A valve stem for use in a fluid flow control valve having a valve body configured to receive a portion of the valve stem and to enable the valve stem to selectively rotate within the valve body between a fully-open position, where fluid is permitted to flow through the fluid flow control valve, and a fully-closed position, where fluid is prevented from flowing through the fluid flow control valve. The valve stem includes an elongate valve stem arm having a first end and a second end and a valve stem head integrally formed with and fixedly attached to the second end of the valve stem arm. The valve stem head includes a fluid inlet formed in the valve stem head, and a fluid outlet formed in the valve stem head, and a fluid passage that directs fluid from the fluid inlet, through the valve stem, and out of the fluid outlet.
|
14. A bi-direction fluid flow metering valve comprising:
a valve body having:
a first fluid inlet;
a first fluid outlet;
a valve stem receiver; and
a first fluid passage that directs fluid from the first fluid inlet, through the valve stem receiver, and then out of the first fluid outlet;
a valve stem having:
an elongate valve stem arm having a first end and a second end;
a valve stem head integrally formed with and fixedly attached to the second end of the valve stem arm, the valve stem head sized and configured for rotatable insertion within the valve stem receiver of the valve body and the valve stem head having:
a peripheral wall;
a second fluid inlet and a second fluid outlet that are each formed in the valve stem head;
a second fluid passage that directs fluid from the second fluid inlet and then out of the second fluid out;
an elongate canal formed by opposing walls formed in the peripheral wall and extending circumferentially around a portion of the valve stem head such that a first end of the canal is located at a first circumferential location of the valve stem head and a second end of the canal is located at a second circumferential location of the valve stem head, wherein the second fluid inlet is disposed in the canal; and
wherein the canal has a pointed oval shape in a first orientation and a crescent shape in a second orientation,
wherein, when the valve stem is located within the valve stem receiver, outer surface portions of the peripheral wall that are located adjacent the opposing walls of the canal are configured to be located adjacent the first fluid inlet of the valve body and to provide a variable restriction to fluid flowing from the first inlet of the valve body into canal based on a rotational position of the valve stem relative to the valve body in order modulate fluid flow through the flow metering valve, and
wherein the valve stem is configured to rotate within the valve body:
counterclockwise from a fully-open position, where fluid is permitted to flow through the fluid flow metering valve, to a first fully-closed position, where fluid is prevented from flowing through the fluid flow metering valve; and
clockwise from the fully-open position to a second fully-closed position.
1. A valve stem for use in a fluid flow control valve having a valve body configured to receive a portion of the valve stem and to enable the valve stem to selectively rotate within the valve body between a fully-open position, where fluid is permitted to flow through the fluid flow control valve, and a fully-closed position, where fluid is prevented from flowing through the fluid flow control valve, the valve stem comprising:
an elongate valve stem arm having a first end and a second end; and
a valve stem head integrally formed with and fixedly attached to the second end of the valve stem arm, the valve stem head having:
a continuous peripheral wall having opposing front and back sides;
a front face located on the front side of the peripheral wall, wherein the second end of the valve stem arm is fixedly attached to the front face of the valve stem head;
a back face located opposite the front face on the back side of the peripheral wall;
a second fluid inlet formed in the valve stem head;
a second fluid outlet formed in the valve stem head;
a fluid passage that carries fluid into the valve stem via the second fluid inlet and then out of the valve stem via second fluid outlet; and
an elongate canal formed by opposing walls in the peripheral wall and extending circumferentially around a portion of the valve stem head such that a first end of the canal is located at a first circumferential location of the valve stem head and a second end of the canal is located at a second circumferential location of the valve stem head,
wherein:
the second fluid inlet is disposed in the canal;
the second fluid inlet is formed in the peripheral wall of the valve stem head;
the second fluid outlet is formed in the back face of the valve stem head;
outer surface portions of the peripheral wall that are located adjacent the opposing walls of the canal are configured to restrict fluid flow from the valve body into the valve stem in order modulate fluid flow through the fluid flow control valve; and
the canal forms a crescent shape when viewed from one of the opposing front and back sides of the peripheral wall and opposing ends of the crescent shape are tapered such that a widest portion of the crescent shape of the canal is located between the first and second ends of the canal.
3. An oil metering valve that includes the valve stem of
a valve body having:
a first fluid inlet;
a first fluid outlet;
a valve stem receiver configured to receive the valve stem head of the valve stem;
a fluid passage that carries fluid into the valve body via the first fluid inlet, through the valve stem receiver, and then out of the valve body via first fluid outlet;
a bearing for enabling the valve stem head be rotated with respect to the valve body; and
a cap having an aperture, wherein the valve stem is sized and configured such that the valve stem arm may be inserted through the aperture of the cap and the cap may be fixedly attached to the valve body,
wherein, when the valve stem is located within the valve stem receiver, the outer surface portions of the peripheral wall are configured to be located adjacent the first fluid inlet of the valve body and to provide a variable restriction to fluid flowing from the valve body into the valve stem based on the rotational position of the valve stem relative to the valve body in order modulate fluid flow through the fluid flow control valve.
4. The valve stem of
the canal is formed by a pair of opposing walls that each have an inner end and an outer end,
the inner ends of the opposing walls meet at an intersection point and form a base of the canal, and
each of the opposing walls is angled outwards from one another and from the intersection point and towards one of opposing front and back sides of the peripheral wall.
5. The valve stem of
6. The valve stem of
a first portion located between the center of the canal and the first end of the canal that has a first canal shape; and
a second portion located between the center of the canal and the second end of the canal that has a second canal shape.
7. The valve stem of
8. The valve stem of
9. The oil metering valve of
10. The oil metering valve of
a continuous peripheral wall having opposing front and back sides;
a front face located on the front side of the peripheral wall; and
a back face located opposite the front face on the back side of the peripheral wall.
11. The oil metering valve of
12. The oil metering valve of
13. The oil metering valve of
15. The bi-direction fluid flow metering valve of
the opposing walls of the canal each have an inner end and an outer end;
the inner ends of the opposing walls meet at an intersection point and form a base of the canal;
the opposing walls are angled outwards from one another and from the intersection point and towards opposing front and back sides of the peripheral wall; and
the outer ends of the opposing walls are spaced apart by a distance D that continuously changes between the first and second ends of the canal.
|
This application claims the benefit of U.S. Provisional Application No. 63/234,955 filed Aug. 19, 2021, and entitled “Oil Valve,” the content of which is incorporated herein by reference in its entirety.
The present disclosure relates to fluid control valves. More particularly, the present disclosure relates to a modulating liquid control valve that may be used in combustion and non-combustion applications.
Fluid flow control valves are often used in combustion applications and non-combustion applications in order to control the flow of a fluid from one place to another place. One example of a combustion application where fluid flow control valves are often used is in burner assemblies, such as a burner assembly used in connection with the production of asphalt. In a typical asphalt production plant, a burner assembly might be used for drying and heating aggregate materials and for heating one or more asphalt sources, which may then be used in creating a final asphalt mix. In the asphalt production process, as with most processes that utilize a process burner, carefully controlling the flame characteristics (e.g., temperature, flame shape, emissions, etc.) are frequently important for achieving a successful, desired outcome.
One of the factors that determines the flame characteristics is the fuel-to-air ratio during the combustion process. The fuel-to-air ratio is a measure of the ratio of the amount of fuel to the amount of air that is mixed during a combustion process. Among other things, this ratio determines whether combustion can even take place, how much energy it releases, and also whether the combustion process is complete (i.e., “clean”) or whether it releases unwanted pollutants. A ratio that is ideally mixed and burns completely is called a “stoichiometric” mixture. On the other hand, a mixture is “rich” if the amount of fuel is too high for a given amount of air or “lean” if the amount of air is too high for a given amount of fuel. In certain situations, it may be desirable to have a rich mixture or a lean mixture. For example, rich mixtures are less efficient but produce more power and burn cooler. On the other hand, lean mixtures are more efficient but produce higher temperatures and can produce higher levels of unwanted pollutants. However, in most cases, it is generally desirable to maintain a stoichiometric mixture.
As noted above, maintaining a desired fuel-to-air ratio requires carefully controlling the amounts of fuel and air that are provided to the combustion process. A variety of fluid flow control valves have been used for this purpose, including adjustable port valves, globe valves, butterfly valves, ball valves, etc. However, it has been found that these conventional valves suffer from a number of problems that have made them less than ideal for accurately controlling and consistently maintaining a desired flow rate over time and over a large number of cycles. A primary issue with each of these conventional valve designs is that they are too complicated and have too many moving parts. Over time, as these valves are cycled, the parts begin to wear. This often results in the valve “drifting” over time, which is the unintentional movement of the valve away from a desired position or set point. Valve drift also impacts the reliability or repeatability of accurately setting a valve at a desired set point. This results in increased hysteresis, which is sometimes thought of as a measure of the “play” or “slop” in the valve at a given set point. As an example, for a given set point (i.e., flow rate) in a fluid flow control valve, the range of possible actual flow rates will be wide if there is high hysteresis. On the other hand, in a control valve having low or no hysteresis, the range of possible actual flow rates will be much narrower for the same given set point.
What is needed, therefore, is a fluid flow control valve that is simpler in design than conventional valve designs, that reduces wear, and that also reduces hysteresis in order to maintain a more accurate fluid flow control over time and over many cycles.
The use of the terms “a”, “an”, “the” and similar terms in the context of describing embodiments or implementations of the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising”, “having”, “including” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “substantially”, “generally” and other words of degree are relative modifiers intended to indicate permissible variation from the characteristic so modified. The use of such terms in describing a physical or functional characteristic of the invention is not intended to limit such characteristic to the absolute value which the term modifies, but rather to provide an approximation of the value of such physical or functional characteristic.
Terms concerning attachments, coupling and the like, such as “attached”, “connected” and “interconnected”, refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both moveable and rigid attachments or relationships, unless otherwise specified herein or clearly indicated as having a different relationship by context. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship.
As used below, the term “circumferentially” means in a direction around the perimeter of a component. For example, in a valve stem head that is cylindrical in shape, traveling “circumferentially” around the valve stem head means to travel around the valve stem head in a travel path that is circular in shape.
The use of any and all examples or exemplary language (e.g., “such as” and “preferably”) herein is intended merely to better illuminate the invention and the preferred embodiments or implementations thereof, and not to place a limitation on the scope of the invention. Nothing in the specification should be construed as indicating any element as essential to the practice of the invention unless so stated with specificity.
In some aspects, the techniques described herein relate to a valve stem for use in a fluid flow control valve having a valve body configured to receive a portion of the valve stem and to enable the valve stem to selectively rotate within the valve body between a fully-open position, where fluid is permitted to flow through the fluid flow control valve, and a fully-closed position, where fluid is prevented from flowing through the fluid flow control valve, the valve stem including: an elongate valve stem arm having a first end and a second end; a valve stem head integrally formed with and fixedly attached to the second end of the valve stem arm, the valve stem head having: a second fluid inlet formed in the valve stem head; a second fluid outlet formed in the valve stem head; and a fluid passage that carries fluid into the valve stem via the second fluid inlet and then out of the valve stem via second fluid outlet
In some aspects, the techniques described herein relate to a valve stem wherein the valve stem head further includes: a continuous peripheral wall having opposing front and back sides; a front face located on the front side of the peripheral wall; and a back face located opposite the front face on the back side of the peripheral wall, wherein the second end of the valve stem arm is fixedly attached to the front face of the valve stem head, the second fluid inlet is formed in the peripheral wall of the valve stem head, and the second fluid outlet is formed in the back face of the valve stem head.
In some aspects, the techniques described herein relate to a valve stem further including an elongate canal formed by opposing walls in the peripheral wall and extending circumferentially around a portion of the valve stem head such that a first end of the canal is located at a first circumferential location of the valve stem head and a second end of the canal is located at a second circumferential location of the valve stem head, wherein the second fluid inlet is disposed in the canal, wherein outer surface portions of the peripheral wall that are located adjacent the opposing walls of the canal are configured to restrict fluid flow from the valve body into the valve stem in order modulate fluid flow through the fluid flow control valve.
In some aspects, the techniques described herein relate to a valve stem wherein the canal forms a crescent shape when viewed from one of the sides of the peripheral wall and opposing ends of the crescent shape are tapered such that a widest portion of the crescent shape of the canal is located between the first and second ends of the canal.
In some aspects, the techniques described herein relate to a valve stem further including a center of the canal that is circumferentially centered between the first and second ends of the canal, wherein the second fluid inlet is located at the center of the canal, the canal including: a first portion located between the center of the canal and the first end of the canal that has a first canal shape; and a second portion located between the center of the canal and the second end of the canal that has a second canal shape.
In some aspects, the techniques described herein relate to a valve stem further wherein a shape of the first portion of the canal mirrors a shape of the second portion of the canal about a line passing through the center of the canal.
In some aspects, the techniques described herein relate to a valve stem wherein the first canal shape and the second canal shape, in combination, form a pointed oval shape that is centered at the center of the canal and at the second fluid inlet.
In some aspects, the techniques described herein relate to a valve stem wherein the canal is formed by a pair of opposing planar walls.
In some aspects, the techniques described herein relate to a valve stem wherein: the canal is formed by a pair of opposing walls that each have an inner end and an outer end, the inner ends of the opposing walls meet at an intersection and form a base of the canal, and each of the opposing walls is angled outwards from one another and from the intersection point and towards one of opposing front and back sides of the peripheral wall.
In some aspects, the techniques described herein relate to a valve stem wherein the outer ends of the opposing walls are spaced apart by a distance D, and wherein distance D continuously changes between the first and second ends of the canal.
In some aspects, the techniques described herein relate to an oil metering valve that includes the valve stem, the oil metering valve further including: a valve body having: a first fluid inlet; a first fluid outlet; a valve stem receiver configured to receive the valve stem head of the valve stem; and a fluid passage that carries fluid into the valve body via the first fluid inlet, through the valve stem receiver, and then out of the valve body via first fluid outlet a bearing for enabling the valve stem head be rotated with respect to the valve body; and a cap having an aperture, wherein the valve stem is sized and configured such that the valve stem arm may be inserted through the aperture of the cap and the cap may be fixedly attached to the valve body, wherein, when the valve stem is located within the valve stem receiver, the outer surface portions of the peripheral wall are configured to be located adjacent the first fluid inlet of the valve body and to provide a variable restriction to fluid flowing from the valve body into the valve stem based on the rotational position of the valve stem relative to the valve body in order modulate fluid flow through the fluid flow control valve.
In some aspects, the techniques described herein relate to an oil metering valve wherein the valve body further includes: a continuous peripheral wall having opposing front and back sides; a front face located on the front side of the peripheral wall; and a back face located opposite the front face on the back side of the peripheral wall.
In some aspects, the techniques described herein relate to an oil metering valve wherein the first fluid inlet and first fluid outlet are each formed in the continuous peripheral wall of the valve body and the valve stem receiver is disposed in the front face of the valve body.
In some aspects, the techniques described herein relate to an oil metering valve further including a rotating indicator collar mounted to the first end of the valve stem arm.
In some aspects, the techniques described herein relate to an oil metering valve further including a stationary flow indicator having a visual readout that cooperates with the rotating indicator to indicate an open-close position of the valve as the valve stem is rotated within the valve body.
In some aspects, the techniques described herein relate to an oil metering valve wherein the valve stem is configured to rotate within the valve body from the fully-open position counterclockwise to a first fully-closed position and further configured to rotate within the valve body from the fully-open position clockwise to a second fully-closed position.
In some aspects, the techniques described herein relate to a bi-direction fluid flow metering valve including: a valve body having: a first fluid inlet; a first fluid outlet; a valve stem receiver; and a first fluid passage that directs fluid from the first fluid inlet, through the valve stem receiver, and then out of the first fluid outlet; a valve stem having: an elongate valve stem arm having a first end and a second end; a valve stem head integrally formed with and fixedly attached to the second end of the valve stem arm, the valve stem head sized and configured for rotatable insertion within the valve stem receiver of the valve body and the valve stem head having: a peripheral wall; a second fluid inlet and a second fluid outlet that are each formed in the peripheral wall; a second fluid passage that directs fluid from the second fluid inlet and then out of the second fluid out; and an elongate canal formed by opposing walls formed in the peripheral wall and extending circumferentially around a portion of the valve stem head such that a first end of the canal is located at a first circumferential location of the valve stem head and a second end of the canal is located at a second circumferential location of the valve stem head, wherein the second fluid inlet is disposed in the canal, wherein, when the valve stem is located within the valve stem receiver, outer surface portions of the peripheral wall that are located adjacent the opposing walls of the canal are configured to be located adjacent the first fluid inlet of the valve body and to provide a variable restriction to fluid flowing from the first inlet of the valve body into canal based on a rotational position of the valve stem relative to the valve body in order modulate fluid flow through the flow metering valve, and wherein the valve stem is configured to rotate within the valve body: counterclockwise from a fully-open position, where fluid is permitted to flow through the fluid flow metering valve, to a first fully-closed position, where fluid is prevented from flowing through the fluid flow metering valve; and clockwise from the fully-open position to a second fully-closed position.
In some aspects, the techniques described herein relate to a bi-direction fluid flow metering valve wherein: the opposing walls of the canal each have an inner end and an outer end; the inner ends of the opposing walls meet at an intersection and form a base of the canal; the opposing walls are angled outwards from one another and from the intersection point and towards opposing front and back sides of the peripheral wall; and the outer ends of the opposing walls are spaced apart by a distance D that continuously changes between the first and second ends of the canal.
In some aspects, the techniques described herein relate to a bi-direction fluid flow metering valve wherein the canal has a pointed oval shape in a first orientation and a crescent shape in a second orientation.
In some aspects, the techniques described herein relate to a method for controlling a flow of a fluid including the steps of: providing a bi-direction fluid flow metering valve including: a valve body; a valve stem having an elongate valve stem arm and a valve stem head integrally formed with and fixedly attached to the valve stem arm, the valve stem head sized and configured to rotate within the valve body: (1) counterclockwise from a fully-open position, where fluid is permitted to flow through the valve body and the valve stem, to a first fully-closed position, where fluid is prevented from flowing through the valve stem; and (2) clockwise from the fully-open position to a second fully-closed position; providing a fluid to the bi-direction fluid flow metering valve; based on an orientation of the valve stem with respect to the valve body, either (1) preventing fluid from passing through the valve stem; or (2) permit at least a portion of the fluid to pass through the valve body and the valve stem; and rotating the valve stem with respect to the valve body in order to modify an amount of fluid permitted to flow through the valve stem.
Further advantages of the invention are apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale so as to more clearly show the details, wherein like reference numerals represent like elements throughout the several views, and wherein:
Referring now to the drawings in which like reference characters designate like or corresponding characters throughout the several views, there is shown in
Valve 100 includes a valve body 102 having a first fluid inlet 104, a first fluid outlet 106, a valve stem receiver 108, and a first fluid passage (a portion of which is indicated by Ref. No. 110 in
Valve 100 also includes a valve stem 112 that works in conjunction with the valve body 102 to control fluid flow through the valve. Valve stem 112 includes an elongate valve stem arm 114 that is integrally formed with and is fixedly attached to a valve stem head 116 so as to form a unitary component. Valve stem head 116 is sized and configured for rotatable insertion into the valve stem receiver 108 of the valve body 102 such that the valve stem 112 may be rotated with respect to the valve body. A bearing 118 is placed around valve stem head 116 and inside of valve stem receiver 108 to enable the valve stem head to be rotated with respect to the valve body 102.
Valve stem head 116 includes a second fluid inlet 120, a second fluid outlet 122, and a second fluid passage (a portion of which is indicated by Ref. No. 124 in
As further detailed below, due to the presence of a canal 126, which is formed in the valve stem head 116 and surrounds second fluid inlet 120, fluid may be permitted or prevented to flow through the stem valve head based on the orientation of the valve stem 112 with respect to the valve body 102. Consequently, by simply rotating valve stem 112 within the valve body 102, fluid flow through the valve 100 may be permitted and reliably set at a desired flow rate or prevented entirely.
Further details of the valve body 102 will now be provided. The valve body 102 is formed by a continuous peripheral wall 128 having a front side 130 and an opposing back side 132. A front face 134 is located on the front side 130 of the peripheral wall 128 and a back face 136 is located opposite the front face on the back side 132 of the peripheral wall. The first fluid inlet 104 and first fluid outlet 106 are each formed in the continuous peripheral wall 128 of the valve body 102 and the valve stem receiver 108 is provided in the front face 134 of the valve body.
Further details of the valve stem 112 and other components of the valve 100 will now be provided. Like the valve body 102, the valve stem head 116 also includes a continuous peripheral wall 138 having a front side 140 and an opposing back side 142. A front face 144 is located on the front side 140 of the peripheral wall 138 of the valve stem 112 and a back face 146 is located opposite the front face on the back side 142 of the peripheral wall. The second fluid inlet 120 is formed in the peripheral wall 138 of the valve stem head 116, and the second fluid outlet is formed in the back face 146 of the valve stem head. The valve stem arm 114 includes a first end 148 and a second end 150. The second end 150 of the valve stem arm 114 is integrally formed with and is fixedly attached to the front face 144 of the valve stem head 116. As noted above, bearing 118 is placed around valve stem head 116 and inside of valve stem receiver 108 to enable the valve stem head to be rotated with respect to the valve body 102. Rotation between bearing 118 and valve body 102 can be prevented using mechanical arresting means 152, such as a spring pin, which is fitted into corresponding slot halves 153 formed on an outside surface of the bearing 118 and the inside surface of the valve stem receiver 108. One or more seals 154 (e.g., O-ring seals) and washers 155 are then used to provide a leak-resistant or, more preferably, a leak-proof seal. A cap 156 having a central aperture (not shown) is then placed onto the valve stem arm 114 by inserting the valve stem arm through the aperture. Next, a stationary flow indicator 158 having a central aperture is then placed onto the valve stem arm 114 by inserting the valve stem arm through the aperture. Fasteners 160 are then inserted through pairs of corresponding openings 162 in the cap 156 and flow indicator 158 and the fasteners are then secured in corresponding openings 164 formed in the valve body 102, which secures the valve stem 112 and bearing 118 within the valve stem receiver 108 of the valve body 102. Finally, a rotating indicator collar 166 is placed onto the first end 148 of the valve stem arm 114 and is secured or fixedly mounted by a mechanical arresting means 152 that is inserted into corresponding openings 168 located in both the collar 166 and valve stem arm 114. The valve stem 112, including the valve stem head 116, may be rotated by turning the indicator collar 166. As the valve stem 112 is rotated via the indicator collar 166. The indicator collar 166 works cooperatively with the stationary flow indicator 158 to provide a visual readout or indication of when the valve 100 is in a fully-closed position, fully-open position, or a number of partially open positions.
Now, in
As illustrated in these several views, the valve stem head 116 includes an elongate canal 126 that is formed by opposing walls 170 formed in the peripheral wall 138 and that extends circumferentially around a portion of the valve stem head such that a first end 172 of the canal is located at a first circumferential location of the valve stem head and a second end 174 of the canal is located at a second circumferential location of the valve stem head. The second fluid inlet 120 is located in the canal 126. As shown best in
The inner ends 176 of the opposing walls 170 preferably meet at an intersection point 182 and form a base of the canal. Then, each of the walls 170 is angled outwards from one another and from the intersection point 182 and towards one of the sides of the peripheral wall 138 (only front side 140 is shown in
First, as shown best in
As mentioned previously, forming the canal 126 with planar walls 170 using two cuts 180 (shown in
The operation of the valve 100 will now be detailed. The valve 100 is designed to be selectively moved from a fully-open position, shown in
With reference to
With continued reference to
It may be appreciated that the fluid flow is reduced when more of the peripheral wall 138 is located adjacent the first fluid inlet 104 and, therefore, blocks fluid from passing into the valve stem head 116. On the other hand, fluid flow is increased when more of the canal 126 is located adjacent the first fluid inlet 104. Thus, between the fully-open and fully-closed positions, the amount of exposure of peripheral wall 138 to the first fluid inlet 104 compared to the amount of exposure of the canal 126 to the first fluid inlet determines the variable amount of fluid flow through the valve 100 that is possible. It may also be appreciated that, due to the mirrored design of the canal 126, the valve stem 112 can be rotated to the fully-closed position by being rotated in either a counterclockwise direction or in a clockwise direction in order to change these amounts and, by doing so, modulate fluid flow through the valve 100. More specifically, the valve stem 112 is configured to rotate counterclockwise (CCW) within the valve body 102 from the fully-open position, through an infinite number of partially-open positions, and to a first fully-closed position. The valve stem 12 is further configured to rotate within the valve body 102 from the fully-open position clockwise (CW), through an infinite number of partially-open positions, and to a second and different fully-closed position. Thus, the valve 100 is described as being “bi-directional” since it can be rotated in either a CCW or a CW direction. The fully-open and two fully-closed positions are visible in
Finally, with reference again to
Although this description contains many specifics, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred implementations thereof, as well as the best mode contemplated by the inventor of carrying out the invention. The invention, as described herein, is susceptible to various modifications and adaptations as would be appreciated by those having ordinary skill in the art to which the invention relates.
Neff, David S., George, Kenneth R.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10006550, | Oct 26 2015 | GRAND MATE CO., LTD. | Plug member of gas valve |
2987078, | |||
3354904, | |||
5242150, | Sep 30 1992 | The United States of America as represented by the Secretary of the Navy | Rotary hydraulic servo or throttle valve |
6726175, | Nov 02 1999 | Fisher & Paykel Appliances Limited | Gas valve |
6808162, | Sep 19 2001 | Victory Controls, LLC | Rotary 2-way servovalve |
20010032675, | |||
20070180813, | |||
20140084198, | |||
20180335161, | |||
WO2022244003, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 25 2022 | GEORGE, KENNETH R | Power Flame Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060699 | /0233 | |
Jul 25 2022 | NEFF, DAVID S | Power Flame Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060699 | /0233 | |
Aug 02 2022 | Power Flame Incorporated | (assignment on the face of the patent) | / | |||
Dec 19 2022 | JOHNSON CRUSHERS INTERNATIONAL, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | ASTEC MOBILE SCREENS, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | Power Flame Incorporated | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | BREAKER TECHNOLOGY, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | KOLBERG-PIONEER, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | CARLSON PAVING PRODUCTS, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | TELSMITH, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | ROADTEC, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | ASTEC INDUSTRIES, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | ASTEC, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 | |
Dec 19 2022 | GEFCO, INC | Wells Fargo Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 062153 | /0169 |
Date | Maintenance Fee Events |
Aug 02 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 27 2026 | 4 years fee payment window open |
Dec 27 2026 | 6 months grace period start (w surcharge) |
Jun 27 2027 | patent expiry (for year 4) |
Jun 27 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 27 2030 | 8 years fee payment window open |
Dec 27 2030 | 6 months grace period start (w surcharge) |
Jun 27 2031 | patent expiry (for year 8) |
Jun 27 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 27 2034 | 12 years fee payment window open |
Dec 27 2034 | 6 months grace period start (w surcharge) |
Jun 27 2035 | patent expiry (for year 12) |
Jun 27 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |