An aerosol generation device includes a case into which a cigarette is to be inserted; a protrusion pipe of a hollow shape protruding from one end portion of the case and having an opening; a heater installed in the case such that an end portion thereof is positioned inside the protrusion pipe, and configured to generate heat when an electric signal is applied thereto; and a heater fixing portion installed inside the protrusion pipe to support the heater and comprising a round surface that extends from an inner side surface of the protrusion pipe.

Patent
   11730194
Priority
Sep 06 2017
Filed
Jul 29 2020
Issued
Aug 22 2023
Expiry
Jun 21 2038
Extension
7 days
Assg.orig
Entity
unknown
0
458
currently ok
1. An aerosol generation device comprising:
a protrusion pipe including an opening opened to the outside;
a heater arranged to be surrounded by the protrusion pipe for heating a cigarette;
a heater fixing portion installed inside the protrusion pipe and configured to fix a postion of the heater with respect to the protrusion pipe;
a sealing member interposed between the protrusion pipe and the heater fixing portion; and
a cigarette support portion detachably coupled to the protrusion pipe and having a bottom surface through which one end of the heater passes,
wherein an aerosol is generated by heating the cigarette accommodated in the cigarette support portion with the heater.
2. The aerosol generation device of claim 1, wherein the sealing member includes an elastic material.
3. The aerosol generation device of claim 1, wherein
the heater fixing portion further comprises a sealing groove formed in a surface in contact with the protrusion pipe, and
the sealing member is installed in the sealing groove.
4. The aerosol generation device of claim 1, wherein the heater fixing portion includes a round surface formed to be curved in a direction away from the bottom surface of the cigarette support portion toward the heater from a portion contacting the protrusion pipe.
5. The aerosol generation device of claim 1, wherein
a lower surface of the cigarette support portion and an upper surface of the heater fixing portion are spaced apart from each other, and
an inner space is formed between the lower surface of the cigarette support portion and the upper surface of the heater fixing portion.
6. The aerosol generation device of claim 1, further comprising:
a case including the protrusion pipe; and
a cover detachably coupled to one end of the case.
7. The aerosol generation device of claim 6, wherein the cover includes a door that is slidable along an upper surface of the cover.
8. The aerosol generation device of claim 1, wherein the heater fixing portion includes a bank member extending in a circumferential direction around the heater and protruding toward an upper side of the heater fixing portion and inserted into the protrusion pipe.
9. The aerosol generation device of claim 1, wherein the heater fixing portion includes an accommodation groove extending in a circumferential direction around the heater and concavely formed toward a lower side of the heater fixing portion.
10. The aerosol generation device of claim 9, wherein the protrusion pipe includes an extension protrusion inserted into the accommodation groove.

This application is a continuation of U.S. application Ser. No. 16/644,730 filed on Mar. 5, 2020, which is a National Stage of International Application No. PCT/KR2018/006702 filed Jun. 14, 2018, claiming priorities based on Korean Patent Application Nos. 10-2017-0113954 filed Sep. 6, 2017 and 10-2018-0063759 filed Jun. 1, 2018.

The present disclosure relates to an aerosol generation device, and more particularly, to a non-combustion aerosol generation device.

Recently, there has been a growing demand for alternative methods for resolving the problems of common cigarettes. For example, there is a growing demand for a method of generating aerosols by heating an aerosol generating material in a cigarette instead of burning the cigarette to generate aerosols. Therefore, research into non-combustion aerosol generation devices such as heating-type cigarettes or heating-type aerosol generation devices has been actively carried out.

A non-combustion aerosol generation device refers to a device that generates an aerosol from an aerosol generation material included in a cigarette by heating the cigarette at a predetermined temperature without combusting the cigarette so that the aerosol can be inhaled with air.

An entire amount of the aerosol generated from the cigarette is preferably delivered to a user, but in an air passage provided inside the non-combustion aerosol generation device, water or the aerosol is partially liquefied and fixed in the form of droplets, and the leakage of liquid penetrates the inside of the device, which may cause failure or malfunction of the device.

The above-mentioned background art is technical information possessed by the inventors for the derivation of the exemplary embodiments of the present disclosure or acquired in a derivation process, and may not be necessarily referred to as publicly known technology disclosed to the general public before the application of the exemplary embodiments of the present disclosure.

Provided is an aerosol generation device having a structure to prevent a liquid material liquefied by passing through an internal air passage from penetrating into the device.

Provided are aerosol generation device and method capable of providing a user with a variety of experiences and ease of use by using a combination of an aerosol generation source and a cigarette.

In addition, provided is an aerosol including abundant flavor, nicotine, etc. by passing, through a cigarette, an aerosol generated by heating an aerosol generation source.

According to an exemplary embodiment of the present disclosure, an aerosol generation device includes a case into which a cigarette may be inserted; a protrusion pipe of a hollow shape protruding from one end portion of the case and open toward an outside; a heater installed at the case such that an end portion is positioned inside the protrusion pipe and configured to generate heat when an electric signal is applied; and a heater fixing portion in contact with the protrusion pipe and installed inside the case to support the heater.

The aerosol generation device according to the exemplary embodiments of the present disclosure as described above may include a round surface that leads a liquid material liquefied by passing through an internal air passage, toward a heater, thereby preventing the liquid material from penetrating into the device.

In addition, the aerosol generation device may include a heater fixing portion that serves as a breakwater that collects a liquid material liquefied by passing through an internal air passage, thereby preventing the liquid material from penetrating into the device.

In addition, the aerosol generation device may include a sealing member that seals a passage installed in the passage through which a liquid material liquefied by passing through an internal air passage penetrates into the device, thereby preventing the liquid material from penetrating into the device.

In addition, the aerosol generation device may generate an aerosol from an aerosol generation source and then allow a flow of the generated aerosol to pass through a cigarette, thereby providing the aerosol including a flavor and nicotine suitable for the user.

FIG. 1 is a drawing illustrating an exemplary embodiment in which a cigarette is inserted into an aerosol generation device.

FIG. 2 shows a view showing an example of the cigarette 2000.

FIG. 3 is a perspective view showing an appearance of an aerosol generation device according to an exemplary embodiment of the present disclosure.

FIG. 4 is a perspective view illustrating an operation state in which some components have been separated in the aerosol generation device according to the exemplary embodiment shown in FIG. 3.

FIG. 5 is a perspective view illustrating an operation state in which some components are separated in the aerosol generation device according to the exemplary embodiment shown in FIG. 3.

FIG. 6 is a side cross-sectional view showing some components of the aerosol generation device according to the exemplary embodiment shown in FIG. 3.

FIG. 7 is a side cross-sectional view showing some components of an aerosol generation device according to another exemplary embodiment of the present disclosure.

According to an exemplary embodiment of the present disclosure, an aerosol generation device includes a case into which a cigarette is to be inserted; a protrusion pipe of a hollow shape protruding from one end portion of the case and having an opening; a heater installed in the case such that an end portion thereof is positioned inside the protrusion pipe, and configured to generate heat when an electric signal is applied thereto; and a heater fixing portion installed inside the protrusion pipe to support the heater, and comprising a round surface that extends from an inner side surface of the protrusion pipe.

The aerosol generation device may further include a sealing member interposed between the protrusion pipe and the heater fixing portion to seal a gap between the protrusion pipe and the heater fixing portion.

The heater fixing portion may further include a sealing groove formed to be drawn in from a surface in contact with the protrusion pipe, and the sealing member may be installed in the sealing groove.

The protrusion pipe may include a sealing groove formed to be drawn in from a surface in contact with the heater fixing portion, and the sealing member may be installed in the sealing groove.

The sealing member may include an elastic material.

According to another exemplary embodiment of the present disclosure, an aerosol generation device includes a case into which a cigarette may be inserted; a protrusion pipe of a hollow shape protruding from one end portion of the case and having an opening; a heater installed at the case such that an end portion is positioned inside the protrusion pipe and configured to generate heat when an electric signal is applied; and a heater fixing portion comprising a bank member protruding in a direction opposite to a direction in which a cigarette is inserted from a surface in contact with the protrusion pipe and an accommodation groove formed to be drawn in the direction in which the cigarette is inserted and accommodating a part of the protrusion pipe and configured to be installed inside the case to support the heater.

The aerosol generation device may further include a sealing member installed in the accommodation groove to seal a gap between the protrusion pipe and the heater fixing portion.

A plurality of accommodation grooves may be formed in the heater fixing portion. One of the plurality of accommodation grooves may accommodate a part of the protrusion pipe, and the sealing member may be installed in another of the plurality of accommodation grooves.

The sealing member may include an elastic material.

According to another exemplary embodiment of the present disclosure, an aerosol generation device includes a case into which a cigarette may be inserted; a protrusion pipe of a hollow shape protruding from one end portion of the case and having an opening; a heater installed at the case such that an end portion is positioned inside the protrusion pipe and configured to generate heat when an electric signal is applied; a heater fixing portion installed inside the case to support the heater, a base portion surrounding and supporting a controller transmitting the electric signal to the heater and installed inside the case to engage with the protrusion pipe; and a sealing member interposed between the protrusion pipe and the base portion to seal a gap between the protrusion pipe and the base portion.

The protrusion pipe may include a sealing groove formed to be drawn in from a surface in contact with the base portion, and the sealing member may be installed in the sealing groove.

The base portion may include a sealing groove formed to be drawn in from a surface in contact with the protrusion pipe, and the sealing member may be installed in the sealing groove.

The sealing member may include an elastic material.

With respect to the terms in the various exemplary embodiments, the general terms which are currently and widely used are selected in consideration of functions of structural elements in the various exemplary embodiments of the present disclosure. However, meanings of the terms can be changed according to intention, a judicial precedence, the appearance of a new technology, and the like. In addition, in certain cases, a term which is not commonly used can be selected. In such a case, the meaning of the term will be described in detail at the corresponding portion in the description of the present disclosure. Therefore, the terms used in the various exemplary embodiments of the present disclosure should be defined based on the meanings of the terms and the descriptions provided herein.

In addition, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. In addition, the terms “-er”, “-or”, and “module” described in the specification mean units for processing at least one function and operation and can be implemented by hardware components or software components and combinations thereof.

Hereinafter, the present disclosure will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the present disclosure are shown such that one of ordinary skill in the art may easily work the present disclosure. The disclosure may, however, be embodied in many different forms and should not be construed as being limited to the exemplary embodiments set forth herein.

Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the drawings.

FIG. 1 is a drawing illustrating an example in which a cigarette is inserted into an aerosol generation device.

Referring to FIG. 1, the aerosol generation device 1000 may include a battery 1100, a controller 1200, and a heater 1030. Also, the cigarette 2000 may be inserted into an inner space of the aerosol generation device 1000.

FIG. 1 shows the aerosol generation device 1000 with some elements related to the exemplary embodiment. However, it will be understood by one of ordinary skill in the art that other general-purpose components may be further included in the aerosol generation device 1000, in addition to the components illustrated in FIG. 1.

FIG. 1 illustrates that the battery 1100, the controller 1200, and the heater 1030 are arranged in series, but the arrangement of these are not limited thereto. In other words, according to the design of the aerosol generation device 1000, the arrangements of the battery 1100, the controller 1200, and the heater 1030 may be modified.

When the cigarette 2000 is inserted into the aerosol generation device 1000, the aerosol generation device 1000 heats the heater 1030. The temperature of an aerosol generating material in the cigarette 2000 is raised by the heated heater 1030, and thus aerosol is generated. The generated aerosol is delivered to a user through a filter 2200 of the cigarette 2000.

For example, in order to clean an internal space of the aerosol generation device 1000, even when the cigarette 2000 is not inserted into the aerosol generation device 1000, the aerosol generation device 1000 may heat the heater 1030.

The battery 1100 may supply power to be used for the aerosol generation device 1000 to operate. For example, the battery 1100 may supply power for heating the heater 1030 and supply power for operating the controller 1200. Also, the battery 1100 may supply power for operations of a display, a sensor, a motor, etc. mounted in the aerosol generation device 1000.

The controller 1200 may generally control operations of the aerosol generation device 1000. In detail, the controller 1200 controls not only operations of the battery 1100 and the heater, but also operations of other components included in the aerosol generation device 1000. Also, the controller 1200 may check a state of each of the components of the aerosol generation device 1000 to determine whether or not the aerosol generation device 1000 is able to operate.

The controller 1200 may include at least one processor. A processor can be implemented as an array of a plurality of logic gates or can be implemented as a combination of a general-purpose microprocessor and a memory in which a program executable in the microprocessor is stored. It will be understood by one of ordinary skill in the art that the processor can be implemented in other forms of hardware.

The heater 1030 is heated by power supplied from the battery 1100. For example, when the cigarette 2000 is inserted into the aerosol generation device 1000, the heater 1030 may be located inside the cigarette 2000. Thus, the heated heater 1030 may increase a temperature of an aerosol generating material in the cigarette 2000.

The heater 1030 may include an electro-resistive heater. For example, the heater 1030 may include an electrically conductive track, and the heater 1030 may be heated when currents flow through the electrically conductive track. However, the heater 1030 is not limited to the example described above and may be implemented using any other heaters which are capable of being heated to a desired temperature. Here, the desired temperature may be pre-set in the aerosol generation device 1000 or may be manually set by a user.

As another example, the heater 1030 may include an induction heater. In detail, the heater 1030 may include an electrically conductive coil for heating a cigarette by an induction heating method, and the cigarette may include a susceptor which may be heated by the induction heater.

FIG. 1 illustrates that the heater 1030 is inserted into the cigarette 2000, but the position of the heater 1030 is not limited thereto. For example, the heater 1030 may include a tube-type heating element, a plate-type heating element, a needle-type heating element, or a rod-type heating element, and may heat the inside or the outside of the cigarette 2000, according to the shape of the heating element.

Also, the aerosol generation device 1000 may include a plurality of heaters 1030. Here, the plurality of heaters 1030 may be inserted into the cigarette 2000 or may be arranged outside the cigarette 2000. Also, some of the plurality of heaters 1030 may be inserted into the cigarette 2000, and the others may be arranged outside the cigarette 2000. In addition, the shape of the heater 1030 is not limited to the shape illustrated in FIG. 1, and may include various shapes.

The aerosol generation device 1000 may further include general-purpose components in addition to the battery 1100, the controller 1200, and the heater 1030. For example, the aerosol generation device 1000 may include a display capable of outputting visual information and/or a motor for outputting haptic information. Also, the aerosol generation device 1000 may include at least one sensor (a puff detecting sensor, a temperature detecting sensor, a cigarette insertion detecting sensor, etc.).

Also, the aerosol generation device 1000 may be formed to have a structure that allows external air to be introduced or internal air to be discharged even when the cigarette 2000 is inserted into the aerosol generation device 1000.

Although not illustrated in FIG. 1, the aerosol generation device 1000 and an additional cradle may form together a system. For example, the cradle may be used to charge the battery 1100 of the aerosol generation device 1000. Also, the heater 1030 may be heated when the cradle and the aerosol generation device 1000 are coupled to each other.

The cigarette 2000 may be similar to a general combustive cigarette. For example, the cigarette 2000 may be divided into a first portion 2100 including an aerosol generating material and a second portion 2200 including a filter or the like. Alternatively, the second portion 2200 of the cigarette 2000 may also include an aerosol generating material. For example, an aerosol generating material made in the form of granules or capsules may be inserted into the second portion 2200.

The first portion 2100 may be completely inserted into the aerosol generation device 1000, and the second portion 2200 may be exposed to the outside. In some exemplary embodiments, only a portion of the first portion 2100 may be inserted into the aerosol generation device 1000. Otherwise, a portion of the first portion 2100 and a portion of the second portion 2200 may be inserted into the aerosol generation device 1000. The user may puff aerosol while holding the second portion 2200 by the mouth of the user. In this case, the aerosol is generated by the external air passing through the first portion 2100, and the generated aerosol passes through the second portion 2200 and is delivered to the user's mouth.

For example, the external air may flow into at least one air passage formed in the aerosol generation device 1000. For example, opening and closing of the air passage and/or a size of the air passage may be adjusted by the user. Accordingly, the amount of smoke and smoking satisfaction may be adjusted by the user. As another example, the external air may flow into the cigarette 2000 through at least one hole formed in a surface of the cigarette 2000.

Hereinafter, an example of the cigarette 2000 will be described with reference to FIG. 2.

FIG. 2 shows a view showing an example of a cigarette.

Referring to FIG. 2, the cigarette 2000 includes a tobacco rod 2100 and a filter rod 2200. The first portion 2100 described above with reference to FIG. 1 includes the tobacco rod 2100, and the second portion 2200 includes the filter rod 2200.

The filter rod 2200 illustrated in FIG. 2 is illustrated as a single segment, but is not limited thereto. In other words, the filter rod 2200 may include a plurality of segments. For example, the filter rod 2200 may include a first segment configured to cool aerosol and a second segment configured to filter a certain component included in the aerosol. Also, as necessary, the filter rod 2200 may further include at least one segment configured to perform other functions.

The cigarette 2000 may be packaged using at least one wrapper 2400. The wrapper 2400 may have at least one hole through which external air may be introduced or internal air may be discharged. For example, the cigarette 2000 may be packaged using one wrapper 2400. As another example, the cigarette 2000 may be doubly packaged using at least two wrappers 2400. For example, the tobacco rod 2100 may be packaged using a first wrapper, and the filter rod 2200 may be packaged using a second wrapper. Also, the tobacco rod 2100 and the filter rod 2200, which are respectively packaged using separate wrappers, may be coupled to each other, and the entire cigarette 2000 may be packaged using a third wrapper. When each of the tobacco rod 2100 and the filter rod 2200 includes a plurality of segments, each segment may be packaged using a separate wrapper. Also, the entire cigarette 2000 including the plurality of segments, which are respectively packaged using the separate wrappers and which are coupled to each other, may be re-packaged using another wrapper.

The tobacco rod 2100 may include an aerosol generating material. For example, the aerosol generating material may include at least one of glycerin, propylene glycol, ethylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and oleyl alcohol, but it is not limited thereto. Also, the tobacco rod 2100 may include other additives, such as flavors, a wetting agent, and/or organic acid. Also, the tobacco rod 2100 may include a flavored liquid, such as menthol or a moisturizer, which is injected to the tobacco rod 2100.

The tobacco rod 2100 may be manufactured in various forms. For example, the tobacco rod 2100 may be formed as a sheet or a strand. Also, the tobacco rod 2100 may be formed as a pipe tobacco, which is formed of tiny bits cut from a tobacco sheet. Also, the tobacco rod 2100 may be surrounded by a heat conductive material. For example, the heat-conducting material may be, but is not limited to, a metal foil such as aluminum foil. For example, the heat conductive material surrounding the tobacco rod 2100 may uniformly distribute heat transmitted to the tobacco rod 2100, and thus, the heat conductivity applied to the tobacco rod may be increased and taste of the tobacco may be improved. Also, the heat conductive material surrounding the tobacco rod 2100 may function as a susceptor heated by the induction heater. Here, although not illustrated in the drawings, the tobacco rod 2100 may further include an additional susceptor, in addition to the heat conductive material surrounding the tobacco rod 2100.

The filter rod 2200 may include a cellulose acetate filter. Shapes of the filter rod 2200 are not limited. For example, the filter rod 2200 may include a cylinder-type rod or a tube-type rod having a hollow inside. Also, the filter rod 2200 may include a recess-type rod. When the filter rod 2200 includes a plurality of segments, at least one of the plurality of segments may have a different shape.

The filter rod 2200 may be formed to generate flavors. For example, a flavoring liquid may be injected onto the filter rod 2200, or an additional fiber coated with a flavoring liquid may be inserted into the filter rod 2200.

Also, the filter rod 2200 may include at least one capsule 2300. Here, the capsule 2300 may generate a flavor or aerosol. For example, the capsule 2300 may have a configuration in which a liquid containing a flavoring material is wrapped with a film. For example, the capsule 2300 may have a spherical or cylindrical shape, but is not limited thereto.

When the filter rod 2200 includes a segment configured to cool the aerosol, the cooling segment may include a polymer material or a biodegradable polymer material. For example, the cooling segment may include pure polylactic acid alone, but the material for forming the cooling segment is not limited thereto. In some exemplary embodiments, the cooling segment may include a cellulose acetate filter having a plurality of holes. However, the cooling segment is not limited to the above-described example and any other cooling segment that is capable of cooling the aerosol may be used.

FIG. 3 is a perspective view showing an appearance of an aerosol generation device 1000 according to an exemplary embodiment of the present disclosure.

The aerosol generation device 1000 according to the exemplary embodiment shown in FIG. 3 may include a case 1001 and a cover 1002. Because the cover 1002 is coupled to one end of the case 1001, the case 1001 and the cover 1002 together form the appearance of the aerosol generation device 1000.

The case 1001 forms a part of the appearance of the aerosol generation device 1000 and functions to accommodate and protect various components therein.

The cover 1002 and the case 1001 may be manufactured using a plastic material that does not transfer heat well, or a metallic material coated with a heat blocking material on its surface. The cover 1002 and the case 1001 may be manufactured by, for example, injection molding, 3D printing, or assembling small parts manufactured by injection molding.

A maintaining device (not shown) for maintaining a coupling state of the cover 1002 and the case 1001 may be installed between the cover 1002 and the case 1001. The maintaining device may include, for example, a protrusion and a groove. By maintaining a state in which the protrusion is inserted into the groove, the coupling state of the cover 1002 and the case 1001 may be maintained. The protrusion may be moved by a user pressing an operation button, and separated from the groove.

In addition, the maintaining device may include, for example, a magnet and a metal member that is attracted to the magnet. When the magnet is used in the maintaining device, the magnet may be installed in either the case 1001 or the cover 1002, and the metal member may be installed in the other one. Alternatively, the magnet may be installed in both the case 1001 and the cover 1002.

In the aerosol generation device 1000 according to the exemplary embodiment illustrated in FIG. 3, the cover 1002 is not indispensable, and thus, the cover 1002 may not be installed if necessary.

An outer hole 1002p into which a cigarette 2000 may be inserted is formed in an upper surface of the cover 1002 coupled to the case 1001. In addition, a rail 1003r is formed at a position adjacent to the outer hole 1002p on the upper surface of the cover 1002. The rail 1003r is provided with a door 1003 that is slidable along the upper surface of the cover 1002. The door 1003 may slide linearly along the rail 1003r.

The door 1003 moves along the rail 1003r in the direction of an arrow in FIG. 3, such that the door 1003 serves to expose, to the outside, the outer hole 1002p and an insertion hole 1004p that allow the cigarette 2000 to pass through the cover 1002 and be inserted into the case 1001. The outer hole 1002p of the cover 1002 serves to expose, to the outside, the insertion hole 1004p of an accommodation passage 1004h that may accommodate the cigarette 2000.

When the outer hole 1002p is exposed to the outside by the door 1003, the user may insert an end portion 2000b of the cigarette 2000 into the outer hole 1002p and the insertion hole 1004p to mount the cigarette 2000 in the accommodation passage 1004h formed inside the cover 1002.

In the exemplary embodiment shown in FIG. 3, the door 1003 may move linearly with respect to the cover 1002. However, the exemplary embodiment is not limited by the coupling structure of the door 1003 and the cover 1002. For example, the door 1003 may be rotatably installed on the cover 1002 via a hinge assembly. When the hinge assembly is used, the door 1003 may rotate to the side of the outer hole 1002p along the extension of the upper surface of the cover 1002, or the door 1003 may rotate away from the upper surface of the cover 1002.

The rail 1003r has a concave groove shape, but the exemplary embodiment is not limited by the shape of the rail 1003r. For example, the rail 1003r may have a convex shape and may extend in a curved shape rather than a straight shape.

A button 1009 is installed in the case 1001. An operation of the aerosol generation device 1000 may be controlled in accordance with the operation of the button 1009.

In a state where the cover 1002 is coupled to the case 1001, an outer air inflow gap 1002g that allows air to flow into the inside of the cover 1002 is formed at a portion where the cover 1002 and the case 1001 are coupled to each other.

FIG. 4 is a perspective view illustrating an operation state in which some components have been separated in the aerosol generation device 1000 according to the exemplary embodiment shown in FIG. 3. FIG. 5 is a perspective view illustrating an operation state in which some components are being separated in the aerosol generation device 1000 according to the exemplary embodiment shown in FIG. 3. FIG. 6 is a side cross-sectional view showing some components of the aerosol generation device 1000 according to the exemplary embodiment shown in FIG. 3.

As illustrated in FIG. 4, in a state where the cigarette 2000 is inserted into the aerosol generation device 1000, a user may inhale aerosol from the cigarette 2000.

When the use of the cigarette 2000 ends, the user may perform a cleaning operation of removing a tobacco material remaining in the aerosol generation device 1000 after separating the cigarette 2000 from the aerosol generation device 1000.

The user may perform the cleaning operation of the aerosol generation device 1000 by separating the cover 1002 from the case 1001 of the aerosol generation device 1000, separating a cigarette support portion 4 from the case 1001, exposing an internal space of the aerosol generation device 1000 and a heater 1030 to the outside, and removing the tobacco material.

Referring to FIG. 4, the cover 1002 may be coupled to one end portion 1001a of the case 1001 to cover the cigarette support portion 4 coupled to the one end portion 1001a of the case 1001. In addition, the cover 1002 may be separated from the case 1001 as necessary.

When removing the cigarette 2000 from the aerosol generation device 1000 after the use of the cigarette 2000, the user may pull out the cigarette 2000 from the case 1001 while rotating the cigarette 2000 by hand.

Alternatively, as shown in FIG. 4, if the user rotates the cigarette 2000 and then pulls the cover 1002, the cover 1002 may be separated from the case 1001 together with the cigarette 2000.

By separating the cigarette 2000 from the case 1001 while rotating the cigarette 2000, the cigarette 2000 may be released from the heater 1030, and at the same time, a tobacco material attached to the cigarette 2000 may be discharged to the outside of the case 1001 together with the cigarette 2000.

In case of pulling the cover 1002 without rotating the cigarette 2000, the cigarette 2000 is separated from the case 1001, but a part of the cigarette 2000, for example, a tobacco part, may not be discharged from the case 1001 and may remain on the heater 1030. In this case, the user may separate the cigarette support portion 4 from the case 1001 as shown in FIG. 5 after removing the cover 1002 from the case 1001. At this time, the tobacco part remaining on the heater 1030 is separated from the case 1001 together with the cigarette support portion 4. Thereafter, the user may remove the tobacco part remaining on the separated cigarette support portion 4.

Referring to FIGS. 5 and 6, the aerosol generation device 1000 includes the case 1001 into which the cigarette 2000 may be inserted, a protrusion pipe 1020 of a hollow shape protruding from the one end portion 1001a of the case 1001 and open toward the outside, the heater 1030 installed in the case 1001 such that an end portion 1031 is positioned inside the protrusion pipe 1020 and generating heat when an electric signal is applied, and a heater fixing portion 1040 including a round surface 1040r extending from an inner surface of the protrusion pipe 1020 and installed inside the protrusion pipe 1020 to support the heater 1030. In addition, the aerosol generation device 1000 further includes the cigarette support portion 4 which may be coupled to and separated from the protrusion pipe 1020.

As shown in FIG. 5, when the user pulls upward the cigarette support portion 4 by hand in a state where the cigarette support portion 4 is coupled to the case 1001, the cigarette support portion 4 may be separated from the case 1001.

Referring to FIG. 6, the protrusion pipe 1020 surrounds and protects the heater 1030. The protrusion pipe 1020 supports the cigarette supporting portion 4 when the cigarette supporting portion 4 is coupled to the protrusion pipe 1020.

Due to the hollow shape of the protrusion pipe 1020, the protrusion pipe 1020 includes a coupling passage 1020h into which at least a part of the cigarette support portion 4 may be inserted. The upper end of the coupling passage 1020h opens to the outside toward the upper direction of the aerosol generation device 1000.

The heater 1030 that performs a function of heating the cigarette 2000 is installed in the case 1001. The heater 1030 is installed in the case 1001 such that the upper end portion 1031 is positioned inside the protrusion pipe 1020. When the cigarette 2000 is accommodated in the cigarette support portion 4 while the cigarette support portion 4 is coupled to the protrusion pipe 1020, the upper end 1031 of the heater 1030 is inserted into the bottom surface of the end portion 2000b of the cigarette 2000.

The heater 1030 is electrically connected to the battery (1100 of FIG. 1) and the controller (1200 of FIG. 1) installed in the case 1001. When electricity is supplied to the heater 1030 while the cigarette 2000 is inserted into the end portion 1031 of the heater 1030, the heater 1030 is heated and thus the cigarette 2000 is heated.

Referring to FIG. 5, the cigarette support portion 4 may be inserted into the coupling passage 1020h inside the protrusion pipe 1020 through an opening of the protrusion pipe 1020. The cigarette support portion 4 includes an inner cylinder 10 inserted into the protrusion pipe 1020 and an outer cylinder 20 supporting the inner cylinder 10.

Referring to FIG. 6, the outer cylinder 20 of the cigarette support portion 4 includes an extension support surface 26 protruding inward from an outer wall 20t having an approximately semi-cylindrical shape, and the extension support surface 26 is spaced apart from the outer wall 20t. When the cigarette support portion 4 is coupled to the protrusion pipe 1020, the protrusion pipe 1020 is inserted between the outer wall 20t and the extension support surface 26 such that a coupling state of the cigarette support portion 4 and the protrusion pipe 1020 may be stably maintained.

According to the stable coupling structure of the cigarette support portion 4 and the protrusion pipe 1020 as described above, even if external force is applied to the aerosol generation device 1000 due to an impact, separation or damage of the components of the aerosol generation device 1000 may be reduced. As a result, good durability and stability may be ensured even when the aerosol generation device 1000 is used for a long time.

In addition, because the cigarette support portion 4 may be easily separated from the case 1001, the cleaning operation may be performed surely and conveniently.

In addition, the protrusion pipe 1020 may perform a function of directly supplying the outside air to an end of the cigarette 2000. Referring to FIG. 5, the protrusion pipe 1020 includes an air hole 1020g connecting the inside and the outside of the protrusion pipe 1020, and an air flow path 1020n extending along a surface of the protrusion pipe 1020 to guide the flow of air to the air hole 1020g.

A plurality of air holes 1020g may be formed spaced apart along the circumferential direction of the protrusion pipe 1020. The air hole 1020g and the air flow path 1020n form a flow passage of air for allowing air outside the protrusion pipe 1020 to flow into the protrusion pipe 1020.

Referring to FIG. 6, when the cigarette support portion 4 is coupled to the protrusion pipe 1020, the extension support surface 26 of the cigarette support portion 4 is inserted into the protrusion pipe 1020. While the extension support surface 26 of the cigarette support portion 4 moves downward along the protrusion pipe 1020, the heater 1030 positioned inside the protrusion pipe 1020 passes through a heater insertion hole 10b of the cigarette support portion 4.

In the state where the cigarette support portion 4 is coupled to the protrusion pipe 1020, the end portion 1031 of the heater 1030 passes through the heater insertion hole 10b of the cigarette support portion 4 and is positioned inside the cigarette support portion 4. Accordingly, when the cigarette 2000 is accommodated in the cigarette support portion 4 in the state where the cigarette support portion 4 is coupled to the protrusion pipe 1020, the end portion 1031 of the heater 1030 is inserted into the cigarette 2000.

When the user of the aerosol generation device 1000 inserts the cigarette 2000 into the accommodation passage 1004h, the cigarette 2000 moves along the cigarette support portion 4. When the end portion 2000b of the cigarette 2000 reaches the bottom of the cigarette support portion 4, a feeling of contact between the bottom of the cigarette support portion 4 and the end portion 2000b of the cigarette 2000 is delivered to a user's hand holding the cigarette 2000. Therefore, the user may conveniently mount the cigarette 2000 to the aerosol generation device 1000 by pushing the cigarette 2000 into the aerosol generation device 1000.

When the user separates the cigarette 2000 from the cigarette support portion 4, the user may pull the cigarette 2000 out of the cigarette support portion 4 while rotating the cigarette 2000 by hand. While the user rotates the cigarette 2000 by hand, the cigarette 2000 and the heater 1030 attached to each other by a tobacco material may be completely separated.

After separating the cigarette 2000 from the cigarette support portion 4, the user may perform the cleaning operation on the inside of the cigarette support portion 4. When the user separates the cigarette support portion 4 from the case 1001 in order to perform the cleaning operation, the user may pull out the cigarette support portion 4 to the outside of the case 1001 by holding the cigarette support portion 4 by hand.

The heater fixing portion 1040 may be installed inside the protrusion pipe 1020 and include the through hole 1040b through which the end portion 1031 of the heater 1030 may pass. The heater fixing portion 1040 may be installed inside the case 1001 and surrounded by the protrusion pipe 1020. Because the protrusion pipe 1020 and the heater fixing portion 1040 are distinct components, a gap of a predetermined interval may be formed between the protrusion pipe 1020 and the heater fixing portion 1040.

Meanwhile, the upper end portion 1031 of the heater 1030 protrudes upward through the through hole 1040b of the heater fixing portion 1040, and also passes through the heater insertion hole 10b of the protrusion pipe 1020 such that the upper end portion 1031 of the heater 1030 is positioned inside the cigarette support portion 4.

The area of the heater insertion hole 10b may be formed to be larger than the cross-sectional area of the heater 1030 penetrating the heater insertion hole 10b. According to this structure, the outside air may enter and exit through the heater insertion hole 10b.

An inner space 50 is formed between the protrusion pipe 1020 and the cigarette support portion 4 and between the heater fixing portion 1040 and the cigarette support portion 4. One side of the inner space 50 is connected to an inflow passage 1004g through which the outside air flows when the cigarette support portion 4 is mounted to the protrusion pipe 1020, and the other side is connected to the heater insertion hole 10b.

According to this structure, the outside air flown into the inflow passage 1004g flows into the inner space 50 along the gap between the cigarette support portions 4 and the protrusion pipe 1020, and may be inhaled by the user in the inner space 50 according to an inhalation operation of the user through the heater insert hole 10b via the cigarette 2000.

That is, the inside of the cigarette support portion 4 into which the cigarette 2000 is inserted and the inner space 50 may be connected to each other through a minute gap formed between the heater 1030 and the heater insertion hole 10b. At this time, the cigarette 2000 is heated to generate an aerosol, but at the same time, the aerosol may also be liquefied to form a liquid material at the end portion 2000b of the cigarette 2000 and leaked toward the inner space 50 through the gap formed between the heater 1030 and the heater insertion hole 10b. In addition, the aerosol remaining in the inner space 50 may be liquefied and formed on the inner wall surface of the protrusion pipe 1020, and may flow down along the inner wall surface of the protrusion pipe 1020. Herein, the term “liquid material” may refer to water or an aerosol material included in a tobacco sheet medium of the cigarette 2000.

If the liquid material remaining in the inner space 50 flows into the gap formed between the protrusion pipe 1020 and the cigarette support portion 4, the liquid material may penetrate into the aerosol generation device 1000 along the inner wall surface of the protrusion pipe 1020. If the liquid material penetrated therein wets the battery (1100 of FIG. 1) or the controller (1200 of FIG. 1) which transmits an electric signal to the heater 1030, the battery 1100 or the controller 120 may be damaged.

In order to solve this problem, the round surface 1040r of the heater fixing portion 1040 may serve as a kind of breakwater that collects liquid materials so as to prevent the liquid material flowing into the inner space 50 from penetrating into the aerosol generation device 1000 through the gap between the protrusion pipe 1020 and the heater fixing portion 1040.

In addition, the round surface 1040r may assist the liquid material generated in the inner space 50 to be delivered to the heater 1030 without being fixed to edges of the inner space 50. For example, the liquid material delivered to the heater 1030 by the round surface 1040r may be heated by the heater 1030 and aerosolized again.

In addition, the aerosol generation device 1000 may further include a sealing member 1050 interposed between the protrusion pipe 1020 and the heater fixing portion 1040 to seal the gap between the protrusion pipe 1020 and the heater fixing portion 1040.

The heater fixing portion 1040 may further include a sealing groove 1040h formed to be drawn in from a surface in contact with the protrusion pipe 1020, and the sealing member 1050 may be installed in the sealing groove 1040h. However, the exemplary embodiment is not limited thereto, and the sealing member 1050 may be installed in a sealing groove (not shown) formed in the protrusion pipe 1020.

The exemplary embodiment shown in the drawings depicts the case in which the sealing member 1050 is circular, but the exemplary embodiment is not limited thereto. The sealing member 1050 may include an elastic material, and is not limited to a specific shape as long as it is capable of sealing the gap between the protrusion pipe 1020 and the heater fixing portion 1040 in order to prevent the liquid material from penetrating into the aerosol generation device 1000 through the gap formed between the protrusion pipe 1020 and the heater fixing portion 1040.

Even when the liquid material is accumulated in the inner space 50 higher than the height a of the round surface 1040r of the heater fixing portion 1040 and flows down along the gap formed between the protrusion pipe 1020 and the heater fixing portion 1040, the sealing member 1050 may protect the battery 1100 and the controller 1200 installed therein by preventing the liquid material from penetrating inside the aerosol generation device 1000.

FIG. 7 is a side cross-sectional view showing some components of the aerosol generation device 1000 according to another exemplary embodiment of the present disclosure.

In the exemplary embodiment of the aerosol generation device 1000 shown in FIG. 7, other than the structure of a heater fixing portion 2040, the installation positions of sealing members 2060 and 2070 and the coupling structure of a base portion 2050 that will be described later, most components are the same as those described with reference to FIG. 6, and thus detailed descriptions thereof will be omitted.

First, the heater fixing portion 2040 illustrated in FIG. 7 will be described. The heater fixing portion 2040 includes a bank member 2040p installed inside a protrusion pipe 2020 to support the heater 2030 and protruding upward from a surface in contact with the protrusion pipe 2020, and accommodation grooves 2040ha and 2040hb formed to be drawn in from the surface in contact with the protrusion pipe 2020 to accommodate a part of the protrusion pipe 2020.

Here, the term ‘upward’ means not only an accurate vertical direction in which the bank member 2040p shown in the figure protrudes, but also a direction intersecting with a horizontal direction. That is, the bank member 2040p may protrude in the vertical direction as shown in the figure, but is not limited thereto. For example, the bank member 2040p may also protrude upward in an inclined direction.

According to this structure, even if a liquid material accumulated in the inner space 50 flows into a gap between the protrusion pipe 2020 and the heater fixing portion 2040, the penetration of the liquid material into the aerosol generation device 1000 may be primarily prevented by the bank member 2040p. In addition, since the sealing member 2060 is installed in the accommodation groove 2040hb to seal the gap between the protrusion pipe 2020 and the heater fixing portion 2040, the penetration of the liquid material into the aerosol generation device 1000 may be secondarily prevented by the sealing member 2060.

According to FIG. 7, the heater fixing portion 2040 according to an exemplary embodiment is depicted as including the two accommodation grooves 2040ha and 2040hb, but the exemplary embodiment is not limited thereto and the heater fixing portion 2040 may include one or more accommodation grooves.

As an example, referring to FIG. 7, a part of the protrusion pipe 2020 may be accommodated in the accommodation groove 2040ha adjacent to the heater 2030, and the sealing member 2060 may be installed in the accommodation groove 2040hb far from the heater 2030. However, the reverse structure may be adopted. Further, the sealing member 2060 may be installed in both the accommodation grooves 2040ha and 2040hb.

Meanwhile, the aerosol generation device 1000 according to the exemplary embodiment shown in FIG. 7 may further include the base portion 2050 and the sealing member 2070. The base portion 2050 may surround and support the battery (1100 of FIG. 1) and the controller (1200 of FIG. 2), which transmit an electrical signal to the heater 2030. The base portion 2050 may be installed in the case 2001 to engage with the protrusion pipe 2020. The sealing member 2070 may be interposed between the protrusion pipe 2020 and the base portion 2050 to seal a gap between the protrusion pipe 2020 and the base portion 2050.

The sealing member 2070 may be installed in a sealing groove (not shown) formed in the protrusion pipe 2020 or the base portion 2050 like the sealing groove 1040h of the heater fixing portion 1040 shown in FIG. 6, but the exemplary embodiment is not limited thereto. As another example, a sealing groove may not be formed in the protrusion pipe 2020 or the base portion 2050 of FIG. 7. Instead, the sealing member 2070 may be interposed between the protrusion pipe 2020 and the base portion 2050 in a compressed state.

That is, like the sealing member 1050 shown in FIG. 6, the sealing members 2060 and 2070 shown in FIG. 7 may also include an elastic material. That is, the sealing members 2060 and 2070 may seal the gap between the protrusion pipe 2020 and the heater fixing portion 2040 and between the protrusion pipe 2020 and the base portion 2050 thereby preventing the liquid material from penetrating into the aerosol generation device 1000.

The configuration and effect of the exemplary embodiments described above are provided for illustrative purposes only and it will be understood by those of ordinary skill in the art that various changes and modifications are made therein. Therefore, the true scope of the present disclosure should by defined by the appended claims.

According to the exemplary embodiments of the present disclosure as described above, it is possible to prevent the liquid material from penetrating into the aerosol generation device.

Lee, Jong Sub

Patent Priority Assignee Title
Patent Priority Assignee Title
10015990, Feb 10 2014 PHILIP MORRIS PRODUCTS S A Aerosol-generating system comprising a device and a cartridge, in which the device ensures electrical contact with the cartridge
10031183, Mar 07 2013 RAI STRATEGIC HOLDINGS, INC Spent cartridge detection method and system for an electronic smoking article
10070667, Aug 30 2013 Nicoventures Trading Limited Electronic smoking article with battery power control
10104911, Dec 03 2010 PHILIP MORRIS PRODUCTS S A Aerosol generating system with prevention of condensate leakage
10130780, Dec 30 2011 PHILIP MORRIS PRODUCTS S A Detection of aerosol-forming substrate in an aerosol generating device
10136673, Mar 31 2014 PHILIP MORRIS PRODUCTS S A Electrically heated aerosol-generating system
10159283, May 21 2014 PHILIP MORRIS PRODUCTS S A Aerosol-forming article comprising magnetic particles
10194697, Nov 19 2010 PHILIP MORRIS PRODUCTS S.A. Electrically heated smoking system
10368584, May 21 2009 Philip Morris USA Inc. Electrically heated smoking system
10439419, Oct 28 2014 PHILIP MORRIS PRODUCTS S A Adaptive battery charging method and system
10440987, Aug 30 2016 CHINA TOBACCO YUNNAN INDUSTRIAL CO , LTD Device for automatically detruding cigarette butt
10448670, Dec 30 2011 PHILIP MORRIS PRODUCTS S A Aerosol generating system with consumption monitoring and feedback
10492542, Aug 09 2011 RAI STRATEGIC HOLDINGS, INC. Smoking articles and use thereof for yielding inhalation materials
10548350, Jan 03 2012 PHILIP MORRIS PRODUCTS S A Aerosol-generating device and system
10555553, Feb 24 2014 PHILIP MORRIS PRODUCTS S A Filter with improved hardness and filtration efficiency
10555555, Dec 03 2013 PHILIP MORRIS PRODUCTS S A Aerosol-generating article and electrically operated system incorporating a taggant
10588351, Jun 29 2015 PHILIP MORRIS PRODUCTS S A Cartridge and device for an aerosol-generating system
10617149, Dec 05 2013 PHILIP MORRIS PRODUCTS S A Aerosol-generating article with low resistance air flow path
10631573, Jun 19 2015 CHANGZHOU JWEI INTELLIGENT TECHNOLOGY CO., LTD. Atomizer and aerosol generating device using the same
10645971, Mar 03 2014 FONTEM VENTURES B V Electronic smoking device
10667329, Apr 15 2015 PHILIP MORRIS PRODUCTS S.A. Device and method for controlling an electrical heater to limit temperature according to desired temperature profile over time
10668058, Mar 30 2007 ROSE, JED E ; ROSE, SETH D ; TURNER, JAMES E ; MURUGESAN, THANGARAJU Device and method for delivery of a medicament
10716329, Sep 30 2013 Japan Tobacco Inc. Non-burning type flavor inhaler
10757975, Jul 11 2014 PHILIP MORRIS PRODUCTS S A Aerosol-generating system comprising a removable heater
10813174, Dec 28 2012 PHILIP MORRIS PRODUCTS S.A. Heating assembly for an aerosol generating system
10869499, Dec 24 2008 Philip Morris USA Inc. Article including identification information for use in an electrically heated smoking system
10869503, May 02 2014 Japan Tobacco Inc. Non-burning-type flavor inhaler and computer-readable medium
10881131, Nov 10 2014 Japan Tobacco Inc. Non-burning type flavor inhaler and control method
10881137, Apr 02 2015 Japan Tobacco Inc. Flavor inhaler
10881143, May 01 2015 Japan Tobacco Inc. Non-burning type flavor inhaler, flavor source unit, and atomizing unit
11039642, Dec 30 2011 PHILIP MORRIS PRODUCTS S A Smoking article with front-plug and aerosol-forming substrate and method
11147316, Apr 30 2014 PHILIP MORRIS PRODUCTS S A Aerosol generating device with battery indication
11445576, Feb 10 2014 PHILIP MORRIS PRODUCTS S.A. Cartridge with a heater assembly for an aerosol-generating system
2638904,
4585014, Aug 01 1983 Fire inhibiting tubular safety shield for a cigarette type smoking device and combination thereof
4637407, Feb 28 1985 ONTARIO, INC Cigarette holder
5144962, Dec 01 1989 Philip Morris Incorporated Flavor-delivery article
5240012, Nov 13 1991 PHILIP MORRIS INCORPORATED, A VA CORP Carbon heat smoking article with reusable body
5249586, Mar 11 1991 Philip Morris Incorporated Electrical smoking
5388594, Sep 11 1992 PHILIP MORRIS USA INC Electrical smoking system for delivering flavors and method for making same
5465738, Apr 09 1992 Music City Marketing, Inc. Smoking system
5479948, Aug 10 1993 Philip Morris Incorporated; PHILIP MORRIS PRODUCTS INC Electrical smoking article having continuous tobacco flavor web and flavor cassette therefor
5499636, Sep 11 1992 Philip Morris Incorporated Cigarette for electrical smoking system
5591368, Mar 11 1991 Philip Morris Incorporated; PHILIP MORRIS PRODUCTS INC Heater for use in an electrical smoking system
5666977, Jun 10 1993 Philip Morris Incorporated Electrical smoking article using liquid tobacco flavor medium delivery system
5878752, Nov 25 1996 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
5967148, Oct 16 1997 PHILIPS MORRIS INCORPORATED; PHILIP MORRIS PRODUCTS INC Lighter actuation system
6026820, Sep 11 1992 Philip Morris Incorporated Cigarette for electrical smoking system
6040560, Oct 22 1996 GLENN, CHARLES E B ; PHILIP MORRIS PRODUCTS INC Power controller and method of operating an electrical smoking system
6053176, Feb 23 1999 PHILIP MORRIS USA INC Heater and method for efficiently generating an aerosol from an indexing substrate
6418938, Nov 10 1998 Philip Morris Incorporated Brush cleaning unit for the heater fixture of a smoking device
6532965, Oct 24 2001 BROWN & WILLIAMSON U S A , INC ; R J REYNOLDS TOBACCO COMPANY Smoking article using steam as an aerosol-generating source
6615840, Feb 15 2002 PHILIP MORRIS USA INC Electrical smoking system and method
6810883, Nov 08 2002 PHILIP MORRIS USA, INC Electrically heated cigarette smoking system with internal manifolding for puff detection
7861726, Nov 27 2006 Filtration device for tobacco products
8375959, Apr 27 2002 BRITISH AMERICAN TOBACCO INVESTMENTS LIMITED A CORPORATION EXISTING UNDER THE LAWS OF ENGLAND AND WALES Smoking articles and smokable filler materials therefor
8419085, Jul 07 2008 HUMAX CO., LTD. Case locking device
8752545, Feb 11 2011 Nicoventures Trading Limited Inhaler component
8851081, Apr 17 2008 Philip Morris USA Inc. Electrically heated smoking system
8973587, Aug 24 2012 HUIZHOU KIMREE TECHNOLOGY CO , LTD , SHENZHEN BRANCH Electronic cigarette device
9078472, Aug 24 2012 HUIZHOU KIMREE TECHNOLOGY CO , LTD , SHENZHEN BRANCH Electronic cigarette device
9078473, Aug 09 2011 RAI STRATEGIC HOLDINGS, INC Smoking articles and use thereof for yielding inhalation materials
9220304, Jan 03 2012 PHILIP MORRIS PRODUCTS S A Power supply system for portable aerosol-generating device
9271528, Aug 31 2012 HUIZHOU KIMREE TECHNOLOGY CO , LTD , SHENZHEN BRANCH Multi-flavored electronic cigarette
9320299, Feb 05 2010 Kind Consumer Limited Simulated smoking device
9423152, Mar 15 2013 RAI STRATEGIC HOLDINGS, INC Heating control arrangement for an electronic smoking article and associated system and method
9427023, Jun 20 2012 HUIZHOU KIMREE TECHNOLOGY CO , LTD , SHENZHEN BRANCH Electronic cigarette and electronic cigarette device
9497991, Nov 07 2011 PHILIP MORRIS PRODUCTS, S A Smoking article with colour change segment
9499332, May 21 2009 Philip Morris USA Inc. Electrically heated smoking system
9504279, May 12 2011 Shenzhen Smoore Technology Limited Automization nozzle of electronic atomization inhaler
9516899, Dec 30 2011 PHILIP MORRIS PRODUCTS S A Aerosol generating device with improved temperature distribution
9560883, Mar 15 2013 Altria Client Services LLC Electronic smoking articles
9655383, Aug 24 2012 PHILIP MORRIS PRODUCTS S A Portable electronic system including charging device and method of charging a secondary battery
9693587, Nov 21 2011 PHILIP MORRIS PRODUCTS S A Extractor for an aerosol-generating device
9723871, Apr 16 2013 HUIZHOU KIMREE TECHNOLOGY CO , LTD SHENZHEN BRANCH Electronic cigarette and control method thereof
9795166, Nov 29 2013 HUIZHOU KIMREE TECHNOLOGY CO , LTD SHENZHEN BRANCH Electronic cigarette device
9814263, Dec 24 2010 PHILIP MORRIS PRODUCTS S A Aerosol generating system having means for determining depletion of a liquid substrate
9844234, Dec 03 2010 PHILIP MORRIS PRODUCTS S A Aerosol generating system with leakage prevention
9854841, Oct 08 2012 RAI STRATEGIC HOLDINGS, INC Electronic smoking article and associated method
9894934, Jan 26 2014 Shenzhen First Union Technology Co., Ltd. Aerosol generating device and aerosol inhalation device having same
9918494, Dec 21 2012 PHILIP MORRIS PRODUCTS S A Smoking article comprising an airflow directing element
9955724, May 14 2012 Nicoventures Trading Limited Electronic vapor provision device
9986760, Feb 22 2013 ALTRIA CLIENT SERVICES INC Electronic smoking article
9999247, Oct 25 2011 PHILIP MORRIS PRODUCTS S A Aerosol generating device with heater assembly
20040261802,
20050045198,
20050172976,
20060030214,
20080001052,
20100001538,
20100024834,
20100307518,
20110155151,
20110226236,
20110265806,
20110290248,
20110290269,
20120048266,
20120247494,
20130014772,
20130037041,
20130074857,
20130213419,
20130284192,
20130319439,
20130340775,
20140014125,
20140020698,
20140096782,
20140116455,
20140246035,
20140299137,
20140301721,
20140305448,
20140318559,
20140345634,
20140363145,
20150007838,
20150013696,
20150020832,
20150024355,
20150027474,
20150100441,
20150136124,
20150136154,
20150208725,
20150208730,
20150216234,
20150216237,
20150245654,
20150245666,
20150257445,
20150272211,
20160150824,
20160235121,
20160270437,
20160270449,
20160286861,
20160302488,
20160331032,
20160345629,
20160366946,
20170006916,
20170006919,
20170027229,
20170027234,
20170042243,
20170055580,
20170071251,
20170071259,
20170095006,
20170150757,
20170164659,
20170172214,
20170172215,
20170188634,
20170295844,
20180177234,
20180206556,
20180235283,
20190014826,
20190075849,
20190320719,
20190364975,
20200006950,
20200113230,
20200120983,
20200232766,
20200305508,
20200352224,
20200413495,
20210000182,
20210120875,
CA2973143,
CA2975654,
CH310239,
CN101043827,
CN101444335,
CN102006790,
CN102109393,
CN102326869,
CN102438470,
CN102811634,
CN103096741,
CN103281920,
CN103338665,
CN103622162,
CN103859606,
CN103929988,
CN103974638,
CN103974640,
CN103987286,
CN103997921,
CN103997922,
CN104023568,
CN104023574,
CN104039183,
CN104095295,
CN104106842,
CN104382237,
CN104470387,
CN104489933,
CN104544559,
CN104754964,
CN104770878,
CN104799438,
CN104812260,
CN105163610,
CN105208882,
CN105208884,
CN105341993,
CN105342011,
CN105357994,
CN105361250,
CN105453598,
CN105747281,
CN105789506,
CN105831812,
CN105848503,
CN105876869,
CN105939625,
CN106037014,
CN106102492,
CN106132217,
CN106163307,
CN106174699,
CN106231934,
CN106413439,
CN106413444,
CN106455708,
CN106455714,
CN106455716,
CN106473233,
CN1065535680,
CN106901404,
CN1102964,
CN1122213,
CN1190335,
CN1209731,
CN1973706,
CN201491717,
CN202407082,
CN202774134,
CN203457802,
CN203575658,
CN203633505,
CN203646503,
CN203689071,
CN203692545,
CN203789137,
CN203814592,
CN203943078,
CN204070570,
CN204146338,
CN204317504,
CN204444239,
CN204763414,
CN205018293,
CN205072064,
CN205180371,
CN205197003,
CN205337598,
CN205456048,
CN205512358,
CN205597118,
CN205648910,
CN205728067,
CN205831062,
CN206097720,
CN206312988,
CN2146758,
CN2857109,
DE3302518,
EA12169,
EA26076,
EP1119267,
EP2022349,
EP2201850,
EP2253233,
EP2432339,
EP2531053,
EP3098738,
EP3179828,
EP3248485,
EP3275319,
GB2542018,
GB2550540,
JP11164679,
JP1140122,
JP2006320286,
JP200692831,
JP2010178730,
JP2010526553,
JP2011518567,
JP201187569,
JP2012527222,
JP2014079229,
JP2014500017,
JP2014521419,
JP2014525237,
JP2014533513,
JP2014534813,
JP2015180214,
JP2015204833,
JP2015503916,
JP2015504669,
JP2015506170,
JP2015507477,
JP2015508996,
JP2015524261,
JP2015529458,
JP2016528910,
JP2016538848,
JP201746700,
JP2017501682,
JP201751189,
JP2017514463,
JP201770297,
JP3232481,
JP3645921,
JP4278306,
JP4739433,
JP7184627,
KR100304044,
KR100806461,
KR100965099,
KR101001077,
KR101098112,
KR101184499,
KR101516304,
KR101523088,
KR101609715,
KR101619032,
KR101656061,
KR101667124,
KR101668175,
KR101679489,
KR101690389,
KR101740160,
KR1020110096548,
KR1020120027029,
KR1020120101637,
KR1020120109634,
KR1020120114333,
KR1020120121314,
KR1020130027909,
KR1020130081238,
KR1020130139296,
KR1020130139298,
KR1020140068203,
KR1020140092312,
KR1020140116055,
KR1020140118983,
KR1020140119072,
KR1020140135774,
KR1020150030409,
KR1020150033617,
KR1020150058569,
KR1020150099771,
KR1020160009678,
KR1020160012110,
KR1020160012329,
KR1020160015144,
KR1020160040643,
KR1020160052607,
KR1020160060006,
KR1020160088163,
KR1020160094938,
KR1020160096744,
KR1020160108855,
KR1020160114743,
KR1020160124091,
KR1020160129024,
KR1020160131035,
KR1020160133665,
KR1020160137627,
KR1020160140608,
KR1020160142896,
KR1020160147253,
KR1020170006282,
KR1020170007262,
KR1020170044158,
KR1020170071486,
KR1020170074898,
KR1020180018794,
KR200466757,
KR200469513,
KR2020090008911,
KR2020110009632,
KR2020140006242,
KR2020160001476,
RU2014125232,
RU2302806,
RU2425608,
RU2531890,
RU2564600,
RU2581999,
RU2589437,
RU2594557,
RU2595593,
RU2602053,
RU2602962,
RU2603559,
RU2604012,
UA104628,
WO27232,
WO2010133342,
WO2011028372,
WO2011095781,
WO2012072264,
WO2012123702,
WO2013034458,
WO2013060743,
WO2013076098,
WO2013098395,
WO2013098398,
WO2013098409,
WO2013102609,
WO2013102612,
WO2013120565,
WO2013126777,
WO2013137084,
WO2013171217,
WO2014029880,
WO2015046386,
WO2015088744,
WO2015128665,
WO2015147657,
WO2015155289,
WO2015165813,
WO2015177044,
WO2015197627,
WO2016059073,
WO2016075028,
WO2016076147,
WO2016107766,
WO2016124550,
WO2016124552,
WO2016150019,
WO2016156103,
WO2016156219,
WO2016159013,
WO2016166064,
WO2016178377,
WO2016187803,
WO2017029088,
WO2017029089,
WO2017037457,
WO2017042297,
WO2017075759,
WO2017139963,
WO2018050449,
WO2018189195,
WO2019020826,
WO2019030172,
WO2019095268,
WO9406314,
WO9823171,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 29 2020KT&G CORPORATION(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Aug 22 20264 years fee payment window open
Feb 22 20276 months grace period start (w surcharge)
Aug 22 2027patent expiry (for year 4)
Aug 22 20292 years to revive unintentionally abandoned end. (for year 4)
Aug 22 20308 years fee payment window open
Feb 22 20316 months grace period start (w surcharge)
Aug 22 2031patent expiry (for year 8)
Aug 22 20332 years to revive unintentionally abandoned end. (for year 8)
Aug 22 203412 years fee payment window open
Feb 22 20356 months grace period start (w surcharge)
Aug 22 2035patent expiry (for year 12)
Aug 22 20372 years to revive unintentionally abandoned end. (for year 12)