A soft actuator includes an inflation chamber. The inflation chamber has a first end and a second end opposite the first end. The inflation chamber is inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and is operable to be loaded during an inflated stage, in which the inflation chamber is inflated. The soft actuator also includes a variable-stiffness hinge located between the first end and the second end along the folding axis. The variable-stiffness hinge has a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage.
|
0. 1. A soft actuator, comprising:
an inflation chamber having a first end and a second end opposite the first end, and inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and loadable during an inflated stage; and
a variable-stiffness hinge integrally formed from a surface of the inflation chamber and located between the first end and the second end along the folding axis, wherein the hinge is configured to have a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage.
0. 7. A soft actuator, comprising:
an inflation chamber having a first end and a second end opposite the first end, and inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and loadable during an inflated stage;
a variable-stiffness hinge located between the first end and the second end along the folding axis, wherein the hinge is configured to have a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage; and
two jamming surfaces located at the hinge, wherein the jamming surfaces are slidable across each other in the inflation stage to decrease the stiffness of the hinge, and wherein the jamming surfaces are pressable together in the inflated stage to increase the stiffness of the hinge.
0. 14. An actuation system, comprising:
a soft actuator having an inflation chamber, the inflation chamber having a first end and a second end opposite the first end, and inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and loadable during an inflated stage, and the inflation chamber having a variable-stiffness hinge integrally formed from a surface of the inflation chamber and located between the first end and the second end along the folding axis, wherein the hinge has a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage; and
a computing device including a processor communicatively coupled with a memory, the processor including machine-readable instructions stored in the memory that when executed, cause the processor to identify a condition of the soft actuator and cause the stiffness of the hinge to be increased or decreased based on the condition.
0. 2. The soft actuator of
0. 3. The soft actuator of
0. 4. The soft actuator of
active material located at the hinge and configured to have a decreased stiffness when deactivated and an increased stiffness when activated, wherein the active material is de-activatable during the inflation stage to decrease the stiffness of the hinge, and wherein the active material is activatable during the inflated stage to increase the stiffness of the hinge.
0. 5. The soft actuator of
0. 6. The soft actuator of
0. 8. The soft actuator of
0. 9. The soft actuator of
a transfer pump operable to pump fluid into or out of the hinge, wherein the transfer pump is operable to pump fluid into the hinge during the inflation stage such that the jamming surfaces are slidable across each other to decrease the stiffness of the hinge, and wherein the transfer pump is operable to pump fluid out of the hinge during the inflated stage such that the jamming surfaces are pressed together to increase the stiffness of the hinge.
0. 10. The soft actuator of
active material located at the hinge and configured to have a decreased size when deactivated and an increased size when activated, wherein the jamming surfaces are located between the active material, wherein the active material is de-activatable in the inflation stage to have a decreased size such that the jamming surfaces are slidable across each other to decrease the stiffness of the hinge, and wherein the active material is activatable in the inflated stage to have an increased size such that the jamming surfaces are pressed together to increase the stiffness of the hinge.
0. 11. The soft actuator of
0. 12. The soft actuator of
0. 13. The soft actuator of
an electrostatic clutch located at the hinge, wherein the jamming surfaces are located between the electrostatic clutch, wherein the electrostatic clutch is de-activatable in the inflation stage such that the jamming surfaces are slidable across each other to decrease the stiffness of the hinge, and wherein the electrostatic clutch is activatable in the inflated stage to press the jamming surfaces together to increase the stiffness of the hinge.
0. 15. The actuation system of
0. 16. The actuation system of
active material located at the hinge and configured to have a decreased stiffness when deactivated and an increased stiffness when activated, wherein, responsive to identifying the deflated condition or the inflation condition, the processor is configured to deactivate the active material to cause the stiffness of the hinge to be decreased, and wherein, responsive to identifying the inflated condition, the processor is configured to activate the active material to cause the stiffness of the hinge to be increased.
0. 17. The actuation system of
two jamming surfaces located at the hinge, wherein the jamming surfaces are slidable across each other in the inflation stage to decrease the stiffness of the hinge, and wherein the jamming surfaces are pressable together in the inflated stage to increase the stiffness of the hinge.
0. 18. The soft actuator of
0. 19. The soft actuator of
active material located at the hinge and configured to have a decreased size when deactivated and an increased size when activated, wherein the jamming surfaces are located between the active material, wherein, responsive to identifying the deflation condition or the inflation condition, the processor is configured to deactivate the active material to have a decreased size such that the jamming surfaces are slidable across each other to decrease the stiffness of the hinge, and wherein, responsive to identifying the inflated condition, the processor is configured to activate the active material to have an increased size such that the jamming surfaces are pressed together to increase the stiffness of the hinge.
0. 20. The soft actuator of
an electrostatic clutch located at the hinge, wherein the jamming surfaces are located between the electrostatic clutch, wherein, responsive to identifying the deflation condition or the inflation condition, the processor is configured to deactivate the electrostatic clutch such that the jamming surfaces are slidable across each other to decrease the stiffness of the hinge, and wherein, responsive to identifying the inflated condition, the processor is configured to activate the electrostatic clutch to press the jamming surfaces together to increase the stiffness of the hinge.
|
The embodiments disclosed herein relate to a soft actuator and, more particularly, to a soft actuator with a variable-stiffness hinge.
Actuators have a variety of applications, including robotics, manufacturing, and transportation. In robotic applications, soft actuators may be used, and may be actuated by mechanical, thermal, and/or electrical stimuli.
Disclosed herein are embodiments of a soft actuator and an actuation system including the soft actuator.
In one aspect, a soft actuator includes an inflation chamber. The inflation chamber has a first end and a second end opposite the first end. The inflation chamber is inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and is operable to be loaded during an inflated stage, in which the inflation chamber is inflated. The soft actuator also includes a variable-stiffness hinge located between the first end and the second end along the folding axis. The variable-stiffness hinge has a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage.
In another aspect, a soft actuator includes an inflation chamber. The inflation chamber has a first end and a second end opposite the first end. The inflation chamber is inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and is operable to be loaded during an inflated stage, in which the inflation chamber is substantially fully inflated. The soft actuator also includes a variable-stiffness hinge located between the first end and the second end along the folding axis. The variable-stiffness hinge has a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage. The soft actuator also includes two jamming surfaces located at the hinge. In the inflation stage, the jamming surfaces are slidable across each other to decrease the stiffness of the hinge. In the inflated stage, the jamming surfaces are pressed together to increase the stiffness of the hinge.
In yet another aspect, an actuation system includes a soft actuator. The soft actuator includes an inflation chamber. The inflation chamber has a first end and a second end opposite the first end. The inflation chamber is inflatable during an inflation stage, in which the second end rotates toward the first end about a folding axis, and is operable to be loaded during an inflated stage, in which the inflation chamber is inflated. The soft actuator also includes a variable-stiffness hinge located between the first end and the second end along the folding axis. The variable-stiffness hinge has a decreased stiffness in the inflation stage and an increased stiffness in the inflated stage. The actuation system also includes a computing device configured to identify a condition of the soft actuator and cause the stiffness of the hinge to be increased or decreased based on the condition.
These and other aspects will be described in additional detail below.
The various features, advantages and other uses of the present embodiments will become more apparent by referring to the following detailed description and drawing in which:
This disclosure teaches a soft actuator having a variable-stiffness hinge, an actuation system including the soft actuator, and a method for the actuation system.
Referring to
The first side 16 and the second side 18 of the soft actuator 10 can also belong to the inflation chamber 12. The first side 16 and the second side 18 of the inflation chamber 12 can be two separate pieces of material that are sealed or seamed together along the outer perimeter 14. Alternatively, the first side 16 and the second side 18 of the inflation chamber 12 can be formed from the same piece of material that is folded over itself and sealed or seamed along the outer perimeter 14.
The inflation chamber 12 is configured to be inflated and deflated. The inflation chamber 12 can be inflated with any suitable fluid, including air or liquid. Accordingly, the soft actuator 10 includes an inflation port 24. The inflation port 24 is fluidly connected to the inflation chamber 12 and is connectable to an inflation pump (
As the soft actuator 10 is inflated, it is configured to bend in a folding manner. Accordingly, the soft actuator 10 has a folding axis A. The folding axis A can be substantially between the first end 20 and the second end 22 in the center of the soft actuator 10. Located along the folding axis A, the soft actuator 10 has a hinge 26. The hinge 26 is flexible and allows the soft actuator 10 to fold along the folding axis A. As the soft actuator 10 folds, the second end 22 (e.g. the moving end) moves toward first end 20 (e.g. the fixed end) about the folding axis A. For example, the second end 22 rotates toward the first end 20 about the folding axis A. Moreover, the soft actuator 10 has a bending angle α which may increase as the soft actuator 10 folds. The bending angle α can be measured from a fixed surface or plane to the second end 22. The bending angle α can vary from substantially 0° to about or over 90°.
With additional reference to
Referring to
Among other characteristics of the soft actuator 10, the inflation chamber 12 has a deformability. The deformability can be a measurement of how much the inflation chamber 12 deforms when subjected to a load F (e.g. force) (
In conjunction with the deformability of the soft actuator 10, the operation of the soft actuator 10 may be varied by changing the stiffness of the hinge 26. Accordingly, the hinge 26 can be a variable-stiffness hinge 26. The stiffness of the hinge 26 can be varied across the three stages. In the deflated stage 28 and the inflation stage 30, the hinge 26 can have a decreased stiffness (e.g., the hinge 26 can be soft and/or flexible). The decreased stiffness of the hinge 26 allows the soft actuator 10 to undergo inflation and change shape as needed. In the inflated stage 32, the hinge 26 has an increased stiffness (e.g., the hinge 26 can be stiff and/or rigid). The increased stiffness of the hinge 26 allows the soft actuator 10 to withstand a relatively high amount of loading without bending substantially about the folding axis. The hinge 26 can be configured to have a variable stiffness in any suitable manner.
With reference again to
In a second implementation, the hinge 26 can include two opposed jamming surfaces 36. As shown, the jamming surfaces 36 can be located between the first side 16 and the second side 18 and connected to the inside of the first side 16 and the inside of the second side 18, respectively. In another example, the jamming surfaces 36 can be part of the inside of the first side 16 and the inside of the second side 18. In order to increase the stiffness of the hinge 26, the jamming surfaces 36 can be pressed together to increase the friction between them, such that the first side 16 and the second side 18 are pressable together at the hinge 26 and are not able to move with respect to each other. Accordingly, the jamming surfaces 36 can be made of any suitable high-friction material. For example, the jamming surfaces 36 can be jamming sheets made of sandpaper. In order to decrease the stiffness of the hinge 26, the jamming surfaces 36 are not pressed together (e.g., they are separated from each other or are touching each other but are slidable across each other). In the deflated stage 28 and the inflation stage 30, the hinge 26 is configured such that the jamming surfaces 36 are not pressed together. In the inflated stage 32, the hinge 26 is configured such that the jamming surfaces 36 are pressed together.
With additional reference to
Referring now to
With further reference to
In the deflated stage 28 and the inflation stage 30, the electrostatic clutch 42 can be configured to be neutrally-charged. For example, there may be no voltage applied to the electrostatic clutch 42. This allows the jamming surfaces 36 to be slidable across each other to decrease the stiffness of the hinge 26. In the inflated stage 32, a positive voltage can be applied to one side of the electrostatic clutch 42 and a negative voltage can be applied to the opposite side of the electrostatic clutch 42. For example, a positive voltage can be applied to the first side 44 of the electrostatic clutch 42 and a negative voltage can be applied to the second side 46 of the electrostatic clutch 42. Or, a negative voltage can be applied to the first side 44 of the electrostatic clutch 42 and a positive voltage can be applied to the second side 46 of the electrostatic clutch 42. In either example, when a voltage differential is applied to the electrostatic clutch 42, the first side 44 and the second side 46 of the electrostatic clutch 42 are pulled together, thus pulling the first side 16 and the second side 18 of the inflation chamber 12 together. This presses the jamming surfaces 36 together and increases the stiffness of the hinge 26.
With reference now to
The actuation system 48 can also include a computing device 52. The computing device 52 can be configured to operate one or more components of the actuation system 48. The computing device 52 is communicatively connected to the inflation pump, the transfer pump 38, and/or the stimulation device 50. The computing device 52 may include one or more processors communicatively coupled with a memory. The processor(s) may include any device capable of executing machine-readable instructions, which may be stored on a non-transitory computer-readable medium, for example, the memory. The processor(s) may include a controller, an integrated circuit, a microchip, a computer, and/or any other computing device 52. The memory may include any type of computer-readable medium suitable for storing data and algorithm. For example, the memory may include RAM, ROM, a flash memory, a hard drive, and/or any device capable of storing machine-readable instructions. Various algorithms and data for operating the actuation system 48 may reside in whole or in part in the memory.
The computing device 52 can be configured to identify a condition of the soft actuator 10. The condition can be a deflated condition, an inflation condition, or an inflated condition. The deflated condition indicates that the soft actuator 10 is in the deflated stage 28, and that the stiffness of the hinge 26 should be decreased or should otherwise remain decreased. The inflation condition indicates that the soft actuator 10 is in the inflation stage 30, and that the stiffness of the hinge 26 should be decreased or should otherwise remain decreased. The inflated stage 32 indicates that the soft actuator 10 is in the inflated stage 32, and that the stiffness of the hinge 26 should be increased or should otherwise remain increased. When the computing device 52 identifies the deflated condition or the inflation condition, it can be configured to operate the transfer pump 38 to pump fluid into the hinge 26, or it can be configured to deactivate the active material 34 or the electrostatic clutch 42 to decrease the stiffness of the hinge 26. When the computing device 52 identifies the inflated condition, it can be configured to operate the transfer pump 38 to pump fluid out of the hinge 26, or it can be configured to activate the active material 34 or the electrostatic clutch 42 to increase the stiffness of the hinge 26.
Now that the various potential systems, devices, elements, and/or components have been described, a method, including various possible steps of such method, will now be described. The method described may be applicable to the arrangements described above, but it is to be understood that the method can be carried out with other suitable systems and arrangements. Moreover, the method may include other steps not shown here, and the method is not limited to including every step shown. The blocks illustrated here as part of the method are not limited to the particular chronological order. Indeed, some of the blocks may be performed in a different order than what is shown and/or at least some of the blocks shown can occur simultaneously.
Referring to
Referring now to
While recited characteristics and conditions of the invention have been described in connection with certain embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Song, Yuyang, Gandhi, Umesh N., Tsuruta, Ryohei
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4944755, | Oct 21 1986 | Air Muscle Limited | Motorized joint |
9664210, | Oct 19 2013 | Massachusetts Institute of Technology | Methods and apparatus for layer jamming |
9719534, | Jun 26 2014 | President and Fellows of Harvard College | Pneumatic insect robots |
9764220, | May 03 2011 | Massachusetts Institute of Technology | Jamming methods and apparatus |
20140314976, | |||
DE10222022, | |||
DE20309196, | |||
EP1519055, | |||
JP2006000347, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 16 2021 | SONG, YUYANG | TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057590 | /0623 | |
Sep 16 2021 | TSURUTA, RYOHEI | TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057590 | /0623 | |
Sep 16 2021 | GANDHI, UMESH N | TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057590 | /0623 | |
Sep 20 2021 | Toyota Motor Engineering & Manufacturing North America, Inc. | (assignment on the face of the patent) | / | |||
Aug 08 2023 | TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC | Toyota Jidosha Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064678 | /0014 |
Date | Maintenance Fee Events |
Sep 20 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Aug 22 2026 | 4 years fee payment window open |
Feb 22 2027 | 6 months grace period start (w surcharge) |
Aug 22 2027 | patent expiry (for year 4) |
Aug 22 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 22 2030 | 8 years fee payment window open |
Feb 22 2031 | 6 months grace period start (w surcharge) |
Aug 22 2031 | patent expiry (for year 8) |
Aug 22 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 22 2034 | 12 years fee payment window open |
Feb 22 2035 | 6 months grace period start (w surcharge) |
Aug 22 2035 | patent expiry (for year 12) |
Aug 22 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |