A concept for handovers in cellular networks, a concept for improved handling of tracking/paging areas for, for instance, user entities in inactive modes and a concept for enabling intelligent route selection in cellular networks are presented.
|
32. A method for communication from a user entity over a cellular network, comprising
gaining information on a predicted future route of the user entity; and
informing, upon the request from the cellular network, the cellular network on the predicted future route by sending to the cellular network a list of locations along the predicted future route,
managing a set of one or more preemptively prepared handovers by deriving, for each of a set of one or more base stations of the cellular network, one or more access parameters, and
continuously deciding on, or judging whether, accessing the cellular network via any of a set of one or more base stations within a reach of which the user entity currently is, using the one or more access parameters derived for the respective base station, wherein the cardinality of the set of one or more base stations is greater than one.
13. A user entity for communication over a cellular network,
wherein the user entity comprises a microprocessor configured for, or an electronic circuit configured for, or a computer programmed with a program stored in a memory configured for gaining information on a predicted future route of the user entity; and
informing, upon a request from the cellular network, the cellular network on the predicted future route by sending to the cellular network
a list of locations along the predicted future route;
managing a set of one or more preemptively prepared handovers by
deriving, for each of a set of one or more base stations of the cellular network, one or more access parameters, and
continuously deciding on, or judging whether, accessing the cellular network via any of the set of one or more base stations within a reach of which the user entity currently is, using the one or more access parameters derived for the respective base station,
wherein the cardinality of the set of one or more base stations is greater than one.
31. A method for operating a cellular network comprising preemptively preparing a handover for a user entity,
wherein the method performed on a microprocessor or electronic circuit comprises requesting, from the user entity, a transmission of predicted future route information;
receiving, from the user entity, the predicted future route information, the predicted future route information including
a list of locations along the predicted future route;
determining, based on the predicted future route information, a preliminary set of one or more base stations of the cellular network, wherein the cardinality of the set of one or more base stations is greater than one;
sending a query from a centralized unit of the cellular network to each of the preliminary set of one or more base stations of the cellular network regarding an accessibility of the cellular network via the respective base station at an expected time at which the user entity enters a cell of the respective base station; and
sending an answer from the respective base station to the centralized unit.
1. A cellular network supporting a preemptive preparation of a handover for a user entity,
wherein the cellular network comprises a microprocessor configured for, or an electronic circuit configured for, or a computer programmed with a program stored in a memory configured for
request, from the user entity, a transmission of predicted future route information;
receiving, from the user entity, the predicted future route information, the predicted future route information including list of locations along the predicted future route, determining, based on the predicted future route information, a preliminary set of one or more base stations of the cellular network, wherein the cardinality of the set of one or more base stations is greater than one;
sending a query from a centralized unit of the cellular network to each of the preliminary set of one or more base stations of the cellular network regarding an accessibility of the cellular network via the respective base station at an expected time at which the user entity enters a cell of the respective base station, and
sending an answer from the respective base station to the centralized unit.
22. A base station of a cellular network, wherein the base station comprises a microprocessor configured for, or an electronic circuit configured for, or a computer programmed with a program stored in a memory configured for receiving from a user entity predicted future route information including a list of locations along the predicted future route;
determining a preliminary set of one or more target base stations of the cellular network based on the predicted future route information, wherein the cardinality of the preliminary set of one or more base stations is greater than one;
querying each of the preliminary set of one or more target base stations regarding an accessibility of the cellular network via the respective target base station;
receiving, from each of the preliminary set of one or more base stations, an answer to the query;
sending to the user entity a schedule indicating, for each of a set of one or more base stations within the preliminary set, a temporal access interval and one or more access parameters indicating that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters, and cutting, upon receipt of an access confirmation from any of the set of one or more base stations, a connection to the user entity.
34. A method of operating a base station of a cellular network, comprising
requesting, from a user entity, a transmission of predicted future route information;
receiving, from the user entity, the predicted future route information, the predicted future route information including
a list of locations along the predicted future route;
determining a preliminary set of one or more target base stations of the cellular network based on a predicted future route information, wherein the cardinality of the preliminary set of one or more base stations is greater than one; and
triggered by the user entity entering a predetermined area, querying each of the preliminary set of one or more target base stations regarding an accessibility of the cellular network via the respective target base station;
receiving, from each of the preliminary set of one or more base stations, an answer to the query;
sending to the user entity a schedule indicating, for each of a set of one or more base stations within the preliminary set, a temporal access interval and one or more access parameters indicating that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters; and
cutting, upon receipt of an access confirmation from any of the set of one or more base stations, a connection to the user entity.
2. The cellular network according to
establishing, for each base station x of a set of one or more base stations of the cellular network,
a temporal access interval starting at start time txstart and one or more access parameters,
so that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters; and
sending to the user entity a schedule indicating the start time txstart and the one or more access parameters for each base station x of the set of one or more base stations.
3. The cellular network according to
establishing, for each base station x of a set of one or more base stations of the cellular network,
a temporal access interval starting at start time txstart and ending at a temporal end and
one or more access parameters, so that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters; and
sending to the user entity a schedule indicating the start time txstart and the one or more access parameters and as to when the temporal access interval ends for each base station x of the set of one or more base stations.
4. The cellular network according to
5. The cellular network according to
one or more current identifiers with which the user entity is identified in the cellular network.
6. The cellular network according to
7. The cellular network according to
8. The cellular network according to
9. The cellular network according to
the temporal access interval and
the one or more access parameters.
10. The cellular network according to
11. The cellular network according to
12. The cellular network according to
14. The user entity according to
15. The user entity according to
16. The user entity according to
17. The user entity according to
18. The user entity according to
19. The user entity according to
20. The user entity according to
21. The user entity according to
23. The base station according to
24. The base station according to
25. The base station according to
26. The base station according to
27. The base station according to
28. The base station according to
29. The base station according to
30. The base station according to
33. The method of
|
This application is a continuation of copending U.S. patent application Ser. No. 16/431,647 filed Jun. 4, 2019, which is a continuation of International Application No. PCT/EP2018/000109, filed Mar. 22, 2018, which is incorporated herein by reference in its entirety, and additionally claims priority from European Application No. 17162641.9, filed Mar. 23, 2017, which is also incorporated herein by reference in its entirety.
The present application is concerned with a concept for handovers in cellular networks, a concept for improved handling of tracking/paging/RAN notification areas for, for instance, user entities in inactive modes and a concept for enabling intelligent route selection in cellular networks.
Handovers of connections such as an ongoing call or a data session, or a user entity from one cell to another is an oft-occurring process and the control signaling used to establish such handovers consumes a considerable amount of the available radio and network resources and currently has an undesirable high latency for high reliability communications. Any reduction in the control signaling overhead and/or latency would be desirable.
Handovers take place in an activated mode of a user entity. Most of the time, however, user entities are not in an active mode or, differently speaking, most of the time there is no need for a continuous data communication for a user entity, but rather, discontinuously or intermittently, packets of a certain data session, are to be transmitted to/from the user entity. In such a case, continuously performing handovers might be unnecessary as long as a user entity is within a certain tracking/paging area. Merely when leaving the tracking/paging area, the user entity informs the cellular network on its new location or position. This entails, however, power consumption by the user entity and accordingly, it would be desirable to have a concept at hand which allows for reduction in this power consumption.
An embodiment may have a cellular network supporting a preemptive preparation of a handover for a user entity.
Another embodiment may have a cellular network apparatus, configured to analyze a predetermined set of cells around a position of user entity with respect to a set of possible routes leading away from the user entity's position to determine a favorite route among the set of possible routes in terms of connectivity of the user entity; and provide for the user entity information about the favorite route.
Another embodiment may have a user entity for communication over a cellular network, wherein the user entity is configured to gain information on a predicted future route of the user entity and inform the cellular network on the predicted future route.
Another embodiment may have a user entity for communication over a cellular network, wherein the user entity is configured to manage a set of one or more preemptively prepared handovers.
Another embodiment may have a base station of a cellular network configured to determine a preliminary set of one or more target base stations of the cellular network based on a predicted future route of a user entity currently connected to the cellular network via the base station or triggered by the user entity entering a predetermined area, query each of the preliminary set of one or more target base stations regarding an accessibility of the cellular network via the respective target base station, receive, from each of the preliminary set of one or more base stations, an answer to the query, sending to the user entity a schedule indicating, for each of a set of one or more base stations within the preliminary set, a temporal access interval and one or more access parameters indicating that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters, cutting, upon receipt of an access confirmation from any of the set of one or more base stations, a connection to the user entity.
Another embodiment may have a cellular network configured to establish for a predetermined user entity a schedule of a time-varying tracking/paging area spanned by a time-varying set of one or more base stations, or to establish the time-varying tracking/paging area and provide the user entity with updates on changes of the time-varying tracking/paging area.
Another embodiment may have a cellular network configured to determine for a predetermined user entity a tracking/paging area depending on a predicted future route of a user entity.
Still another embodiment may have a user entity for communicating over a cellular network, wherein the user entity is configured to continuously check a schedule of a time-varying tracking/paging area whether the user entity leaves the time-varying tracking area and send a tracking/paging area update message to the cellular network in case of the user entity leaving the time-varying tracking/paging area.
Another embodiment may have a method for operating a cellular network having preemptively preparing a handover for a user entity.
According to another embodiment, a method for operating a cellular network may have the steps of: analyzing a predetermined set of cells around a position of user entity with respect to a set of possible routes leading away from the user entity's position to determine a favorite route among the set of possible routes in terms of connectivity of the user entity; and providing information about the favorite route for the user entity.
According to another embodiment, a method for communication over a cellular network may have the steps of: gaining information on a predicted future route of the user entity and informing the cellular network on the predicted future route.
Another embodiment may have a method for communication over a cellular network, having managing a set of one or more preemptively prepared handovers.
According to still another embodiment, a method of operating a base station of a cellular network may have the steps of: determining a preliminary set of one or more target base stations of the cellular network based on a predicted future route of a user entity currently connected to the cellular network via the base station or triggered by the user entity entering a predetermined area, querying each of the preliminary set of one or more target base stations regarding an accessibility of the cellular network via the respective target base station, receiving, from each of the preliminary set of one or more base stations, an answer to the query, sending to the user entity a schedule indicating, for each of a set of one or more base stations within the preliminary set, a temporal access interval and one or more access parameters indicating that the user entity may access the cellular network via the respective base station during the temporal access interval using the one or more access parameters, and cutting, upon receipt of an access confirmation from any of the set of one or more base stations, a connection to the user entity.
According to another embodiment, a method for operating a cellular network may have the step of: establishing for a predetermined user entity a schedule of a time-varying tracking/paging area spanned by a time-varying set of one or more base stations, or establishing the time-varying tracking/paging area and providing the user entity with updates on changes of the time-varying tracking/paging area.
According to another embodiment, a method for operating a cellular network may have the step of determining for a predetermined user entity a tracking/paging area depending on a predicted future route of a user entity.
According to another embodiment, a method for communicating over a cellular network may have the steps of: continuously check a schedule of a time-varying tracking/paging area whether the user entity leaves the time-varying tracking area and send a tracking/paging area update message to the cellular network in case of the user entity leaving the time-varying tracking/paging area.
Another embodiment may have a non-transitory digital storage medium having stored thereon a computer program for performing a method for operating a cellular network having preemptively preparing a handover for a user entity, when said computer program is run by a computer.
The present application provides, in accordance with a first aspect of the present application, a concept for improved handovers in a cellular network. This object is achieved by the subject matter of the independent claims of the present application in accordance with the first aspect of the present application.
In accordance with a second aspect of the present application, the present application provides a concept for an improved handling of user entities which are not in an active state.
One idea underlying some of the embodiments of the present application in accordance with the first and second aspects aims at achieving the above-identified improvements, by using a prediction of a future route of a user entity to improve the handover handling and/or the handling of non-active user entities, respectively. In particular, being able to exploit a predictive future route of the user entity allows for preemptive preparation of one or more handovers on the side of the cellular network. This, in turn, alleviates the control data overhead and/or reduces latency incurred by handovers. Such predictive future routes may also be advantageously used, for instance, in setting-up a time-varying tracking/paging area within which the user entity is allowed to stay without any need for keeping the cellular network updated on the exact cell within the tracking/paging area within which the user entity currently resides. This, in turn, may reduce the power consumption occurring in the user entity for indicating to the cellular network any departure from the tracking/paging area as the tracking/paging area may be adapted better to the route actually taken by the user entity.
A further idea which underlies some of the embodiments of the present application in accordance with the first aspect is the fact that a preemptive preparation of a handover enables the reduction in the amount of control signaling for handovers wherein, depending on these situations where such preemptive preparation of handovers is performed, the possible wastage of network resources which might be incurred by the preemptive preparation of the handovers in order to, for example, meet a certain promise that the user entity may access the cellular network at a predetermined temporal access interval using one or more access parameters at a certain base station of the cellular network, may be kept comparatively low. In particular, a preemptive preparation of handovers avoids, for a short-term or mid-term future, control signaling for handovers which will very likely occur with respect to a certain user entity. This, in turn, reduces control signaling at base stations for which the preemptive preparation of the handover has been performed, and reduces or avoids otherwise possibly occurring latency due to, for instance, the performance of handover related protocol signaling which then has to take place anytime just before the user entity seeks to move to the next cell. Naturally, this idea may be combined with the first idea so as to improve the selection of the set of base stations with respect to which the preemptive preparation of handovers is performed. Additionally or alternatively, the fact that the user entity enters a predetermined area may be identified as a circumstance where a preemptive preparation of a handover is favorably performed. For instance, such a predetermined area may be associated with a very high likelihood that the user entity will, in a near future, enter the cell of a predetermined other, i.e. target, base station and accordingly, performing a preemptive preparation of a handover towards this base station, may favorably reduce otherwise-occurring handover latency and/or control signaling associated with the handover.
Even additionally or alternatively, a further idea underlying some embodiments of the present application in accordance with the first and second aspects is the fact that some sort of scheduling of a tracking/paging area and/or handovers with respect to time, may alleviate the control signaling otherwise occurring if the scheduling would be replaced by a passive triggering of otherwise used tracking/paging area updates and handovers, namely, merely when needed. This idea may, obviously also be combined with the idea of exploiting a prediction of a future route of the user entity.
In accordance with a further aspect of the present application, the present application provides an improved concept for serving a user entity via a cellular network; namely, in a manner increasing the connectivity of the user entity. This object is achieved by the subject matter of the independent claim of the third aspect.
In particular, an idea on which embodiments of the third aspects are based, is that an analysis of a predetermined set of cells around a position of a user entity with respect to a set of possible routes leading away from the user entity's position to determine a—in terms of some predetermined criterion or criteria—favorite route among the set of possible routes in terms of connectivity of the user entity and providing for the user entity information about the favorite route, may be used to provide users of such a user entity with the opportunity to take this favorite route into account in planning their further journey; namely, in a manner taking into account the connectivity of the user entity and the time to come. The thus selected route could, for instance, be called a best connected/served route.
Embodiments of the present application are described below with respect to the Figures, in which:
In the following, various embodiments of the present application are described. These embodiments relate to different aspects of the present application, namely the aspect of efficiently handling handovers, the concept of efficiently controlling tracking/paging areas within which user entities may efficiently reside in a non-active mode, and the concept of providing users of user entities with the opportunity to take the aim of a good connectivity into account in selecting the route to be taken in the time to come.
The description of these embodiments starts with an introduction and a technical overview with respect to the first concept relating to handovers. In general, a base station can be referred to as eNB (naming in the LTE context) or gNB (naming in the NR/5G context). In the following, it is not distinguished between these three terms. A user terminal/mobile user can be referred to as user equipment or user entity (UE).
There can be loss of connectivity during handovers in New Radio (NR) for 5G, especially for cases involving vehicular traffic, e.g. cars, busses, trucks, autonomous driving, drones and unmanned aerial vehicles (UAVs), planes, etc. The problem is threefold:
These services shall be enhanced in order to improve performance and enhance reliability of the handover (HO) procedure through signaling procedures that specifically introduce prediction and improve the reliability of UE context transfer to the target eNBs during the predictive HO procedure.
The current HO procedures in LTE are designed to cater for scenarios where a UE transitions from a source eNB 12 to the target eNB 14 as indicated in
There are two types of HO procedure in LTE for UEs in active mode:
1) Preparation phase 30a involving the core network, e.g. EPC, where the resources are first prepared at the target side (steps 2-8),
2) Execution phase 30b (steps 8-12),
3) Completion phase 30c (after step 13).
As an overview of S1-based HO Handover Procedures reference is made to [6]. For a detailed description also refer to the steps of the previous X2-based HO procedure.
As to Steps 13-15, it is noted that some are special to the S1-based HO 30, and comprise of acknowledgement and update information to the target MME.
Next, UE context transfer in 4G/5G is referred to.
The radio resource control (RRC) context transfer is an important procedure of the HO process. The MME 32 as a part of the core network 22 creates a UE context when a UE 12 is switched on and subsequently attempts to connect to the network 24. A unique short temporary identity is assigned, also known as the SAE Temporary Mobile Subscriber Identity (S-TMSI), to the UE 12 that identifies the UE context in the MME 32. This UE context contains user subscription data originally obtained from a Home Subscriber Server 34 (HSS) also being part of the core network 22. The local storage of subscription data in the MME 32 enables faster execution of procedures such as bearer establishment since it removes the need to consult the HSS every time. In addition, the UE context also holds dynamic information such as the list of bearers that are established and the terminal capabilities [2]. During the P-HO process, the eNB 12 would be used to forward the UE's radio resource control (RRC) context to subsequent target eNBs such as eNB 14.
After having described, rather generally, the task of handovers in cellular networks and how these handovers were treated so far in LTE, in the following, the description of the present application provides a presentation of embodiments relating to this task which achieve an improvement over these handover mechanisms used in LTE so far in terms of control signaling overhead on the one hand and/or handover-related latency on the other hand.
Later on, the description proceeds with a description as to how some of the embodiments might be embedded into, or implemented to address various specifics associated with, nowadays mobile networks.
The cellular network 24 of
To have a better understanding of this, reference is made to
The use of route 52 for determining set 50 is not necessary. For instance, the mere fact or circumstance that UE 10 enters a certain predetermined area 56 may be an indicator that there is a high probability that the user entity 10 will be, during a certain time interval 54 following time instant t0 at which the UE 10 entered area 56, in a certain area, or will travel along a certain path or route so that set 50 could be automatically determined albeit fixedly associated with, the event of UE 10 entering area 56 at time instant t0. For instance, the area 56 could be one end of a street without any crossing until reaching, via a certain path 52, namely the street, a first crossing and accordingly, as soon as the UE 10 enters the street at this point, it is very likely that the UE 10 will follow this route/street 52. Similarly, imagine a UE 10 enters a tunnel at a first end and the tunnel being long so as to lead to another cell. While it might be unknown which street the UE takes after the tunnel, it is very likely that the UE will continue its journey after the tunnel and accordingly, set 50 could be determined so as to cover base stations surrounding that side of the tunnel.
Even alternatively, the prediction that there is a high probability that the user entity 10 will be, during some time interval 54 following a time instant t0, in a certain area, or will travel along a certain path or route, could be triggered on the basis of an evaluation of a history of a route of the CE in the past such as a time interval preceding, or even immediately preceding, time instant t0. In addition to the user entity 10 entering area 56, for instance, a current heading direction of UE 10 could be taken into account so as to trigger a preemptive HO preparation merely in case of the heading direction pointing into a certain direction or field of directions in addition to UE entering 56. For instance, preemptive preparation of HO could be triggered by the user entity coming from predetermined area 56. Generally speaking, a history of UE positions could be evaluated in order to see whether this history meets some criteria and if so, preemptive HO could be initiated. The history of positions may be logged in any granularity or accuracy. For instance, a previous set of serving base stations or a list of previous base stations along the route of the user entity, i.e. some mobility history, could be used to this end. Irrespective of area driven or history-of-positions driven, the triggering could be done based on matching current UE's position, current UE's heading direction and/or most recent history of UE positions against one or more predetermined criteria which are independent from the most recent connection quality measured by the UE with respect to its communication connection to the source base station 12 and/or any surrounding base station 11.
That is, along with determining the preliminary set 50 of base stations, cellular network 24 determines for each base station within set 50 an expected time t1 . . . tM at which the user entity enters the respective base station's cell 15, i.e., is within its reach. Accordingly, base station 12, i.e., the source eNB, queries each of the preliminary set 50 of target base stations regarding an accessibility of the cellular network 24 via the respective target base station at the respective expected time ti. As an outcome of this query, base station 12 of cellular network 24 receives from each of the preliminary set 50 of base stations, an answer to the query. While there may be none, one, or more than one base station within preliminary set 50 which denies the accessibility, there may be a set of base stations, let's say N base stations with N≥1 and N≤M which answer the query by way of indicating a temporal access interval 60 at which the respective base station is accessible by user entity 10 provided that user entity 10 uses the one or more access parameters indicated by the respective base station in the answer to the query. For instance,
For the sake of completeness only, it should be noted that the time consumed by querying the base stations of set 50 and obtaining the answers up to sending schedule 62 may be negligible compared to the temporal length 54 within which the one or more expected times ti are distributed. The schedule 62 may define a certain temporal access 60 by indicating, for instance, its start time txstart wherein an end of the temporal access interval 60 could implicitly be defined by a maximum length of each interval 60. In other words, the respective base station 14x could close the access opportunity after a certain time after txstart. The temporal end of interval 60 could be indicated, too, however in the schedule 62.
As described later on, the query sent from base station 12 to the target base stations of set 50 may possibly contain one or more current identifiers using which the user entity 10 is identified in the cellular network such as, for instance, an identifier via which the user entity 10 is identified in the core network 34 such as in the MME 32. In particular, the query could additionally or alternatively inform the base stations of set 50 about the context data of user entity 10. On the other hand, performing the preemptive preparation of the handover as just described could also additionally involve sending a schedule 66 such as a copy of schedule 62 from base station 12 to core network 34 such as MME 32 within core network 34 so as to schedule a redirection of packets of one or more communication paths for communication sessions of the user entity 10 over the cellular network 24 and the user entity 10 so that the packets are distributed to each base station of set 64 depending on the respective temporal access interval 60 of the respective base station in set 64. In other words, MME 32 or the core network 34 would be able to plan, at an early stage; namely, at the time of receiving schedule 66, a distribution of inbound packets arriving, for instance, from the external network, to base stations among set 64 other than the base station via which the user entity 10 is currently connected to cellular network 24. Packets, for instance, which are likely to be buffered too long at a certain base station of set 64 and cannot be transmitted from that base station to the user entity 10 before the expected handover from that base station to the next base station of set 64, may be forwarded by core network 34 or MME 32, respectively, to the next base station of set 64 according to the sequence of expected times covered by the respective temporal access intervals 60. The cellular network 34 would, first, not have to wait for such redirection until the handover actually takes place on behalf of UE 10 actually using the one or more access parameters it has been provided with by way of schedule 62.
It should be noted that the cardinality of the set 50 and the cardinality of set 64 or the cardinality of either of these sets might be greater than 1. Generally, however, both may be 1, 2. As to the future start time 70 indicated in schedule 62 to indicate the start of the respective temporal access interval 60, it is noted that the same may be indicated by quantization indices or in seconds or the like.
It should have become clear from the above, that, if the prediction that formed the reason for the preemptive preparation of a handover is good, the UE 10 is likely to handover from base station 12 to the target base station for which the temporally-nearest temporal access interval 60 is indicated in schedule 62. That is, UE 10 will use the one or more access parameter 66 for this target base station which would, in the example illustrated in
Thus, with respect to
Further, however, the above description revealed the description of a user entity for communication over a cellular network 24, wherein the user entity 10 is configured to manage a set of one or more preemptively prepared handovers. In this way, the user entity 10 not necessarily informs the cellular network on the predicted future route 52. In general, the user entity 10 could handover to more than one carrier. The user entity could, thus, perform the handover within the frame work of dual connectivity, e.g. LTE+NR/5G, multi-RAT e.g. separate networks LTE, CDMA/UMTS, NR or carrier aggregation, e.g. handover to a carrier with lower frequency=better coverage or higher frequency=potential higher capacity or lower latency. Details and background in this respect are outlined below. In any case, the user entity 10 may be able to manage a set of one or more preemptively prepared handovers; namely, those indicated in schedule 62 which user entity 10 receives from the cellular network 24 and the source base station 12, respectively. From the reception onwards, i.e., substantially over the whole time interval 54, the user entity 10 continuously checks whether the schedule 62 becomes inadequate. For instance, the user entity recognizes that the user entity gets farther away from the predicted future route 52 because, for instance, the user of the user entity 10 decided to take another way than rule 52. In that case, user entity could inform the cellular network 24 on the inadequateness so that, for instance, cellular network 24 could inform the target base stations of set 64 thereabout so that the latter could render the reserved radio access resources associated with the one or more access parameters available for other user entities. As described above, the user entity could derive from the schedule 62 the temporal access interval 60 plus associated one or more access parameter 66 per target base station within set 64 and then, from the reception of schedule 62 onwards, continuously decide on accessing the cellular network 24 via any of this set 64 of target base stations; namely, any base station of the set 64 within a reach of which the user entity 10 currently is. Obviously, this decision is merely available during the temporal access interval 60 associated with a respective target base station, annually using the one or more access parameters specified in the schedule. The user entity 10 is able to perform a handover or access of the cellular network using schedule 62, or perform the just described continuous decision thereabout, without obtaining current permissions from the cellular network 24 on a case by case basis, i.e., without obtaining current permission during time interval 54. Schedule 52, instead, serves as a license for user entity to perform each handover during the respective time interval 60.
As described later on in more detail, user entity 10 may be configured to perform the management of the set of one or more preemptively prepared handovers as outlined in schedule 62 with respect to one or more wireless connections to the cellular network 24 of a set of current wireless connections to the cellular network 24. For instance, user entity 10 could use aggregated carriers and perform the exploitation of preemptively prepared handovers with respect to one or more than one component carrier of such aggregated carriers.
As should have become clear from the above, the user entity may be able to resume connectivity to the cellular network after loss of the connectivity using any of the set of one or more preemptively prepared handovers despite a temporary loss of connection. For example, in a scenario where the UE lost connection due to a tunnel, UE 10 and the next base station involved in the preemptive preparation of HOs may simply resume the connection between using the preemptively prepared HO.
Although not described above so far, it should be noted that in addition to the description brought forward above with respect to
The above embodiments could be used to achieve lower handover latency and/or lower control signal overhead associated with handovers.
Current LTE Handover (HO) procedures have not been designed to accommodate Ultra Reliable Low Latency Communications (URLLC) where the existing average minimum HO is approximately between 40-50 ms [1]. As a result, there is room to improve the efficiency of the overall HO process for 5G use cases, including low latency communications. This may be done by using the embodiments described so far.
An efficient and rapid mechanism for performing handovers through predictive route information of the UE with varying mobility speeds may be achieved using above embodiments. The advantage of the latter enables reduced signaling overhead and latency when connecting to the subsequent target eNB(s)/gNB(s) for LTE and New Radio (NR) network architectures. This may be performed by UE signaling the pre-allocated target cell parameters 66 used to connect to the target eNB/gNB before the actual HO process.
A preemptive decision will have to be triggered before the actual HO occurs in order for the Source/Anchor eNB/gNB 12 to signal the UE 10 with the target eNB/gNB parameters 66 (e.g. RRCConnectionReconfiguration including the mobilityControllnfo message), examples of which are outlined in the table shown in
In even other words, the embodiments described so far enable an efficient mechanism for predictive handovers in a NR network with N predicted target gNBs.
The following aspects may be supported (cp.
In particular, the NW or UE 10 can trigger the initiation of a N-hop Predictive Handover (P-HO), according to the RRC State. The P-HO procedure is a set of configuration parameters 64 of a set 64 of target cells along a predicted route 59 that are signaled to a UE 10, before a HO actually takes place. The UE 10 can, with the aid of certain available side information (CAM Messages containing time, 2D and 3D location reporting, location vectors, location coordinate intervals, journey route, flight plan etc.) trigger the source/anchor eNB 12 to perform a P-HO. Two options are considered for driving the P-HO:
Therefore, the source eNB or centralized entities (e.g., CRRM, CBBU, MME) can initiate the multiple predictive HO preparation for N≥1 target eNBs 64 along the predicted UE trajectory 52. This scheme avoids the need to re-initiate the HO preparation phase once the UE passes through each of the expected target cells since all the used resources have been pre-allocated. The resulting P-HO scheme aims to reduce signaling overhead and latency, once information about the predicted route 52 has been established. The N expected target eNBs 64 will expect the UE 10 to reach its cell within a pre-defined interval 60 (valid time interval) based on the initial setup time t0 of the N-hop predictive HO procedure and a UE mobility type (e.g. high or low speed). If the UE 10 abruptly changes trajectory or remains stationary at a particular target cell, then all target eNBs/gNBs 64 identified during the P-HO procedure can release the pre-allocated resources via a timeout.
An example sequence diagram for a NW or UE driven P-HO is shown in the sequence chart in
Messaging Step Overview of
Key Procedures of the P-HO:
A more detailed exemplary message description is presented below:
IE/Group Name
Description
Message Type [4]
“Identifies the message being
transmitted, e.g. Handover Resource
Allocation, Path Switch Request” [12]
CAM-Aided-Route-Prediction
The list of data elements in [14] Annex
A, e.g. Acceleration Control,
CourseofJourney, Reference Position
Path-target-eNB-ID-List
If available the positions or ID of
target eNBs along the predicted route
RRC-Connect-Time
RRC connect period of current cell
RouteInfo/FlightPlanInfo
2D and 3D location vector of UE, UE
Direction, course location points along
a UE route
Additionally, the context of the UE can be pushed to all target eNBs. An example of this setup S1 message could include: P-HO-REQUEST-IE (Direction: source eNBs→Target eNBs)
IE/Group Name
Description
Message Type [4]
Identifies the message being
transmitted, e.g. Handover Resource
Allocation, Path Switch Request
Handover Type[4]
Indicates the type of Handover at the
source eNB, e.g. IntraLTE,
LTEtoUTRAN
eNB List to be setup
Identifies a list of target eNBs
MME-UE-S1-AP-ID[4]
“Uniquely identifies the UE
association over the S1 interface
within the MME.” [12]
eNB UE S1AP ID [4]
“Uniquely identifies the UE
association over the S1 interface
within the eNB.” [12]
Predicted UE Behavior
Defines the future behavior of the UE
with predictable activity with predicted
info, to assist future eNBs in
determining the optimum RRC
connection time.
UE Context Transfer
The UE context is pushed to all Target
nodes based on the prediction.
UE Mobility Type
Low, Medium, High speed
IE/Group Name
Description
Message Type [4]
“Identifies the message being transmitted, e.g.
Handover Resource Allocation, Path Switch
Request” [12]
eRABs-Admitted-List [4]
“HO Request ACK message is sent by the
Target eNB to inform the MME about the
prepared resources of the Target such as E-
RABs Admitted List. Hence the E-RABs those
could be admitted in the target are refered as
E-RABs Admitted List.” [12].
MME-UE-S1-AP-ID [4]
“Uniquely identifies the UE association over
the S1 interface within the MME.” [12]
eNB UE S1AP ID [4]
“Uniquely identifies the UE association over
the S1 interface within the eNB.”[12]
P-HO User Data Forwarding, in case of out-of-coverage scenario may be done as follows: In the event that the UE loses coverage and has a Radio Link Failure (RLF) during the P-HO process with source eNB-1, we have the out-of-coverage scenario shown in
Step/Description 1: RRC connection re-establishment: Enabling synchronization and timing advance using the prediction information already at the UE. This procedure can be initiated with the prepared RACH preambles and C-RNTI.
Step/Description 2.1: Prior to timeout with the source eNB, the core network has already forwarded redundant data via the centralized unit to the next target eNB based on information from the predictive HO procedure. This redundant data is forwarded to the target eNB, subject to the initiation of the P-HO process.
IE/Group Name
Description
Message Type [4]
“Identifies the message being transmitted,
e.g. Handover Resource Allocation, Path
Switch Request” [12]
X2 TNL Configuration
Contains the P-HO related information.
Info [4]
Core Data Forwarding
Forwards the redundant data as initially
transmitted to the source eNB.
MME-UE-S1-AP-ID-SeNB
“Uniquely identifies the UE association over
the S1 interface within the MME.” [12]
Step/Description 2.2: The UE can transmit a last packet ACK sequence number to the target eNB, to resume data forwarding from the last known timeout of the RRC connection with the SeNB.
IE/Group Name
Description
Message Type [4]
“Identifies the message being transmitted,
e.g. Handover Resource Allocation, Path
Switch Request” [12]
X2 TNL Configuration
Contains the P-HO related information.
Info [4]
UE Data Forwarding
Sends ACK and forwards the SN number.
In Dual-connectivity mode UE P-HO could be used as well.
Dual-connected (DC) P-HOs enable URLLC services of mobile UEs and therefore can fulfill the high reliability requirement. Predicted UE route information can also aid in seamless handover of UEs, which are in dual-connectivity mode, i.e. simultaneously connected to two eNBs, the master eNB and secondary eNB. This is particularly applicable to scenarios where a mobile UE travels across a number of small cells within a macro cell environment, e.g. dense urban scenario. A group of such small cells belong to a secondary cell group (SCG). DC enabled HOs can result in zero interruption due to the availability of at least one connected link at all times. The novel claim consists of the way Dual-connectivity can be initially leveraged to enable the master eNB to perform the P-HO for multiple small cells (secondary eNBs) allowing the UE to move across the small cells in a seamless fashion reducing overhead in standard HO signaling as described in E1. The procedure is as follows:
The following description now attends to a description of the second aspect of the present application which pertains to the handling of user entities in a non-active mode in an efficient manner by the usage of a so-called “tracking/paging area”. Again, the description of this aspect and embodiments thereof starts with a type of presentation or overview so that the underlying problem with non-active UEs is clear and the advantages resulting from the embodiments described later on. The following overview is, however, partially also an extension of the introductory portion with respect to the description and presentation of the embodiments concerning the first and third aspects of the present application described above.
Mobility enhancements in lightly connected or inactive mode were recently developed. The state machine in current control plane protocols in cellular wireless mainly support two modes: the idle mode and the connected mode. In the idle mode, the UE monitors the control channel (PCH) according to a discontinuous reception (DRX) cycle. While in the idle state, the MME is responsible for the monitoring the UE. In the connected mode, the UE is connected to a known cell and can perform data transfer to and from the device. While in the connected mode/active state, the corresponding eNB is responsible for monitoring the UE.
HOs are performed when the UE is in the RRC connected mode. Currently in discussion is the introduction of a new mode, which is referred to as lightly connected (in LTE) or as inactive state (in 5G new radio (NR)), which should increase signaling efficiency, also for new services. In this state, the UE is responsible for transferring into idle or connected states. The lightly connected UEs enter into legacy behavior in RRC connected via RRC procedure including three messages (i.e. request, response and complete). In the lightly connected state, the S1 connection for this UE is kept and active, and a new signaling scheme from the UE could be introduced, in order to optimize handovers and improve network performance though movement predictions.
RAN Paging/Notification Area and Tracking Area is used to track non-active UEs. Paging is used for network-initiated connection setup when the UE is in the idle state (RRC IDLE), see [5]. This shall indicate to the UE to start a service request. Since the location of the device is typically not known on a cell level, the paging message is typically transmitted across multiple cells in the so-called tracking area. These tracking areas are controlled by the MME. The UE informs the network via tracking area updates (TAU) of its location with the network. To reduce signaling traffic, a UE does not need to initiates a TAU if it enters a tracking area which is included in its tracking area list (TAL). See
As to NR Architecture, two proposed architecture types for NR are proposed, viz. Centralized Unit (CU) Architecture or Distributed Unit (DU) Architecture as shown in
Regarding V2X System Architecture, one of the main modes of operation in V2X consists of the broadcast architecture and serves as example application of the proposed P-HO scheme.
As to Broadcast V2X Architecture, the high-level V2X broadcast architecture is shown in
The core functionality V2X Application Server is out of scope of 3GPP [8], and an overview of the role of the Application server has been defined by the ITS. According to the definition in [8], the Application server aggregates inputs from several sources including the vehicles on the road, road side units as well as external information from various other network entities. The Application Server then correlates this information based on time, location and incident to develop a better idea regarding the state of traffic. Once the information has been consolidated and processed it then has to decide in which information it has to disseminate to other vehicles in a geographic area [9]. Currently the V2X application server has the following specifications according to 3GPP, which fall in line with ETSI's proposal [8]:
Delivery.
Area ID (SAI(s)) for the broadcast.
Cell Global Identifier (ECGI(s)) for the broadcast.
In order to minimize delays between RAN and V2X infrastructure, the V2X entities can be grouped into a eNB type Road Side Unit (RSU). This RSU can be deployed directly at a eNB, similar to edge-cloud computing, e.g. via local IP breakout interface (LIPA). This enables faster prediction of the HO process. See
Dual-connectivity (DC) was included as part of small cell enhancements in LTE and offers several advantages which include [10]:
A UE can be connected to a Master eNB and Secondary eNB but can have only one RRC connection with the Master eNB. In a V2X scenario, DC can enhance seamless or zero interruption HO between various eNBs along a predicted route, by ensuring guaranteeing one active/inactive. The data split in the User-plane can take place at the bearer or packet level as shown in
“To initiate the HO, the source eNB sends a HO Request on X2. The HO Request needs to be modified to indicate that this is a dual connectivity HO as opposed to a traditional HO. The goal of the HO is to hand over a subset of the DRBs to the target eNB. Thus, we will need to augment the HO request message to specify which bearers are to be handed over. Currently, the UE context includes information on the bearers that are assigned to the source eNB. For dual connectivity, the UE context will need to specify which of its bearers are mapped to the target eNB.
The target eNB will indicate which bearers it is willing to accept in the HO Request ACK. As in the current HO procedure, bearers that are not accepted will be dropped. The target eNB sends the DL allocation and RRCConn Reconf with mobilityControlInformation to the source who sends it to the UE. SN status transfer and data forwarding will proceed for the bearers that are to be transferred. The UE will start RACH on one of its radios while maintaining regular communication of all bearers that remain on the source eNB.
If the handover is successful, the UE sends RRC Conn Reconf Complete as usual. Upon HOF, a new RRC message is sent to the source eNB on its associated UE radio to indicate the failure. The source eNB can assist the UE by either accepting a connection from radio #2 or by preparing another eNB to do so.
If the HO was successful, the target eNB will send a path switch Request to the MME on S1 requesting its assigned bearers. The MME will send Modify Bearer request to the Gateway. Finally, the target eNB updates its UE Context and sends a UE Context Update to the source eNB over X2. The source eNB updates its UE Context and releases resources associated with the HO.” [12]
It should have become clear from the brief introduction put forward above, the concept of managing a tracking/paging area for some user entity reduces the burden on the side of the cellular network to continuously reserve radio resources for user entities for which one or more communication sessions are active, but for which the one or more communication session does not involve a continuous transmission of packets. Thus, it is sufficient if the cellular network keeps track of where the UE is at least approximately; namely, within some tracking/paging area, so that packets addressed to the UE may be forwarded to the one or more base stations within this tracking/paging area, and if the base stations within the tracking/paging area know the context data of the UE. The concept exploited in some of the embodiment described with respect to active UEs and the preemptive preparation of handovers as used in some of the embodiments described above, is now reused in order to more efficiently deal with non-active UEs; namely, in that a schedule of a time-varying tracking/paging area is introduced and/or a tracking/paging area is determined depending on a predicted future route of the user entity.
In order to explain embodiments of the present application with respect to this aspect, reference is made to
In particular,
The cellular network 24 then sends the schedule 100 or messages intermittently updating area 104 to the user entity 10 which, thus, is able to continuously check whether the UE 10 leaves this time-varying tracking/paging area defined by the time-varying set of one or more base stations 104 or not. As long as the UE does not leave the time-varying tracking/paging area, the UE is within an area within which the cellular network 24 expects the UE 10 to be. As long as the UE 10 does not wish to initiate an uplink communication and to switch to active mode, the UE 10 needs to do nothing. The cellular network 24, in turn, takes the appropriate measures to fulfill tasks which seek to reflect the fact that the tracking/paging area is changing over time as scheduled in schedule 100. In particular, the cellular network 24 provides each base station of set 104, i.e., each base station currently within the set 104 of base stations which define the tracking/paging area, with context data of UE 10 so that these base stations are aware, for instance, of the UE's 10 subscriber data currently active one or more communication sessions, one or more IDs used by the cellular network 24 to identify UE 10 and distinguish UE 10 from other UEs and/or other UE specific data. Further, cellular network 24, itself, uses schedule 100 so as to search for UE 10 whenever an inbound or downlink packet of one of one of more active communications sessions arrives at the core network 34 addressed to UE 10. In particular, the cellular network 24 then looks up in schedule 100 which set 104 of base stations currently makes up or defines the tracking/paging area and informs via these one or more base stations that the UE 10 should connect to the cellular network 24 so as to be able to receive this packet. The control signaling overhead is kept low as the UE is within the time-varying tracking/paging area and the base station within the cell 15 of which the UE 10 currently is, belongs to the set 104 defining this tracking/paging area and this base station already has at hand the context data of UE 10.
It should be noted that, according to an alternative embodiment, the cellular network of
Thus, the above examples of
Efficient Paging using prediction information in Lightly Connected Mode as shown in
1. The source/anchor eNB or centralized unit provides a near complete predicted RAN paging/notification area list (pPAI) list to the UE upon connection establishment, corresponding with the predicted route of the UE, avoiding the need to page multiple cells of the same paging area (See
3. In the event, that the UE route abruptly changes the route and moves to a PA not on the pPAI, e.g. PA4 in
TABLE 1
Example messages for predictive paging
IE/Group Name
Description
UE-Paging-Area-ID
“This IE represents the Identity with which the
UE is paged.” [12]
pPAI-List
TA list corresponding to predicted route
TeNBI-List-ID
Identifiers of Target eNBs along predicted
route
Thus, the above-described embodiment, inter alias, enabled a preemptive UE signaling based on predictive UE route information to perform a faster HO. Again, it is noted that this might be used also in UEs which are in a dual-connectivity mode. High reliability HO by using RRC diversity using route prediction and dual-connectivity mode is feasible. All the above embodiments can be applied to wireless communication systems, e.g., cellular, wireless or meshed wireless networks as well as wireless ad-hoc networks.
Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus. Some or all of the method steps may be executed by (or using) a hardware apparatus, like for example, a microprocessor, a programmable computer or an electronic circuit. In some embodiments, one or more of the most important method steps may be executed by such an apparatus.
Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a Blu-Ray, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed. Therefore, the digital storage medium may be computer readable.
Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier.
Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier.
In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.
A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein. The data carrier, the digital storage medium or the recorded medium are typically tangible and/or non-transitionary.
A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet.
A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein.
A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.
A further embodiment according to the invention comprises an apparatus or a system configured to transfer (for example, electronically or optically) a computer program for performing one of the methods described herein to a receiver. The receiver may, for example, be a computer, a mobile device, a memory device or the like. The apparatus or system may, for example, comprise a file server for transferring the computer program to the receiver.
In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods may be performed by any hardware apparatus.
The apparatus described herein may be implemented using a hardware apparatus, or using a computer, or using a combination of a hardware apparatus and a computer.
The apparatus described herein, or any components of the apparatus described herein, may be implemented at least partially in hardware and/or in software.
The methods described herein may be performed using a hardware apparatus, or using a computer, or using a combination of a hardware apparatus and a computer.
The methods described herein, or any components of the apparatus described herein, may be performed at least partially by hardware and/or by software.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which will be apparent to others skilled in the art and which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
In addition, reference is made to 3GPP TR 21.905: “Vocabulary for 3GPP Specifications”.
Applications; Part 2: Specification of Cooperative Awareness Basic Service, ETSI TS 102 637-2 V1.2.1, March 2011.
Wiegand, Thomas, Fehrenbach, Thomas, Wirth, Thomas, Hellge, Cornelius, Thiele, Lars, Schierl, Thomas, Seidel, Eiko, Thomas, Robin Rajan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
11343720, | Mar 23 2017 | Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E V | Preemptive handover preparation and tracking/paging area handling and intelligent route selection in a cellular network |
7251491, | Jul 31 2003 | Qualcomm Incorporated | System of and method for using position, velocity, or direction of motion estimates to support handover decisions |
9485771, | Jul 31 2013 | Qualcomm Incorporated | Random access using predictive mobility |
20090042572, | |||
20100246530, | |||
20100330994, | |||
20110310840, | |||
20110310866, | |||
20120190363, | |||
20120243461, | |||
20120254409, | |||
20130115954, | |||
20130208696, | |||
20140242997, | |||
20140355566, | |||
20150012213, | |||
20150065146, | |||
20150156686, | |||
20150373602, | |||
20170086049, | |||
20170245192, | |||
20170289864, | |||
20180234919, | |||
20190044611, | |||
20190052327, | |||
20200344652, | |||
CN102625378, | |||
CN102740439, | |||
CN103501232, | |||
CN104902529, | |||
CN105144790, | |||
EP2615857, | |||
EP2768250, | |||
JP2006505163, | |||
JP2013172407, | |||
RU2387100, | |||
WO2004040933, | |||
WO2005084146, | |||
WO2014013846, |
Date | Maintenance Fee Events |
Mar 15 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Sep 05 2026 | 4 years fee payment window open |
Mar 05 2027 | 6 months grace period start (w surcharge) |
Sep 05 2027 | patent expiry (for year 4) |
Sep 05 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 05 2030 | 8 years fee payment window open |
Mar 05 2031 | 6 months grace period start (w surcharge) |
Sep 05 2031 | patent expiry (for year 8) |
Sep 05 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 05 2034 | 12 years fee payment window open |
Mar 05 2035 | 6 months grace period start (w surcharge) |
Sep 05 2035 | patent expiry (for year 12) |
Sep 05 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |