A monitoring system presents metrics or event data by monitoring state information of a computing system. In an embodiment, the monitoring system includes one or more processors that receive state information from an agent executing on the computing system. The state information describes a component of the computing system. In response to receiving the state information, the monitoring system generates aggregate state information based on the state information and prior state information previously received from the agent. The state information and prior state information may correspond to the same time period. The monitoring system generates subscribed state information from the aggregate state information. The subscribed state information is a subset of the aggregate state information selected using instructions of a client. The monitoring system sends the subscribed state information to the client to cause an update in a user interface presented by the client.
|
12. A method, comprising, by one or more processors:
receiving, from a client, subscription information for filtering aggregated state information into a subset of state information from the aggregated state information;
receiving state information regarding a component of a computing system for a first predefined time period comprising a plurality of predefined second time periods, wherein the predefined first and second time periods are defined by the subscription information received from the client; and
after completion of each predefined second time period of the plurality of predefined second time periods during the first predefined time period:
aggregate the state information regarding the component for a current predefined second time period with the state information regarding the component for each previously completed predefined second time periods;
filter the aggregated state information into the subset of state information using filtering instructions in the subscription information;
associate the subset of state information with the client based on the subscription information;
send, to the client and using on the association, a performance metric of the component determined from the subset of state information; and
provide, to the client, at least a portion of the performance metric of the component for display on a user interface of the client, the performance metric displayed over a display time associated with the predefined first time period.
7. A non-transitory computer readable medium comprising stored program code that when executed by one or more processors configure the one or more processors to:
receive, from a client, subscription information for filtering aggregated state information into a subset of state information from the aggregated state information;
receive state information regarding a component of a computing system for a first predefined time period comprising a plurality of predefined second time periods, wherein the predefined first and second time periods are defined by the subscription information received from the client; and
after completion of each predefined second time period of the plurality of predefined second time periods during the first predefined time period:
aggregate the state information regarding the component for a current predefined second time period with the state information regarding the component for each previously completed predefined second time periods;
filter the aggregated state information into the subset of state information using filtering instructions in the subscription information;
associate the subset of aggregate state information with the client based on the subscription information;
send, to the client and using on the association, a performance metric of the component determined from the subset of state information; and
provide, to the client, at least a portion of the performance metric of the component for display on a user interface of the client, the performance metric displayed over a display time associated with the predefined first time period.
1. A system, comprising:
one or more processors; and
a non-transitory computer readable storage medium comprising stored computer program code that, when executed, cause the one or more processors to:
receive, from a client, subscription information for filtering aggregated state information into a subset of state information from the aggregated state information;
receive state information regarding a component of a computing system for a first predefined time period comprising a plurality of predefined second time periods, wherein the predefined first and second time periods are defined by the subscription information received from the client; and
after completion of each predefined second time period of the plurality of predefined second time periods during the first predefined time period:
aggregate the state information regarding the component for a current predefined second time period with the state information regarding the component for each previously completed predefined second time periods;
filter the aggregated state information into the subset of state information using filtering instructions in the subscription information;
associate the subset of state information with the client based on the subscription information;
send, to the client and using on the association, a performance metric of the component determined from the subset of state information; and
provide, to the client, at least a portion of the performance metric of the component for display on a user interface of the client, the performance metric displayed over a display time associated with the predefined first time period.
2. The system of
3. The system of
determine a display time associated with the at least a portion of the aggregated state information based on a time associated with the predefined first time period; and
send the display time to the client.
4. The system of
5. The system of
6. The system of
8. The computer readable medium of
9. The computer readable medium of
determine a display time associated with the at least a portion of the aggregated state information based on a time associated with the predefined first time period; and
send the display time to the client.
10. The computer readable medium of
11. The computer readable medium of
13. The method of
14. The method of
determining a display time associated with the at least a portion of the aggregated state information based on a time associated with the predefined first time period; and
sending the display time to the client.
15. The method of
|
This application is a continuation of U.S. patent application Ser. No. 15/844,345 filed on Dec. 15, 2017, which is hereby incorporated by reference herein.
This disclosure generally relates to processing data from applications executing on computing systems and generating user interfaces.
Web-based and mobile applications are common tools for delivering content and services to user computing devices. These applications are executed by application systems, which provide content to the computing devices and respond to requests from the computing devices. To provide information describing functionality of an application system, the application system may execute a program such as an agent to monitor the application or application servers. An application system may serve a large number of the user computing devices, resulting in the creation of a large volume of information.
A monitoring system updates a user interface by monitoring state information of a computing system. In some embodiments, the monitoring system includes one or more processors (e.g., of a server) that receives state information from an agent executing on the computing system. The state information corresponds to a first time period regarding a component of the computing system. In response to receiving the state information, the monitoring system generates aggregate state information based on the state information and prior state information previously received from the agent. The monitoring system may perform a determination that the prior state information also corresponds to the first time period regarding the component, and perform the aggregation for state information associated with the same time period. For example, the state information and prior state information may be generated within the first time period, may pertain to the computing system within the first time period, or may otherwise be associated with the first time period. The monitoring system generates subscribed state information from the aggregate state information. The subscribed state information is a subset of the aggregate state information selected using instructions of a client. The instructions may include a request by the client to subscribe for reporting for a particular metric or event data of the computing system. The monitoring system sends the subscribed state information to the client to cause an update in a user interface presented by the client. The subscribed state information may be sent based on the monitoring system receiving the (e.g., latest) instance of state information. Here, the subscribed state information is a partial aggregation of state information for the time period, and additional state information for the time period may result in another aggregation and transmission of subscribed state information for the time period. The monitoring system may also transmit fully aggregated state information for the time period at lapse of the time period. Subsequent instances of state information may be associated with a subsequent time period, and a similar aggregation and transmission may be performed for multiple time periods.
In various embodiments, the monitoring system can provide the aggregate data for presentation on a client, e.g., in a user interface displaying logically or aesthetically ordered data. The monitoring system can also update the metrics or event data at a later time as additional state information is received. In addition, the monitoring system may detect and ignore state data points from state information.
In some embodiments, the one or more processors of the monitoring system associates the state information with the first time period using a start time and an end time of the state information. The monitoring system retrieves the prior state information responsive to determining that the prior state information was previously received for the first time period. Additionally, the monitoring system may determine a display time associated with the aggregate state information based on the first time period for the state information. The monitoring system sends the display time to the client to cause the update in the user interface to include display of the subscribed state information in connection with the associated display time. In some embodiments, the update in the user interface includes display of an aggregate metric or aggregate event data associated with the computing system in connection with the associated display time.
In some embodiments, the one or more processors of the monitoring system receive a first request from the client to receive the subscribed state information. In response to the first request, the monitoring system generates a subscription associated with the client for providing the subscribed state information to the client. Further, the monitoring system receives a second request from a second client to receive the subscribed state information. In response to the second request, the monitoring system determines whether the subscription associated with the client is active. In response to determining that the subscription associated with the client is active, the monitoring system associates the subscription with the second client. The monitoring system receives a third request from the client to cancel the subscription. In response to the third request, the monitoring system cancels the subscription from the client, and the monitoring system maintains the subscription to provide the subscribed state information to the second client.
Some embodiments may include a method for monitoring state information of a computing system. The method includes receiving state information from an agent executing on the computing system. The state information corresponds to a first time period regarding a component of the computing system. In response to receiving the state information, the method includes generating aggregate state information based on the state information and prior state information previously received from the agent. The prior state information corresponds to the first time period regarding the component. The method further includes generating subscribed state information from the aggregate state information. The subscribed state information is a subset of the aggregate state information selected using instructions of a client. The method further includes sending the subscribed state information to the client to cause an update in a user interface presented by the client.
Some embodiments include a non-transitory computer readable medium storing instructions that when executed by a processor configures the processor to execute the methods for monitoring state information of a computing system as discussed herein.
The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles, or benefits touted, of the disclosure described herein.
System Overview
The application system 106 includes one or more application servers 110 and one or more data stores 112. The data store 112 stores application data for the applications 108 executed by the one or more application servers 110. The application server 110 further executes one or more agents 114 that monitor performance of the application system 106, such as processes running on an application server 110, response time of an application 108, transactions in an application 108, processes of transactions in an application 108, the effect of backend processes on performance of an application 108 at clients 104, statistics of a virtual machine running an application 108, other information, or a combination thereof. The agent 114 collects and stores state information relevant to performance of the application 108 or other components of the application system 106. Moreover, the agent 114 may periodically send state information, or other types of information, to the monitoring system 102.
The application 108 may be any of a variety of types of mobile applications or web applications, and may represent a subset of operations of a client-server application. For example, the application 108 operated by the application server 110 may include any server-side processes of a client-server application, such as retrieving and storing database content, generating user interfaces for rendering at the client 104, performing functions requested at the client 104, and communicating content to the client 104 (e.g., over the network 124). The application server 110 may comprise one or more computing devices executing the functions of the application 108.
In some embodiments, the application server 110 includes a computing device executing a Java virtual machine that executes processes of the application 108. The virtual machine provides an environment for running the application 108, and manages objects created by the application 108 and a portion of data store 112 (e.g., a memory) used by the application 108. In particular, the virtual machine allocates memory by moving objects, including variables or data structures created during execution of the application 108 and agent 114, between pools of memory to efficiently manage the available memory of the application system 106. The virtual machine also executes garbage collection processes to identify and remove objects no longer used or referenced in the application 108 to free up the memory occupied by the unused objects for storing other objects.
To monitor the application server 110, the monitoring system 102 can provide the agent 114 to the application server 110 (e.g., as a software development kit or as a module integrated into the software of the application 108). While the application server 110 executes the agent 114, the monitoring system 102 communicates with the agent 114 to monitor performance of the application server 110. The monitoring system 102 receives state information of the application 108 from the agent 114. Additionally, the monitoring system 102 generates informational displays (e.g., user interfaces) for analysis, for example, by an administrator of the application server 110, enabling the administrator to address any performance issues in the application 108. For example, the monitoring system 102 generates tables, charts, or plots indicating metrics or event data for processes of the application 108. The informational displays may include statistics from the monitoring system 102 and/or virtual machine running the application 108.
Each instance of the metrics or event data may be associated with a time period. In some embodiments, the state information is associated with a start time and an end time. The start time and end time indicate timestamps when measurement or capture of a metric or event data began and ended, respectively, for a certain component of the application system 106. For example, measurement of CPU usage (e.g., a metric) of a processor or a count of page views of a website (e.g., event data) over a duration of several minutes or hours. Additionally, state information may be associated with a timestamp (e.g., receipt time) indicating when the monitoring server 200 received the state information from the agent 114. In some embodiments, an event data (or metric) has one timestamp, which indicates the associated event time. The event time may refer to the start time, end time, or some other time between the start and end times. Additionally, the one timestamp (e.g., event time) may be used as both the start time and the end time.
The data aggregator 220 processes state information received by the monitoring server 200. In the embodiment shown in
The minute aggregator 310 aggregates state information captured per minute to generate an aggregate minute timeslice 315. Each aggregate minute timeslice 315 may include one or more different instances of state information associated with a time period. In this example, the time period is one minute, although other time periods may be used. The aggregate minute timeslice 315 may include one or more types of aggregated metrics, or one or more types of aggregated event data.
The minute aggregator 310 further generates a partially aggregated timeslice 340. The partially aggregated timeslice 340 includes state information that the minute aggregator 310 has received from the start time of a time period to the current time, where the current time is prior to lapse of the time period. For instance, the agent 114 may send the state information to the monitoring server 200 as the state information is collected. Each instance of state information may represent only a portion of the values of metrics or event data for the time period. However, the partially aggregated timeslice 340 may still be generated and used to provide real-time updates to update a user interface until updated (e.g., final) state information is received for the entire time period.
The hour aggregator 320 and minute writer 330 receive aggregate minute timeslices 315 from the minute aggregator 310. Furthermore, the hour aggregator 320 collects aggregate minute timeslices 315 per hour to generate an aggregate hourly timeslice (not shown in
The minute aggregator 310 further provides partially aggregated timeslices 340 to the timeslice filter 345 of the subscription engine 230. The timeslice filter 345 may filter data from timeslices according to instructions received by the subscription engine 230 or subscriptions retrieved from the subscriptions store 355. The instructions may indicate certain types of metrics or event data to include or exclude for presentation in a user interface. Additionally, the instructions may indicate that the user interface should include state information originating from a particular type of application system 106 or measured (or received) during a particular time period. In some embodiments, the instructions may further define the time period(s) for aggregation. For example, rather than minute and hour aggregations, other longer and shorter time periods may be used. The subscription engine 230 may generate subscriptions and store the subscriptions in the subscriptions store 355 in response to requests (e.g., including instructions) for subscribed state information received from clients 104. In some embodiments, the subscription engine 230 can also filter data from aggregated minute timeslices 315 to generate subscribed state information. The subscribed state information refers to a subset of the partially aggregated timeslice 340 that pertains to a selected metric or event data.
The timeslice filter 345 provides the filtered timeslices to the streaming CDS 350 for updating user interfaces streamed in real time. In particular, the streaming CDS 350 may push state information to streamed user interfaces using partially aggregated timeslices 340 even though state information for the entire time period is unavailable to the monitoring system 102. Accordingly, the streamed user interfaces may include state information that is updated as additional state information is received from agents 114 of application systems 106 being monitored. The subscription engine 230 may also provide state information to the CDS 335. In contrast to the streaming CDS 350 that presents updates within a time period, the CDS 335 presents updates based on aggregation of multiple time periods. In some embodiments, the data aggregator 220 provides aggregate state information at predefined or schedule times to the CDS 335, and provides the subscribed state information to the streaming CDS 350 in response to receiving state information pertaining to the subscription from the agent 114.
The monitoring system 102 receives 510 state information from an agent 114 executing on the application system 106 (e.g., also referred to as a computing system). The state information is for a time period regarding a component of the application system 106. In some embodiments, the state information includes a metric or event data associated with the time period. In some embodiments, the state information may be represented by a data structure defining a time period and a metric or event data value corresponding with the time period. In some embodiments, the data structure may further include a receipt time of the state information by the monitoring system 102. In some embodiments, state information may be represented by a data structure {start time, end time, data, receive time} in JavaScript Object Notation (JSON).
The monitoring system 102 (e.g., the data aggregator 220) determines 520 whether prior state information has been received for the time period. The prior state information may also have an associated time period. Responsive to determining that the received state information and the prior state information are for the same time period, the monitoring system 102 may combine the state information and prior state information into aggregate state information. In contrast, responsive to determining that the state information and prior state information are for different time periods (e.g., meaning that the prior time period has lapsed), the monitoring system 102 may determine to not combine the state information and the prior state information into aggregate state information. The prior state information may include one or more instances of received state information that has been previously aggregated for the time period of the prior state information.
In response to determining that the state information was received for the same time period as the prior state information, the monitoring system 102 (e.g., the data aggregator 220) generates 530 aggregate state information based on the state information and the prior state information.
The monitoring system 102 (e.g., subscription engine 230) generates 540 subscribed state information from the aggregate state information. The subscribed state information may be a subset of the aggregate state information selected by the subscription engine 230 using instructions from a client 104. For example, the subscription engine 230 filters the aggregate state information based on the instructions. A user who wants to request certain data from the monitoring system 102 may use the client 104 to input a request to receive the subscribed state information. The client 104 provides instructions corresponding to the user's request to the monitoring system 102. For example, the instructions indicate that the user is interested in aggregate state information for a particular subset of one or more types of metric or event data, or other criteria describing data for presentation on a user interface. In another example, the instructions may specify the time period for state information aggregation and reporting. In some embodiments, the subscription engine 230 filters state information according to the user's instructions, e.g., for a requested or active subscription.
The monitoring system 102 (e.g., subscription engine 230) sends 550 the subscribed state information to the client 104 to cause an update in a user interface presented by the client 104. The creation and sending of the subscribed state information may be triggered when the monitoring system 102 receives the state information (e.g., partial aggregation for the time period), or when a time period has lapsed, which may trigger the monitoring system 102 to report the aggregated subscribed state information for the lapsed time period. The subscribed state information is provided to the client 104 in a coherent manner for presentation within the user interface. Each instance of subscribed state information from the monitoring system 102 may correspond with a data point that can be presented without the client 104 having to access any prior state information for the time period to generate the updated data value for the point. Furthermore, prior to lapse of the time period, the subscribed state information may include partially-aggregated data. Here, the subscribed state information thus represents complete “so-far” values for the time period. The partially aggregated data does not represent a final value for the time period, as it includes only state information that the system has received so far for the time period (e.g., prior to lapse of the time period where a reliable full aggregation can be generated). Nonetheless, the subscribed state information including partially-aggregated data can be presented to the user interface as useful information, and may be updated with further partial aggregates for the time period prior to lapse of the time period.
In some embodiments, the subscribed state information includes a display time and a metric or event data value that corresponds with the time value. The subscribed state information may be represented by a data structure {display time, data}, where the display time can be used as an X axis value within a graph (or chart) of the user interface, and the data can be used as a corresponding Y axis value of the graph. Thus, each instance of subscribed state information may define a point in the graph of the user interface. In some embodiments, the user interface engine 240 determines the display time based on the start time or end time of the latest instance of state information. For example, each time period may be associated with a display time. The user interface engine 240 may use the start and end times of state information to determine the time period, and then to determine the associated display time for the time period. In some embodiments, the user interface engine 240 associates all aggregated or partially aggregated state information within a time period with a display time in the user interface.
As shown in user interface 400 of
In some embodiments, the display time is selected based on the receipt time, start time, or end time of the latest instance of state information received in the time period. For example, rather than having display times corresponding with the end of the time period as shown in
As shown in the user interface 410 of
Returning to step 520 of
The monitoring system 102 (e.g., subscription engine 230) sends 570 the subscribed state information to the client 104 to cause an update in a user interface presented by the client 104. As shown in the user interface 420 of
In some embodiments, the user interface presented by the client 104 shifts the X axis for time values when state information for a new time period is received by the client 104. As shown in the user interface 430 of
The method 500 may be repeated by the monitoring system 102 for additional instances of state information. Each new instance may be handled as discussed in the method 500. For example, new state information for a time period with prior state information may be aggregated with the prior state information. New state information for a time period without prior state information is not aggregated, at least until subsequent state information for the time period is received by the monitoring system 102. The monitoring system 102 generates and sends subscribed state information, and the client 104 updates the user interface accordingly using the subscribed state information.
The monitoring system 102 (e.g., subscription engine 230) receives 610 a first request from a client 104 to receive subscribed state information. The monitoring system 102 (e.g., subscription engine 230) generates 620 a subscription associated with the client 104 in response to the first request. A subscription, as used herein, refers to an association between subscribed state information and the client 104, and is used by the subscription engine 230 to send the subscribed state information to a client device 104. A subscription may specify, for example, a metric or event data of interest. A subscription may also specify a time period for the reporting.
The monitoring system 102 (e.g., subscription engine 230) receives 630 a second request from a second client 104 to receive the subscribed state information. The second client 104 may be different from the first client 104.
The monitoring system 102 (e.g., subscription engine 230) determines 640 whether the subscription is active in response to the second request. For example, the subscription engine 230 may evaluate existing subscriptions to find a subscription that matches the subscription of the second request. If a match is found, then the subscription is determined to be active. If not match is found, then the subscription is determined to be inactive.
In response to determining that the subscription is active, the monitoring system 102 (e.g., subscription engine 230) associates 650 the subscription with the second client 104. This may be advantageous, for example, because instead of generating a new subscription for the second client 104, the subscription engine 230 is opportunistic in that it shares the same subscription for multiple clients 104, e.g., of users requesting common types of metrics or event data. Thus, the subscription engine 230 may reduce the amount of computational or memory resources of the monitoring system 102 required to maintain subscriptions for state information. In some embodiments, each subscription may be handled by a single subscription engine 230 that communicates with one or more client devices 104 to provide subscribed state information in accordance with the subscription.
Returning to 640, in response to determining that the subscription is inactive, the monitoring system 102 (e.g., subscription engine 230) generates 660 a new subscription to associate the subscribed state information to the second client 104. The new subscription may specify the same or different metrics, event data, or time periods of interest as the inactive subscription.
The monitoring system 102 (e.g., subscription engine 230) receives 670 a third request from the client 104 to cancel the subscription. The subscription engine 230 cancels 680 the subscription from the client 104 in response to the third request. In some embodiments, the subscription engine 230 cancels inactive subscriptions. The subscription engine 230 maintains 690 the subscription to provide the subscribed state information to the second client 104. Similarly, if the second client 104 cancels the subscription, the subscription engine 230 may cancel the subscription for the second client 104 and maintain the subscription for the client 104. In some embodiments, the subscription engine 230 keeps subscriptions in the subscription store 355 as long as at least one client 104 is using the subscription, even if other clients 104 cancel their subscription. Over time, different clients 104 may provide requests to subscribe or cancel (unsubscribe) for a particular subscription. Responsive to determining that no more clients 104 are using a subscription, the subscription engine 230 may remove the subscription from the subscription store 355 to free up unused memory storage and processing resources.
Additional Configuration Information
The foregoing description of the embodiments of the disclosure have been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
Some portions of this description describe the embodiments of the disclosure in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
Embodiments of the disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
Embodiments of the disclosure may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
11140242, | Dec 15 2017 | New Relic, Inc. | System for processing coherent data |
6097399, | Jan 16 1998 | Honeywell INC | Display of visual data utilizing data aggregation |
7225103, | Jun 30 2005 | Oracle International Corporation | Automatic determination of high significance alert thresholds for system performance metrics using an exponentially tailed model |
7617314, | May 20 2005 | NetScout Systems, Inc | HyperLock technique for high-speed network data monitoring |
8806361, | Sep 16 2013 | SPLUNK Inc.; SPLUNK INC | Multi-lane time-synched visualizations of machine data events |
9225608, | Dec 21 2011 | Amazon Technologies, Inc | Evaluating configuration changes based on aggregate activity level |
20050183143, | |||
20070150581, | |||
20100077077, | |||
20130024664, | |||
20130159512, | |||
20140052624, | |||
20140143294, | |||
20140143406, | |||
20140237049, | |||
20150295778, | |||
20160004820, | |||
20160103757, | |||
20160196198, | |||
20160224676, | |||
20180089328, | |||
20180091413, | |||
DE112015003888, | |||
JP2006190109, | |||
JP2015089014, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 14 2017 | CROCKER, RONALD T | NEW RELIC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057398 | /0426 | |
Sep 03 2021 | New Relic, Inc. | (assignment on the face of the patent) | / | |||
Nov 08 2023 | NEW RELIC, INC | BLUE OWL CAPITAL CORPORATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 065491 | /0507 |
Date | Maintenance Fee Events |
Sep 03 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Sep 12 2026 | 4 years fee payment window open |
Mar 12 2027 | 6 months grace period start (w surcharge) |
Sep 12 2027 | patent expiry (for year 4) |
Sep 12 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 12 2030 | 8 years fee payment window open |
Mar 12 2031 | 6 months grace period start (w surcharge) |
Sep 12 2031 | patent expiry (for year 8) |
Sep 12 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 12 2034 | 12 years fee payment window open |
Mar 12 2035 | 6 months grace period start (w surcharge) |
Sep 12 2035 | patent expiry (for year 12) |
Sep 12 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |