate in the housing 210, via the plurality of slots 213, during transportation of cargo 16 from
Referring now to
Referring now to
In various embodiments, the vertical retention portion 224 of the first guide block 220 and the vertical retention portion 234 of the second guide block 230 may each comprise a lip. For example, the first guide block 220 and the second guide block 230 may each define a shoulder at the connection of the vertical retention portion (e.g., vertical retention portions 224, 234 and the lateral retention portions 223, 233).
Referring now to
Referring now to
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” It is to be understood that unless specifically stated otherwise, references to “a,” “an,” and/or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. All ranges and ratio limits disclosed herein may be combined.
Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the figures to help to improve understanding of embodiments of the present disclosure.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “one embodiment”, “an embodiment”, “various embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10556683, | Aug 25 2017 | GOODRICH CORPORATION | Intelligent lock for cargo handling system |
3778012, | |||
4457649, | Feb 28 1981 | Vereinigte Flugtechnische Werke GmbH | Cargo restrainer with spring-bias latch |
4929133, | Apr 14 1989 | DHL EXPRESS USA , INC | Loading pallet for aircraft cargo containers |
5011348, | Dec 15 1989 | The Boeing Company; BOEING COMPANY, THE, A CORP OF DE | Automatically retractable centerline restraint |
5316242, | Apr 01 1992 | DaimlerChrysler Aerospace Airbus GmbH | Apparatus for guiding different size pallets, especially on the loading floor of an aircraft |
5564654, | Oct 13 1994 | Aircraft cargo restraint apparatus | |
5871317, | Nov 30 1995 | Telair International GmbH | Cargo latch |
6270300, | Apr 16 1998 | Telair International GmbH | Cargo latch |
6450744, | Feb 23 2001 | Boeing Company, the | Overrideable vertical restraint for cargo handling systems |
6488457, | Mar 05 2001 | The Boeing Company | Latching system for a palletized system of an aircraft |
7731460, | Oct 30 2006 | GOODRICH CORPORATION | Self-adjusting ULD loading guide and restraint |
8221038, | Feb 26 2010 | Angra International, LLC. | Overridable side lock (stabber) pallet type load restraint |
8690103, | Jan 19 2010 | GOODRICH CORPORATION | Method and apparatus for converting aircraft from commercial to military freight service |
9079665, | Jun 18 2012 | GOODRICH CORPORATION | Sequential latch for palletized cargo |
20190248269, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 04 2020 | AXLINE, NICHOLAS T | GOODRICH CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052026 | /0733 | |
Mar 05 2020 | GOODRICH CORPORATION | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 05 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 13 2026 | 4 years fee payment window open |
Dec 13 2026 | 6 months grace period start (w surcharge) |
Jun 13 2027 | patent expiry (for year 4) |
Jun 13 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 13 2030 | 8 years fee payment window open |
Dec 13 2030 | 6 months grace period start (w surcharge) |
Jun 13 2031 | patent expiry (for year 8) |
Jun 13 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 13 2034 | 12 years fee payment window open |
Dec 13 2034 | 6 months grace period start (w surcharge) |
Jun 13 2035 | patent expiry (for year 12) |
Jun 13 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |