Near field communication (nfc) methods, systems, and devices are disclosed herein. In an example embodiment, the method includes providing a first nfc device including a nfc antenna, and transmitting a radio frequency (rf) signal including a rf carrier signal by way of the nfc antenna. Also, the method includes receiving a first resonant signal after the transmitting has ceased, and processing the first resonant signal to generate a first portion of transformed signal information. Further, the method includes identifying one or both of a first state and a first event based at least in part upon or associated with the first portion of the transformed signal information.
|
1. A method of operating a near field communication (nfc), the method comprising:
providing a first nfc device including a nfc antenna;
transmitting a radio frequency (rf) signal including a rf carrier signal by way of the nfc antenna;
receiving a first resonant signal via the nfc antenna after the transmitting has ceased;
processing a sequence of resonant signals including the first resonant signal to generate a plurality of states, wherein the plurality of states includes a first state relating to a first antenna arrangement between a combination of the first nfc device and a second nfc device and a non-nfc device relative to the antenna of the first nfc device and a second state relating to a second antenna arrangement between a combination of the first NEC device and the second nfc device relative to the antenna of the first nfc device;
decoding the plurality of states using a hidden markov model or a Viterbi algorithm to identify a target sequence representing an event; and
identifying the event based at least in part upon or associated with the plurality of states.
3. The method of
4. The method of
5. The method of
7. The method of
9. The method of
11. The method of
12. The method of
13. The method of
|
The present disclosure relates to wireless communications systems and methods and, more particularly, to near field communication (NFC) systems and methods.
Radio Frequency Identification (RFID) or Near Field Communication (NFC) systems often include a primary NFC device (also referred to as a card reader or simply a reader) and one or more secondary NFC devices (also referred to as cards or active devices in card emulation mode). The reader operates to generate a 13.56 MHz RF (radio frequency) carrier signal to power cards in its proximity. The devices form a magnetically coupled RF network of which each device has its RF resonance frequency that is in-band, at or close to the carrier frequency. Additionally, RF communication methods employing modulation with respect to any of amplitude, frequency, or phase domains may be applied to achieve time interleaved communications between the primary and secondary devices. Such operation may be defined by RF standards such as ISO/IEC14443, ISO/IEC15693, EMVCo Contactless, or NFC Forum.
NFC systems are presently implemented in a wide variety of applications. Typical NFC application examples include contactless payment, transit, access, ticketing and gaming. For proper operation in some such use cases, only one card should be present in the vicinity of the reader. Satisfaction of this requirement may be important for avoiding ambiguities in terms of which card should be interacting with a reader at any given moment. For example, if only one contactless credit card is present in the vicinity of a reader, then this will avoid ambiguities that might otherwise occur if more than one such card was present in the vicinity of the reader, such as ambiguities regarding which contactless credit card should be charged. However, with respect to some other conventional applications/use cases, for example, with respect to the use of readers and cards in warehouses or for logistics, a multiplicity of NFC cards may be present.
A conventional NFC system often includes multiple magnetically coupled resonant circuits. The current state of a given coupled circuit as seen by a reader (or primary NFC device) may be defined by various factors, including each individual device's self-resonance frequency and the magnetic coupling coefficients between the reader and one or more other devices or counterparts (e.g., one or more cards or secondary NFC devices). However, although the reader of a conventional NFC system typically receives logical data in-band information as sent by its counterparts, typically a conventional reader is not aware of what counterparts are present in its proximity. Consequently, in applications where it may be important for only a single card to be present in the vicinity of the reader, it may be impossible for the reader to determine that this requirement is being met.
Further, although there are applications where it may be appropriate to adjust the operation of the reader or the overall NFC system based upon what counterparts or other devices are in proximity to the reader, a conventional NFC system may lack sufficient information about the various devices that are coupled with one another and part of the NFC system in order to make such adjustments.
For at least one or more of these reasons, or one or more other reasons, it would be advantageous if new or improved NFC systems or NFC devices could be developed, and/or new or improved methods of operation or implementation of such systems or devices could be developed, so as to address any one or more of the concerns discussed above or to address one or more other concerns or provide one or more benefits.
The present inventors have recognized that Near Field Communication (NFC) systems rely on physical (e.g., magnetic, or inductive wireless) coupling effects for energy transfer and communication, and that these physical coupling effects may be sensed, interpreted, and exploited to achieve enhanced operation of such NFC systems and/or associated devices. More particularly, the present inventors have recognized that these physical coupling effects form (or may be controlled or influenced so as to form) specific patterns by a proper design of the coupling system. Further, the present inventors have recognized that, by “decoding” one or more of these patterns, it is possible to derive useful (and possibly unique) insights regarding the actual environment with respect to which a given NFC system is exposed (or in which the system is operating), and/or insights regarding the physical arrangements of one or more NFC devices relative to one another and/or other structures. By virtue of obtaining these insights, the NFC system (or a NFC device thereof) is effectively able to “draw” a picture of, or model, the environment. Such modeling of the environment enables the NFC system (or a NFC device thereof) to perform functions such as state detection, event classification, and/or other functions such as gesture, profile, or feature detection and connected actions associated therewith.
The present disclosure relates, in at least some embodiments, to NFC systems in which a NFC device is configured to sense its environment with measurement pulses (which are compliant with NFC regulations), and to translate the measurements into states and/or events, with a given event being defined as or associated with a sequence or series of one or more states (typically more than one state). By virtue of such operation, an additional user-control interface is established, as the identification of states and/or events may be used to control applications on, and/or functionalities of or actions taken by, the NFC device (e.g., a host device) and/or possibly other systems or devices with respect to which that NFC device is in communication.
Also, the present disclosure in at least some embodiments relates to a method of operation that includes exciting an NFC system (or NFC coupling system, or a NFC device of the NFC system) with a measurement RF pulse, and measuring the ringing signal (RF-off ringing) after the pulse. Such operation enables a NFC device of the NFC system to perform broadband system response analysis. The captured response or transformations thereof may be interpreted as a characteristic (e.g., physically non-cloneable) feature vector, which represents a certain state of the coupling system. More particularly, the broadband information allows for determinations to be made regarding the current system coupling state, for example, by providing information about what other device(s) (e.g., NFC counterpart device(s)) are present and specifics about how those other device(s) are positioned relative to (e.g., on) a primary NFC device. Further, NFC events may be identified by evaluating a sequence of measured feature vectors (e.g., the sequence of states). The identified NFC states/events may in turn be used to enable an additional user-interface for NFC devices. Thus, by broadband excitation of the NFC coupling system and subsequent broadband signal analysis, it is possible to determine characteristic (or unique) features, states, and events, and to perform actions that are associated with (or that are in response to) such determinations of those features, states, and events.
The present disclosure additionally relates to numerous applications of such NFC systems, devices, and methods. For example, such applications or use cases may involve general environment sensing, gaming, and NFC physical access. For example, at least some embodiments encompassed herein allow for a NFC primary device (e.g., a reader) to detect the orientation condition of a card positioned on top of the reader. For applications such as gaming, such detection of the orientation condition of a card allows for intuitive user interaction based on a NFC link without the need for further sensors.
Referring to
Further as shown, the primary NFC device 102 includes a NFC subsystem 110 that has a control unit 112, a process and identification unit 114, and a RF modem 116. As represented by arrows 118, which are representative of internal communication links (such as a bus), the control unit 112 is in bidirectional communications with each of the process and identification unit 114 and the RF modem 116, and further the RF modem 116 may send signals to the process and identification unit 114. The primary NFC device 102 also includes a primary NFC antenna 120 and a RF matching circuit 122. As represented by additional arrows 124, which again are representative of internal communication links (such as a bus), the RF modem 116 of the NFC subsystem 110 is connected to the primary NFC antenna 120 via the RF matching circuit 122. The NFC antenna 120 and RF matching circuit 122 represent (or constitute) a resonant circuit network (or resonance circuit network).
The primary NFC device 102 is generally intended to be representative of any of a variety of different readers or other primary NFC devices. For example, the primary NFC device 102 may be any of a variety of commercial products available from NXP Semiconductors N.V. (of Eindhoven, Netherlands) that are configured for operation in (or operation in supporting) NFC reader mode, such as (but not limited to) NFC controllers for mobile devices as well as NFC frontend based devices.
Further, in the present example embodiment, the NFC counterpart device 104 is another NFC device, which includes an antenna 130, a matching circuit 132, and a NFC RF frontend circuit portion 134. More particularly, the matching circuit 132 is connected to each of the antenna 130 and the NFC RF frontend circuit portion 134 by way of internal communication links 136 (such as a bus), and the matching circuit, antenna, and NFC RF frontend circuit portion also represent (or constitute) a resonant circuit network (or resonance circuit network). In the present example, the primary NFC device 102 is an active device that generates RF signals and may be referred to as a reader. In contrast, the NFC counterpart device 104 is a passive device that may be referred to as a card. Alternatively, the NFC counterpart device 104 may be an active device operating in a card emulation mode. The primary NFC device 102 operating as a reader particularly may generate a 13.56 MHz RF carrier signal to power the NFC counterpart device 104 operating as a card when the NFC counterpart device 104 is positioned in proximity to the reader.
As for the non-NFC counterpart device 106, this device is intended to be representative of any of a variety of types of other counterpart devices that are not suited for NFC communications but that, at least in some circumstances, may interact with (be wirelessly coupled in some manner with) the primary NFC antenna 120 of the primary NFC device 102. Further for example, the non-NFC counterpart device 106 may be a non-NFC radio or a metal object that may influence the resonance behavior over frequency (as may be observed by the RF modem 116).
Although
The present disclosure also envisions embodiments and arrangements, and operational circumstances, in which there are present more than one active device (e.g., more than one of the primary NFC devices 102) that are in communication with one another, alone or in combination with one or more of the NFC counterpart devices and/or with one or more of the non-NFC counterpart devices. For example, in some such embodiments, there are multiple active devices that communicate with one another in a peer-to-peer manner.
The presence (or absence) and/or positioning of one or more (or many) counterpart devices, relative to a given primary NFC device such as the primary NFC device 102, may be referred to as system state. Several examples of various system states that may occur depending upon the embodiment or circumstance include: (1) a first system state in which no counterpart device (NFC counterpart device or non-NFC counterpart device) is present; (2) a second system state in which only a specific NFC counterpart device is present in proximity to the primary NFC device (or reader) 102; (3) a third system state in which a NFC counterpart device such as the NFC counterpart device 104 has a specific positioning (e.g., relative to the primary NFC device); or (4) a fourth system state in which there is an instantaneous coupled resonance frequency (e.g., as determined at the primary NFC device 102) of a coupled NFC counterpart device such the NFC counterpart device 104.
Notwithstanding the aforementioned examples of system states, the present disclosure is also intended to encompass embodiments and arrangements, and operational circumstances, in which any of a variety of other system states may occur or arise in addition to, or instead of, the aforementioned examples. The system states that may occur may depend upon, among other things, which and how many of the counterpart devices are present as part of the system, and more particularly, which and how many of the counterpart devices are proximate to the primary NFC device 102.
Turning to
Even though the transmitting of the RF carrier signal is disabled, there is still energy stored in the coupled resonant circuit of the primary NFC device 102 (e.g., as formed by the NFC antenna 120 and the RF matching circuit 122). The presence of the energy in the coupled resonant circuit exists at least for a short period of time after the first time 208 (the FieldOff time), for example, up until a second time 210. During the period of time when energy is present in the coupled resonant circuit subsequent to the first time 208 (after disabling of the transmitter), between that first time and the second time 210, the RF modem 116 may sense a decay signal (also referred to as RF-off ringing) and capture an energy discharge curve associated with that decay signal, so as to allow a broadband signal analysis. This may be done by monitoring the signal, for example, by sampling the signal by way of an analog-to-digital converter (ADC) as is typically present in the receiver stages of the NFC controller (e.g., within the NFC subsystem 110, such as within the control unit 112 of
Further with respect to the sampling that may be performed during the capture step 204 after the first time 208 (e.g., the FieldOff sampling performed after the FieldOff time), it should be appreciated that such sampling may be performed in any of a variety of manners (or occur in any of a variety of scenarios) depending upon the embodiment or circumstance. For example, the sampling may occur or begin at the end of a RF transaction (e.g., where the end occurs at the first time 208). Also for example, the sampling may occur in the context of, or after, a short RF sense pulse, as may be provided for low power card detection (LPCD). Further for example, the sampling may occur during RF communication using 100% amplitude shift key (ASK100) modulation, which is based on disabling the RF carrier for communication purposes.
Next, at a processing step 212, the primary NFC device 102 operates to process the data that was captured (sampled) at the capture step 204. As will be described in further detail below, the processing that is performed at the processing step 212 may take any of a variety of forms depending upon the embodiment. Subsequently, at a state identification step 214, the primary NFC device 102 further proceeds to identify the current system state. In the present example embodiment, the processing that occurs at the step 212 and the state identification that occurs at the step 214 are both performed by the process and identification unit 114 of the primary NFC device 102. Alternatively, such processing and/or state identification may be performed by way of one or more other processing devices alone or in combination with the process and identification unit 114 (e.g., by the combination of the control unit 112 and the process and identification unit 114).
Further, at a step 216, various actions may be triggered upon the identification or detection of a specific system state at the step 214. If at the step 216 the primary NFC device 102 determines that one or more actions are appropriate or required in view of the identified system state, the method advances to a step 218. At the step 218, the one or more actions that are appropriate or required are triggered and/or taken. Examples of system states that are identified, and actions that may be taken upon the identification of such system states, are described in further detail below. Also, although the step 218 of
Turning to
More particularly, the flow chart 300 begins with a first step 302, at which the primary NFC device 102 retrieves input data, for example, from reading ADC data during modulation or after the RF field has been switched off (e.g., at the time 208). The input data may be obtained by polling (e.g., poll n). This operation at the first step 302 may be considered to correspond to the capture step 204 of
The output(s) of the data transformation performed at the second step 304 may be referred to as feature(s). Subsequent to the second step 304, at a third step 306 a classifier (of the primary NFC device 102) identifies the system state based upon the features that were determined at the second step. The particular classifier implementation(s) that are performed at the third step 306 may vary depending upon the embodiment or circumstance. For example, in some embodiments, the classifier implementation(s) performed at the third step 306 may include logistic regression-based models, neural networks, support vector machines, decision trees, or other machine learning or artificial intelligence software, programs, techniques, or algorithms. In some embodiments, the classifier(s) may be trained offline by presenting training examples for the system states that are relevant for the intended application. This operation at the third step 306 may be considered to correspond to the state identification step 214 of
Turning to
More particularly in this regard,
However, in contrast to the flow chart 300 of
Subsequently, at a fifth step 404, if an event has been detected, the primary NFC device 102 notifies a host (e.g., a host central processing unit (CPU) such as may be employed in a smart phone or other mobile device) regarding the detected event. Although the fifth step 404 particularly relates to such a notification action being taken, the present disclosure also encompasses other embodiments or arrangements in which one or more other types of actions is or are taken upon detection of a given event. Also, although the method of
The present disclosure is intended to encompass numerous different embodiments of systems that are configured to identify or detect, and/or to take one or more other actions in response to the identification/detection of (such as providing notifications regarding), any of a variety of different types of system states and/or events, in accordance with the methods of
More particularly,
In
As already noted,
Further, the third physical arrangement 506 is an arrangement in which, in addition to the first and second NFC devices 512 and 514 being arranged in the same manner as in the second physical arrangement 504, the third NFC device 516 is positioned directly on top of the second NFC device 514. More particularly, in the third physical arrangement 506, one of the primary side surfaces 530 of the third NFC device 516 is in contact with (directly on top of) a second one of the primary side surfaces 529 of the second NFC device 514, such that the second NFC device is sandwiched in between the first NFC device 512 and the third NFC device. The third physical arrangement 506 may be understood to be representative of a coupling scenario in which an unexpected environment exists for communications to occur by the first NFC device 512 with the second NFC device 514, because of the additional presence of the third NFC device 516 in the vicinity of the first NFC device 512.
It should be recognized that, in view of the above discussion concerning
Further, the first NFC device 512 performs additional processing to evaluate the spectral characteristics shown in the first, second, and third feature space representations 522, 524, and 526, respectively, and to thereby determine the first, second, and third states (system states or algorithm states) 532, 534, and 536, respectively, which correspond to those respective feature space representations. This additional processing may be understood to occur in a manner consistent with the third step 306 of
In the example embodiment of
The third state 536 may arise in any of a variety of circumstances, depending upon the embodiment or characteristics or purposes of the NFC devices. For example, in one embodiment, the first NFC device 512 is a door access reader, and the second NFC device 514 is an access card. In such an embodiment, the first NFC device 512 may be configured to restrict NFC communications to circumstances in which the system (and particularly the first NFC device) is in the second state 534 (“State 1”). That is, in such an embodiment, a NFC cycle of communications will be initiated by the first NFC device 512 with the second NFC device 514 only if the first NFC device is experiencing an expected (or normal) communications environment in accordance with the second state 534 (“State 1”). Further, the first NFC device 512 may also be configured so that no NFC communication will be performed if the third state 536 (“State 2”) is reached. This is appropriate because, when the system (and particularly the first NFC device 512) is in the third state 536, not only the required access card is present but also an additional (unexpected) NFC device is present and coupled to the first NFC device. Thus, if the first NFC device 512 is configured in this manner, the first NFC device (and this associated method of operation) is capable of detecting the presence of RF spying devices (e.g., the third NFC device 516) potentially used by intruders to intercept or capture ongoing NFC RF communications between the first NFC device and the second NFC device 514.
It should be appreciated that, in at least some embodiments, the manner of processing performed by the first NFC device 512 during the second step 304 and/or during the third step 306 may be determined based upon training of that first NFC device (or of the overall system). For example, to determine whether the second state 534 (“State 1”) has occurred, and correspondingly whether the system (and particularly the first NFC device 512) is experiencing an expected (or normal) coupling scenario, the system (and particularly the first NFC device 512) may operate based upon software or programming that is developed by way of training. In some embodiments or circumstances, the software or programming may include artificial intelligence or machine learning, and such training may involve training neural networks to allow the first NFC device to learn “expected communication scenarios” and to differentiate between such scenarios and other communication scenarios. Further, for such embodiments, the methods shown in
Turning to
It will be appreciated from a comparison of
By contrast, in each of the first and third physical arrangements 602 and 606, the second NFC device 514 is positioned relative to the first NFC device 512 such that the respective antennas 518 and 519 respectively are perpendicular with one another. That is, although the respective long axis of the antenna 518 of the first NFC device 512 continues to extend parallel to the first axis 612 in each of the first and third physical arrangements 602 and 606, the respective long axis of the antenna 519 of the second NFC device 514 extends parallel to a second axis 614 extending along the top flat surface 528 of the first NFC device 512, where the second axis 614 is perpendicular to the first axis 612. It should be recognized that, although the first and third physical arrangements 602 and 606 are described as distinct physical arrangements insofar as the two arrangements occur at different times during the succession of arrangements that occur in the first row 600, in actuality the physical positions of the second NFC device 514 relative to the first NFC device 512 in both of the first and third physical arrangements 602 and 606 are identical in this example.
In addition to the first row 600,
Further,
Further with respect to the example of
Given such relative movements of the first and second NFC devices 512 and 514 in the example scenario of
Further in the present example of
The application example of
Notwithstanding the above description, the present disclosure is intended to encompass numerous embodiments including those disclosed herein as well as a variety of alternate embodiments. Indeed, in this regard, the present disclosure encompasses a variety of embodiments of NFC systems and associated devices having any of a variety of systems or subsystems, designs, detectors, and signal processing capabilities. For example, notwithstanding the examples provided in
Additionally, although the above discussion describes reading, or taking action, based upon RF-off ringing, the present disclosure also encompasses embodiments in which other signal or signal changes are read, or taking action in response to or based upon such other signals or signal changes, including signals or signal changes involving RF-on ringing or other signaling. Further, the transformation or transformations that are performed or applied to process resonant signal information or captured energy discharge curve information (for example, at the step 304 described above) may include any one or more linear operations or mappings (e.g., a Fourier transform such as a discrete Fourier transform), or any one or more nonlinear operations or mappings (e.g., taking the absolute value, or performing dynamic range compression or employing rectifiers), or a combination of both. Also, although the above description particularly discusses NFC systems, devices and methods, the present disclosure also encompasses Radio Frequency Identification (RFID) systems, devices, and methods.
Also for example, notwithstanding the various applications and use cases described above, the present disclosure also encompasses other alternate embodiments that may involve use case domains that cover NFC devices in any of a variety applications, including applications relating to infrastructure, mobile, computing, contactless payment, transit, ticketing, gaming (e.g., based upon how a card is positioned on a reader), or access (e.g., access security, by restricting or preventing RF spying—or an accessory device statically coupled on reader, identification (ID) allows a return channel/interrupt signal). For example, at least some additional embodiments encompassed herein relate to door access readers that only perform NFC communications upon detection of supported access cards. This allows for the door access readers to achieve enhanced security levels, by preventing communications with RF spying antennas that may be present in proximity of the NFC coupling systems. Further for example, for an NFC system with astatically coupled reader and card device(s), method such as those described herein may be used to achieve out-of-band trigger signals from cards to readers. As an example, a card device may change its resonance frequency by a capacitor value change to signal certain events in the application. The reader device may detect this resonance frequency change as a system state change to trigger associated actions.
Further, in at least some example embodiments encompassed herein, the present disclosure relates to a method of operating a near field communication (NFC) system. The method includes providing a first NFC device including a NFC antenna, and transmitting a radio frequency (RF) signal including a RF carrier signal by way of the NFC antenna. Also, the method includes receiving a first resonant signal after the transmitting has ceased, and processing the first resonant signal to generate a first portion of transformed signal information. Further, the method includes identifying one or both of a first state and a first event based at least in part upon or associated with the first portion of the transformed signal information.
Additionally, in at least some example embodiments encompassed herein, the present disclosure relates to a NFC device. The NFC device includes a subsystem having a control unit, a process and identification unit, and a RF modem. Further, the NFC device also includes a RF matching circuit, and a NFC antenna. The RF modem is configured to capture an energy discharge curve after transmission of a RF signal by the NFC device ceases, by sampling a received signal by way of an analog-to-digital converter (ADC). Also, the process and identification unit is configured to process the captured energy discharge curve to arrive at processed information and, based at least in part upon the processed information, to identify one or both of a first state and a first event.
Further, in at least some example embodiments encompassed herein, the present disclosure relates to a method of operating a near field communication (NFC) system. The method includes providing a first NFC device including a NFC antenna, and transmitting a radio frequency (RF) signal including a RF carrier signal by way of the NFC antenna. The method also includes ceasing the transmitting of the RF signal, receiving a first resonant signal after the transmitting has ceased, and sampling the first resonant signal by way of an analog-to-digital converter (ADC) so as to capture an energy discharge curve. Additionally, the method also includes processing the captured energy discharge curve to generate processed information including one or more feature space representations, identifying one or both of a first state and a first event based at least in part upon or associated with the one or more feature space representations, and taking at least one action in response to the identifying of the one or both of the first state and the first event.
While the principles of the invention have been described above in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the invention. It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
Stahl, Johannes, Wobak, Markus, Muehlmann, Ulrich Andreas
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10511347, | Nov 14 2017 | NXP B.V. | Device detection in contactless communication systems |
10945210, | Jan 10 2019 | NXP B.V. | Control system for a radio frequency communication device |
11037435, | Nov 18 2019 | NXP B.V. | Radio frequency communication device |
3769575, | |||
4023167, | Jun 16 1975 | Radio frequency detection system and method for passive resonance circuits | |
4321539, | Feb 16 1979 | PACKARD BELL NEC, INC | Digital BFO metal detecting device with improved sensitivity at near-zero beat frequencies |
6476708, | Mar 20 1998 | ASSA ABLOY AB | Detection of an RFID device by an RF reader unit operating in a reduced power state |
8547911, | May 21 2008 | SEQUANS COMMUNICATIONS | Method and system for channel scanning in a wireless communications system |
9124302, | Oct 11 2012 | Qualcomm Incorporated | Carrier frequency variation for device detection in near-field communications |
9171440, | Aug 25 2010 | CLAIRVOYANT TECHNOLOGY, INC | Apparatus and method for metal detection using radio frequency reflection |
9306626, | May 16 2012 | NXP USA, INC | NFC device context determination through proximity gestural movement detection |
9524383, | Aug 08 2008 | ASSA ABLOY AB | Directional sensing mechanism and communications authentication |
9819401, | Sep 24 2015 | Intel Corporation | Highly selective low-power card detector for near field communications (NFC) |
20100259390, | |||
20130225071, | |||
20160322853, | |||
20170126267, | |||
EP1148437, | |||
EP2107495, | |||
EP3173968, | |||
WO2012002879, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 10 2022 | NXP B.V. | (assignment on the face of the patent) | / | |||
Mar 10 2022 | STAHL, JOHANNES | NXP B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060957 | /0716 | |
Mar 10 2022 | WOBAK, MARKUS | NXP B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060957 | /0716 | |
Mar 10 2022 | MUEHLMANN, ULRICH ANDREAS | NXP B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060957 | /0716 |
Date | Maintenance Fee Events |
Mar 10 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Dec 19 2026 | 4 years fee payment window open |
Jun 19 2027 | 6 months grace period start (w surcharge) |
Dec 19 2027 | patent expiry (for year 4) |
Dec 19 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 19 2030 | 8 years fee payment window open |
Jun 19 2031 | 6 months grace period start (w surcharge) |
Dec 19 2031 | patent expiry (for year 8) |
Dec 19 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 19 2034 | 12 years fee payment window open |
Jun 19 2035 | 6 months grace period start (w surcharge) |
Dec 19 2035 | patent expiry (for year 12) |
Dec 19 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |