A tamper evidence closure is provided for rotatably engaging with a finish of a container to seal contents within the interior of the container. A multiplicity of thin connections attach a tamper evidence band to a circumference of the tamper evidence closure. A segmented cam extends around the circumference of the tamper evidence band. An angled lower surface of the cam facilitates passing the tamper evidence band over a tamper evidence ledge of the finish during assembly of the tamper evidence closure onto the container. An upper surface of the cam engages with the tamper evidence ledge to break the thin connections and retain the tamper evidence band positioned on the finish during loosening of the tamper evidence closure. Multiple overhang portions above the cam press against an upper portion of the tamper evidence ledge to ensure that the tamper evidence band remains engaged with the tamper evidence ledge.
|
11. A tamper evidence closure for rotatably engaging with a finish of a container to seal contents within the interior of the container, the tamper evidence closure comprising:
interior threads that are configured to engage with threads of the finish;
a multiplicity of thin connections attaching a tamper evidence band to a circumference of the tamper evidence closure;
a segmented cam extending around the circumference of the tamper evidence band about a closure axis, the segmented cam integrally formed with the tamper evidence band and including a plurality of separated surfaces each having a nonzero and nonorthogonal angle relative to the closure axis; and
a plurality of overhang portions axially spaced from the segmented cam and configured to support the tamper evidence band on an upper portion of a tamper evidence ledge of the finish after separation of the tamper evidence closure from the finish, each overhang portion of the plurality of overhang portions circumferentially positioned between adjacent separated surfaces of the plurality of separated surfaces.
1. A tamper evidence closure for rotatably engaging with a finish of a container to seal contents within the interior of the container, the tamper evidence closure comprising:
interior threads configured to engage with threads of the finish;
a plug seal configured to extend into an opening of the finish whereby contents are sealed in the interior of the container;
a multiplicity of thin connections attaching a tamper evidence band to a circumference of the tamper evidence closure;
a segmented cam extending around the circumference of the tamper evidence band about a closure axis, the segmented cam including at least six separated surfaces each having a nonzero and nonorthogonal angle relative to the closure axis, the segmented cam integrally formed as one piece with the tamper evidence band; and
a plurality of overhang portions disposed above the segmented cam and configured to support the tamper evidence band on an upper portion of a tamper evidence ledge of the finish after separation of the tamper evidence closure from the finish,
wherein each of the overhang portions is circumferentially positioned between adjacent separated surfaces of the at least six separated surfaces.
2. The tamper evidence closure of
3. The tamper evidence closure of
4. The tamper evidence closure of
5. The tamper evidence closure of
6. The tamper evidence closure of
7. The tamper evidence closure of
8. The tamper evidence closure of
9. The tamper evidence closure of
10. The tamper evidence closure of
12. The tamper evidence closure of
13. The tamper evidence closure of
14. The tamper evidence closure of
15. The tamper evidence closure of
16. The tamper evidence closure of
17. The tamper evidence closure of
|
This application claims priority to U.S. Provisional Patent Applications No. 62/724,548, filed Aug. 29, 2018, the disclosure of which is hereby incorporated herein by reference in its entirety.
Embodiments of the present disclosure generally relate to the field of plastic bottles and preforms. More specifically, embodiments of the disclosure relate to tamper evidence container caps and preforms that provide visible indications of removal of the container caps after installation by a manufacturer.
Plastic containers have been used as a replacement for glass or metal containers in the packaging of beverages for several decades. The most common plastic used in making beverage containers today is polyethylene terephthalate (PET). Containers made of PET are transparent, thin walled, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by their contents. PET resins are also reasonably priced and easy to process. PET bottles are generally made by a process that includes the blow-molding of plastic preforms which have been made by injection molding of the PET resin.
Advantages of plastic packaging include lighter weight and decreased breakage as compared to glass, and lower costs overall when taking both production and transportation into account. Although plastic packaging is lighter in weight than glass, there is still great interest in creating the lightest possible plastic packaging so as to maximize the cost savings in both transportation and manufacturing by making and using containers that contain less plastic.
A plastic container for storing liquid contents typically includes a base that extends up to a grip portion suitable for affixing a label, as well as providing a location for grasping the container. The grip portion generally transitions into a shoulder, which connects to a bell. The bell has a diameter that generally decreases as the bell extends upward from the shoulder to a neck and a finish. The finish is adapted to receive a closure, such as a bottle cap, to seal the contents within the interior of the plastic container.
In many instances, the closure includes a tamper evidence band that is disposed around the perimeter of the finish. The tamper evidence band generally remains positioned on the finish when an end-user loosens the closure to access the contents within the container. As such, the tamper evidence band and the finish cooperate to indicate to the end-user whether or not the closure has been previously loosened after being installed by the manufacturer.
A drawback to conventional tamper evidence bands, however, is that in some instances the tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the closure may be separated from the tamper evidence band, the container may be refilled, and another closure may be installed onto the container, giving little visual indication to the end-user that the container has been reused.
What is needed, therefore, is a tamper evidence closure that reliably provides a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
Systems and methods for threaded tamper evidence finish and closure for containers include a finish portion of a preform for rotatably engaging with a tamper evidence closure to seal contents within an interior of a container formed from the preform including a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge, one or more threads configured to provide a means to fasten the tamper evidence closure to the container, a handling valley disposed between the one or more threads and the tamper evidence ledge, and a bevel disposed at a beginning of the opening and configured to receive a sealing flange of the cap.
In a further embodiment, the tamper evidence ledge is configured to cooperate with a tamper evidence band of the closure to indicate whether or not the closure has been loosened after being installed by a manufacturer.
In another embodiment, the handling valley and the neck portion are configured to enable gripping fingers to engage with and support the container during air-conveying the container along a manufacturing assembly.
In a still further embodiment, the handling valley provides a separation between the tamper evidence ledge and the one or more threads suitable for receiving a pair of gripping fingers of an air conveyor system.
In still another embodiment, the tamper evidence closure includes a tamper evidence band disposed around the circumference of the tamper evidence closure and attached thereto by way of a multiplicity of thin connections.
In a yet further embodiment, the tamper evidence band includes a segmented cam that includes an angled lower surface configured to facilitate passing the tamper evidence band over the one or more threads and the tamper evidence ledge during assembly of the tamper evidence closure onto the finish.
In yet another embodiment, the segmented cam includes an upper surface that is configured to engage with the tamper evidence ledge so as to retain the tamper evidence band positioned on the finish during loosening of the tamper evidence closure, the multiplicity of thin connections breaking during loosening of the tamper evidence closure.
In a further embodiment again, the tamper evidence closure includes a multiplicity of overhang portions configured to press against an upper portion of the tamper evidence ledge to ensure that the tamper evidence band remains engaged with the tamper evidence ledge after removal of the tamper evidence closure from the finish.
In another embodiment again, the tamper evidence band is configured to remain positioned on the finish after the tamper evidence closure is removed from the container, thereby indicating that the tamper evidence closure has been loosened after being installed by a manufacturer.
In many embodiments, a tamper evidence closure for rotatably engaging with a finish of a container to seal contents within the interior of the container includes interior threads that are configured to engage with threads of the finish, a plug seal configured to extend into an opening of the finish whereby contents are sealed in the interior of the container, a multiplicity of thin connections attaching a tamper evidence band to a circumference of the tamper evidence closure, a segmented cam extending around the circumference of the tamper evidence band, and a multiplicity of overhang portions disposed above the segmented cam.
In a further additional embodiment, the segmented cam includes an angled lower surface configured to facilitate passing the tamper evidence band over the threads and a tamper evidence ledge of the finish during assembly of the tamper evidence closure onto the container.
In another additional embodiment, the segmented cam includes an upper surface configured to engage with a tamper evidence ledge of the finish to retain the tamper evidence band positioned on the finish during loosening of the tamper evidence closure, the multiplicity of thin connections breaking during loosening of the tamper evidence closure.
In a still yet further embodiment, the multiplicity of overhang portions are configured to press against an upper portion of a tamper evidence ledge of the finish to ensure that the tamper evidence band remains engaged with the tamper evidence ledge after removal of the tamper evidence closure from the finish.
The drawings refer to embodiments of the present disclosure in which:
While the present disclosure is subject to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. The invention should be understood to not be limited to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, to one of ordinary skill in the art that the invention disclosed herein may be practiced without these specific details. In other instances, specific numeric references such as “first preform,” may be made. However, the specific numeric reference should not be interpreted as a literal sequential order but rather interpreted that the “first preform” is different than a “second preform.” Thus, the specific details set forth are merely exemplary. The specific details may be varied from and still be contemplated to be within the spirit and scope of the present disclosure. The term “coupled” is defined as meaning connected either directly to the component or indirectly to the component through another component. Further, as used herein, the terms “about,” “approximately,” or “substantially” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein.
Disclosed herein are articles, including preforms and tamper evidence closures for containers. In some instances, conventional tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the end-user has little visual indication of whether the container has been reused. Embodiments disclosed herein provide a preform and a tamper evidence closure that reliably provides a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
The finish portion 104 begins at an opening 112 to an interior of the preform 100 and extends to and includes a tamper evidence ledge 116. The finish portion 104 can be further characterized by the presence of one or more threads 120 configured to provide a means to fasten a closure, such as a cap, to the bottle produced from the perform 100. As such, the threads 120 are configured to rotatably engage with similar threads disposed within the cap to provide a way to seal contents within the bottle. In the embodiment illustrated in
As best shown in
The body portion 108 includes a neck portion 132 that extends to a tapered portion 136 of the body portion 108. The tapered portion 136 comprises a smooth transition from a diameter of the neck portion 132 to a relatively smaller diameter of a cylindrical portion 140 of the preform 100. The cylindrical portion 140 can be a generally elongate member that culminates in an end cap 144. In some embodiments the body portion 108 may be generally cylindrical, and the end cap 144 may be conical or frustoconical and may also be hemispherical, and the very terminus of the end cap 144 may be flattened or rounded.
As best shown in
With continuing reference to
As further shown in
Disposed between the tamper evidence ledge 116 and the threads 120 is a handling valley 160 that extends circumferentially around the finish portion 104. Further, the handling valley 160 comprises a portion of the finish 104 that has a wall thickness and a diameter that are substantially similar to the wall thickness and diameter of the neck portion 132, below the tamper evidence ledge 116. As such, the handling valley 160 and the neck portion 132 advantageously enable gripping fingers to engage with and support the container during air-conveying the container along a manufacturing assembly. For example, a first pair of gripping fingers can extend into the handling valley 160 to support the container at a first station of a manufacturing line. Then, upon being conveyed to a second station, a second pair of gripping fingers can extend around the neck portion 132, below the tamper evidence ledge 116, while the first pair of gripping fingers are removed from the handling valley 160. Similarly, upon arriving at a third station, a third pair of gripping fingers can engage with the handling valley 160 while the second pair of gripping fingers are removed from the neck portion 132. Thus, the container can be transported along the manufacturing line by alternatingly engaging gripping fingers with the handling valley 160 and the neck portion 132.
As will be appreciated, the handling valley 160 provides a separation between the tamper evidence ledge 116 and the threads 120 suitable for receiving the pair of gripping fingers, as described above. In general, the separation must be large enough to allow the gripping fingers to easily pass between the tamper evidence ledge 116 and the threads 120. As such, any of various separations, greater than the width of the gripping fingers, may be disposed between the tamper evidence ledge 116 and the threads 120, without limitation and without deviating beyond the scope of the present disclosure.
As further shown in
Once the closure 164 can be installed onto the finish 104 by a manufacturer and later an end-user loosens the closure 164, the segmented cam 200 presses against the flat lower portion 156 of the tamper evidence ledge 116, breaking the thin connections 204 between tamper evidence band 166 and the closure 164. The tamper evidence band 166 remains positioned on the tamper evidence ledge 116 after the closure 164 is removed from the container 100. Multiple overhang portions 216 disposed above the segmented cam 200 of the closure 164 are configured to press against the rounded upper portion 152 of the tamper evidence ledge 116. The overhand portions 216 ensure that the tamper evidence band 166, once free of the closure 164, does not fall below the tamper evidence ledge 116 and reside around the neck 132 of the container 100. Thus, the tamper evidence band 166 cooperates with the tamper evidence ledge 116 to indicate to the end-user whether or not the closure 164 has been previously loosened after being installed by the manufacturer.
The articles described herein may be made from any suitable thermoplastic material, such as polyesters including polyethylene terephthalate (PET), polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (monomers or portion thereof having another group as a side group, e.g. olefin-modified polyesters). These materials may be used alone or in conjunction with each other. More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly(cyclohexylenedimethylene terephthalate), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-1, poly(methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra-fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene terephthalate and ethylene isophthalate. In certain embodiments preferred materials may be virgin, pre-consumer, post-consumer, regrind, recycled, and/or combinations thereof.
In some embodiments, polypropylene also refers to clarified polypropylene. As used herein, the tem). “clarified polypropylene” is a broad term and can be used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene. The inclusion of nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene. Alternatively, nucleation inhibitors may be added to polypropylene.
As used herein, “PET” includes, but is not limited to, modified PET as well as PET blended with other materials. One example of a modified PET can be IP A-modified PET, which refers to PET in which the IP A content is preferably more than about 2% by weight, including about 2-10% IP A by weight, also including about 5-10% IP A by weight. In another modified PET, an additional comonomer, cylohexane dimethanol (CHDM) can be added in significant amounts (e.g. approximately 40% by weight or more) to the PET mixture during manufacture of the resin.
Additives may be included in articles herein to provide functional properties to the resulting containers. Such additives include those providing enhanced gas barrier, UV protection, scuff resistance, impact resistance and/or chemical resistance. Preferred additives may be prepared by methods known to those of skill in the art. For example, the additives may be mixed directly with a particular material, or they may be dissolved/dispersed separately and then added to a particular material. Additives may be present in an amount up to about 40% of the material, also including up to about 30%, 20%, 10%, 5%, 2% and 1% by weight of the material. In some embodiments, additives may be present in an amount less than or equal to 1% by weight, such ranges of materials including, but not limited to, about 0.01% to about 1%, about 0.01% to about 0.1%, and about 0.1% to about 1% by weight.
Another possible additive can be microparticulate clay or graphene based materials. These materials comprise tiny, micron or sub-micron size (diameter), particles of materials which enhance the barrier and/or mechanical properties of a material by creating a more tortuous path for migrating gas molecules, such as oxygen or carbon dioxide, to take as they permeate a material and/or providing added stiffness. In some embodiments, nanoparticulate material can be present in amounts ranging from 0.05 to 1% by weight, including 0.1%, 0.5% by weight and ranges encompassing these amounts. In some embodiments, nanoparticles comprise monmorillonite that may be modified with a ternary or quaternary ammonium salt. In some embodiments, such particles comprise organoclays as described in U.S. Pat. No. 5,780,376, the entire disclosure of which is hereby incorporated by reference and forms part of the disclosure of this application. Other suitable organic and inorganic microparticulate clay based or nano-sized products may also be used. Both man-made and natural products are also suitable.
In some embodiments, the UV protection properties of the material may be enhanced by the addition of one or more additives. In one embodiment, the UV protection material used provides UV protection up to about 350 nm or less, preferably about 370 nm or less, more preferably about 400 nm or less. The UV protection material may be used as an additive with layers providing additional functionality or applied separately as a single layer. In some embodiments, additives providing enhanced UV protection are present in the material from about 0.05 to 20% by weight, but also including about 0.1%, 0.5%, 1%, 2%, 3%, 5%, 10%, and 15% by weight, and ranges encompassing these amounts. In some embodiments, the UV protection material is added in a form that can be compatible with the other materials. In some embodiments, a preferred UV protection material comprises a polymer grafted or modified with a UV absorber that can be added as a concentrate. Other preferred UV protection materials include, but are not limited to, benzotriazoles, phenothiazines, and azaphenothiazines. UV protection materials may be added during the melt phase process prior to use, such as prior to injection molding or extrusion.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. To the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Therefore, the present disclosure is to be understood as not limited by the specific embodiments described herein, but only by scope of the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4907708, | Jan 11 1989 | General Kap Corporation | Double bead track cap system |
6726042, | Jan 10 2002 | Berry Plastics Corporation | Tamper evident closure |
20010002661, | |||
20100308050, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 22 2022 | Niagara Bottling, LLC | (assignment on the face of the patent) | / | |||
Dec 23 2022 | HANAN, JAY CLARKE | Niagara Bottling, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 062301 | /0474 |
Date | Maintenance Fee Events |
Dec 22 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jan 16 2027 | 4 years fee payment window open |
Jul 16 2027 | 6 months grace period start (w surcharge) |
Jan 16 2028 | patent expiry (for year 4) |
Jan 16 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 16 2031 | 8 years fee payment window open |
Jul 16 2031 | 6 months grace period start (w surcharge) |
Jan 16 2032 | patent expiry (for year 8) |
Jan 16 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 16 2035 | 12 years fee payment window open |
Jul 16 2035 | 6 months grace period start (w surcharge) |
Jan 16 2036 | patent expiry (for year 12) |
Jan 16 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |