A drug delivery device may include a housing defining a longitudinal axis and having an opening and a drug storage container including a delivery member having an insertion end configured to extend at least partially through the opening during a delivery state. The device may also include plunger moveable toward the distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, the plunger including a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness. The device may further include a plunger biasing member disposed at least partially within the axial chamber, the plunger biasing member configured to urge the plunger toward the distal end of the drug storage container.
|
1. A drug delivery device comprising:
a housing defining a longitudinal axis and having an opening;
a drug storage container including a delivery member having an insertion end configured to extend at least partially through the opening during a delivery state;
a plunger moveable toward a distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, the plunger including a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness less than 0.6 millimeters; and
a plunger biasing member disposed at least partially within the axial chamber, the plunger biasing member being configured to urge the plunger toward the distal end of the drug storage container,
wherein the plunger is configured to selectively rotate relative to the housing and translate linearly toward the distal end of the drug storage container under a biasing force exerted by the plunger biasing member.
7. A drug delivery device comprising:
a housing defining a longitudinal axis and having an opening;
a drug storage container including a delivery member having an insertion end configured to extend at least partially through the opening during a delivery state;
a plunger moveable toward a distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, the plunger including a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness; and
a plunger biasing member disposed at least partially within the axial chamber, the plunger biasing member configured to urge the plunger toward the distal end of the drug storage container,
wherein the plunger is configured to:
selectively rotate from an initial rotational position to a second rotational position under a biasing force exerted by the plunger biasing member, and
translate linearly toward the distal end of the drug storage container under the biasing force exerted by the plunger biasing member after rotating from the initial rotational position to the second rotational position.
11. The drug delivery device of
12. The drug delivery device of
13. The drug delivery device of
|
The present application claims the priority of U.S. Provisional Application No. 62/908,504, filed Sep. 30, 2019, entitled, “Drug Delivery Device,” and U.S. Provisional Application No. 62/961,031, filed Jan. 14, 2020, entitled, “Drug Delivery Device,” each of which is incorporated by reference.
The present disclosure relates to drug delivery devices, and, more particularly, devices for automatically injecting a drug into a patient.
A general aversion to exposed needles, as well as health and safety issues, have led to the development of drug delivery devices which conceal a needle or other insertion member prior to use and which automate various aspects of an injection process. Such devices offer a variety of benefits as compared with traditional forms of drug delivery including, for example, delivery via a conventional syringe.
Many injector systems use coil and other spring structures to provide actuation energy for functions such as needle insertion and/or fluid delivery. The use of springs can offer benefits of simplicity and low cost, but it may have certain limitations. For example, there is a linear relationship between force and displacement in spring actuators. To provide sufficient energy for drug delivery at the end of plunger stroke, an excessive amount of energy may be input to the system as drug delivery commences. As another example, as higher viscosity drugs are delivered via autoinjectors, the requisite spring forces will likely increase. Springs with higher spring constants may transmit more force to the drug product and primary container. Various physical characteristics of a spring may affect the spring rate, and thus the spring force, such as wire diameter of the spring, mean diameter of the spring, the number of spring coils, and the spring material. Therefore, it may be desirable and/or advantageous to include device components that permit flexibility in spring design and/or that facilitate the use of springs with different physical characteristics with the remaining device components.
The present disclosure sets forth drug delivery devices embodying advantageous alternatives to existing drug delivery devices, and that may address one or more of the challenges or needs mentioned herein.
One aspect of the present disclosure provides a drug delivery device including a housing defining a longitudinal axis and having an opening and a drug storage container including a delivery member having an insertion end configured to extend at least partially through the opening during a delivery state. The device may further include a plunger moveable toward the distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, the plunger including a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness. The device may also include a plunger biasing member disposed at least partially within the axial chamber, the plunger biasing member configured to urge the plunger toward the distal end of the drug storage container.
The plunger body portion may have a hollow tubular shape. The plunger body portion may be made of metal or non-metal.
The plunger may be configured to selectively rotate from an initial rotational position to a second rotational position under a biasing force exerted by the plunger biasing member and to translate linearly toward the distal end of the drug storage container under the biasing force exerted by the plunger biasing member after rotating from the initial rotational position to the second rotational position.
The device may further include a plunger guide fixed relative to the housing, the plunger being disposed at least partially within the plunger guide. One of the plunger and the plunger guide may comprises a cam and the other one of the plunger and the plunger guide may comprises a cam follower.
The plunger may include the cam follower and the plunger guide includes the cam, and the cam follower may be formed by at least one flange extending radially outwardly from the plunger.
The plunger body thickness may be less than 0.6 millimeters, less than 0.4 millimeters, less than 0.3 millimeters, less than 0.2 millimeters, less than 0.1 millimeters, or less than 0.05 millimeters.
Another aspect of the present disclosure provides a drug delivery device including a housing defining a longitudinal axis and having an opening and a drug storage container including a delivery member having an insertion end configured to extend at least partially through the opening during a delivery state. The device may further include a plunger moveable toward the distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, the plunger including a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness less than 0.6 millimeters. The device may also include a plunger biasing member coupled with the plunger and configured to urge the plunger toward the distal end of the drug storage container.
It is believed that the disclosure will be more fully understood from the following description taken in conjunction with the accompanying drawings. Some of the drawings may have been simplified by the omission of selected elements for the purpose of more clearly showing other elements. Such omissions of elements in some drawings are not necessarily indicative of the presence or absence of particular elements in any of the exemplary embodiments, except as may be explicitly delineated in the corresponding written description. Also, none of the drawings is necessarily to scale.
The present disclosure generally relates to drug delivery devices operable by a user for administering a drug, or in the case where a patient is the user, self-administering a drug. Various features are disclosed for streamlining, simplifying, automating and/or facilitating certain aspects of drug delivery, such as those utilized in auto-injectors, on-body injectors, or other automatic or partially automatic drug delivery devices (collectively autoinjectors or auto-injectors). For example, these features may include automatically covering a needle in a pre-delivery and/or post-delivery state, automatically inserting a needle and/or a cannula into a user, automatically activating a drive mechanism, automatically indicating to the user that drug delivery is complete, among other features. Although known drug delivery devices incorporate a separate or independently operable mechanism to realize each of its automated features, the present disclosure includes eliminating and/or combining at least some of these features and/or providing device components that permit flexibility in device design. For example, the device may include components that permit flexibility in spring design and/or that facilitate the use of springs with different physical characteristics with the remaining device components. As another example, the device may include components that reduce the part number, part complexity, overall weight of the device, and/or overall complexity of the device. For example, the present disclosure may include a plunger moveable toward the distal end of the drug storage container to expel a drug from the drug storage container through the delivery member, where the plunger includes a body portion having an inner wall defining an axial chamber and an outer wall cooperating with the inner wall to define a body thickness. The present disclosure may also include a plunger biasing member disposed at least partially within the axial chamber, where the plunger biasing member is configured to urge the plunger toward the distal end of the drug storage container.
Various implementations and configurations of the drug delivery device 10 are possible. The present embodiment of the drug delivery device 10 is configured as a single-use, disposable injector. In other embodiments, the drug delivery device 10 may be configured as multiple-use reusable injector. The drug delivery device 10 is operable for self-administration by a patient or for administration by caregiver or a formally trained healthcare provider (e.g., a doctor or nurse). The exemplary the drug delivery devices shown in the figures may take the form of an autoinjector or pen-type injector, and, as such, may be held in the hand of the user over the duration of drug delivery, but may also or alternatively be suitable for other drug delivery devices and/or configurations.
The configuration of various components included in the drug delivery device 10 may depend on the operational state of the drug delivery device 10. The drug delivery device 10 may have a pre-delivery or storage state, a delivery or dosing state, and a post-delivery state, although fewer or more states are also possible. For example, each state may have several sub-states or stages. The pre-delivery state may correspond to the configuration of the drug delivery device 10 subsequent to assembly and prior to activation by the user. In some embodiments, the pre-delivery state may exist in the time between when the drug delivery device 10 leaves a manufacturing facility and when a patient or user activates a drive mechanism 30 of the drug delivery device 10. This includes the moments in time after the user has removed the drug delivery device 10 from any secondary packaging and prior to positioning the drug delivery device 10 against the injection site. The delivery state may correspond to the configuration of the drug delivery device 10 while drug delivery, also referred to herein as dosing, is in progress. The post-delivery state may correspond to the configuration of the drug delivery device 10 after drug delivery is complete and/or when a stopper is arranged in an end-of-dose position in a drug storage container.
As shown in
As shown in
As best shown in
The drug storage container 20 is disposed within an interior space of the housing 12 and is configured to contain a drug 22. The drug storage container 20 may be pre-filled and shipped, e.g., by a manufacturer, to a location where the drug storage container 20 is combined with a remainder of the drug delivery device 10. For example, the drug 22 may be distributed and/or provided to patients in more than one use case, such as a as a pre-filled syringe or as an autoinjector including a pre-filled syringe. By utilizing the same or similar syringe components in either case, at least some of above steps such as filling, labeling, packaging, shipping, and distribution may be streamlined or simplified for two different use cases. As a another example, in the event that multiple use cases utilize some or all of the same syringe components, some regulatory pathways to marketing and/or distributing the drug may be streamlined and/or simplified for at least one of the multiple use cases.
The housing 12 may be pre-loaded with the drug storage container 20, e.g., by a manufacturer, or alternatively, loaded with the drug storage container 20 by a user prior to use of the drug delivery device 10. The drug storage container 20 may include a rigid wall defining an internal bore or reservoir. The wall may be made of glass or plastic. A stopper 24 may be moveably disposed in the drug storage container 20 such that it can move in a distal direction along the longitudinal axis A between proximal end and a distal end of the drug storage container 20. The stopper 24 may be constructed of rubber or any other suitable material. The stopper 24 may slidably and sealingly contact an interior surface 15 of the wall of the drug storage container 20 such that the drug 22 is prevented or inhibited from leaking past the stopper 24 when the stopper 24 is in motion. Distal movement of the stopper 24 expels the drug 22 from the reservoir of the drug storage container 20 into the delivery member 16. The proximal end of the drug storage container 20 may be open to allow a plunger 26 to extend into the drug storage container 20 and push the stopper 24 in the distal direction. In the present embodiment, the plunger 26 and the stopper 24 are initially spaced from each other by a gap 18 (
In some embodiments, a volume of the drug 22 included in the reservoir of the drug storage container 20 may be equal to 1 mL, or equal to approximately (e.g., ±10%) 1 mL, or equal to 2.5 mL, or equal to approximately (e.g., ±10%) 2.5 mL, or equal to 3 mL, or equal to approximately (e.g., ±10%) 3 mL, or less than or equal to approximately (e.g., ±10%) 1 mL, or less than or equal to approximately (e.g., ±10%) 2 mL, or less than or equal to approximately (e.g., ±10%) 3 mL, or less than or equal to approximately (e.g., ±10%) 4 mL, or less than approximately (e.g., ±10%) 5 mL, or less than or equal to approximately (e.g., ±10%) 10 mL, or within a range between approximately (e.g., ±10%) 1-10 mL, or within a range between approximately (e.g., ±10%) 1-5 mL, or within a range between approximately (e.g., ±10%) 1-4 mL, or within a range between approximately (e.g., ±10%) 1-3 mL, or within a range between approximately (e.g., ±10%) 1-2.5 mL.
The delivery member 16 is connected or operable to be connected in fluid communication with the reservoir of the drug storage container 20. A distal end of the delivery member 16 may define the insertion end 28 of the delivery member 16. The insertion end 28 may include a sharpened tip of other pointed geometry allowing the insertion end 28 to pierce the patient's skin 5 and subcutaneous tissue during insertion of the delivery member 16. The delivery member 16 may be hollow and have an interior passageway. One or more openings may be formed in the insertion end 28 to allow drug to flow out of the delivery member 16 into the patient.
In one embodiment, the drug storage container 20 may be a pre-filled syringe and has a staked, hollow metal needle for the delivery member 16. Here, the needle is fixed relative to the wall of the drug storage container 20 and may be in permanent fluid communication with the reservoir of the drug storage container 20. In other embodiments, the needle may be coupled to the drug storage container 20 via a Luer Lock or other suitable connection. In yet other embodiments, the drug storage container 20 may be a needle-less cartridge, and, as such, initially may not be in fluid communication with the delivery member 16. In such embodiments, the drug storage container 20 may move toward a proximal end of the delivery member 16, or vice versa, during operation of the drug delivery device 10 such that the proximal end of the delivery member 16 penetrates through a septum covering an opening in the drug storage container 20 thereby establishing fluid communication between the reservoir of the drug storage container 20 and the delivery member 16.
The drug storage container 20 may include a body portion 20g with a distal end 20e and a proximal end 20f. The drug storage container 20 may be fixed relative to the housing 12 such that the drug storage container 20 does not move relative to the housing 12 once installed in the housing 12. As such, the insertion end 28 of the delivery member 16 extends permanently through the opening 14 in the housing 12 in the pre-delivery, delivery, and post-delivery states. For example, as shown in
The container holder 31 may have a hollow and generally cylindrical or tubular shape centered about the longitudinal axis A, and the drug storage container 20 may be disposed partially or entirely within the container holder 31. A distal end of the container holder 31 may include an inwardly protruding flange 33 abutting against a shoulder portion 20a of the drug storage container 20, thereby preventing distal movement of the drug storage container 20 during actuation of the plunger 26.
In one embodiment, a container holder 31 secures and/or fixes the position of the drug storage container 20 within the housing 12. For example, the container holder 31 may be configured to support the drug storage container 20 with respect to the housing 12 proximal to at least a portion of the distal end of the body portion of the drug storage container 20 (including, for example, proximal to an entirety of the distal end of the body portion of the drug storage container 20) such that a resultant force acting on the drug storage container 20 from the plunger biasing member 50 is at least substantially completely borne by the distal end of the body portion of the drug storage container 20.
The term “body portion” of the drug storage container 20 as used herein is the generally cylindrical portion of the drug storage container 20. For example, the body portion 20g of the drug storage container 20 shown in
The term “resultant force” refers to force the urging the drug storage container 20 along the axis A upon and due to actuation of the plunger biasing member 50 during and after the injection state. For example, when the plunger 26 is actuated and driven in the distal direction along axis A, it urges the stopper 24 in the distal direction. As a result of this direct contact between the plunger 26 and the stopper 24, as well as frictional forces between the stopper 24 and the drug storage container 20 and the forces required to urge the drug 22 through the relatively small-diameter delivery member 16, the drug storage container 20 is urged in a distal direction even though the plunger 26 may not directly touch, abut, or engage the body portion of the drug storage container 20. As a result, the drug storage container 20 may experience a relatively high resultant force during the injection process, more specifically during the actuation of the plunger 26.
The force concentration of the resultant force acting on the drug storage container 20 during the plunger actuation is highest in the portion of the drug storage container 20 that is resisting distal movement. For example, in the device shown in the figures, the force concentration is highest proximal to at least a portion of the distal end 20e of the body portion 20g of the drug storage container 20. As a more specific example, the force concentration is highest at the shoulder portion 20a where the drug storage container 20 is supported by the container holder 31. As an even more specific example, the force concentration is at least substantially completely borne by the shoulder portion 20a of drug storage container 20. The term “substantially completely” may mean greater than 50%, it may mean greater than 70%, it may mean greater than 75%, it may mean greater than 80%, it may mean greater than 80%, it may mean greater than 85%, it may mean greater than 90%, it may mean greater than 95%, it may mean greater than 98%, or any other suitable number.
The force concentration of the resultant force acting on the drug storage container 20 during the plunger actuation is preferably not significantly borne by the outwardly protruding flange 20d of the drug storage container 20. For example, because the force is substantially completely borne by the distal portion 20e of the body portion 20g of the drug storage container 20, the force concentration in and near the outwardly protruding flange 20d is relatively low. As a more specific example, the percentage of the resultant force acting on the entire drug storage container 20 that is borne by the outwardly protruding flange 20d may be less than 20%, or it may be less than 15%, or it may be less than 10%, or it may be less than 5%, or it may be less than 3%, or it may be less than 2%, or it may be less than 1%, or it may be about 0%.
As shown in
The container holder 31 may have an open position 29a (
The container holder 31 shown in the figures also includes a pair of inwardly-protruding flanges 31f, 31g positioned adjacent to the proximal end of the container holder 31. When the container holder 31 is in the open position 29a, the inwardly-protruding flanges 31f, 31g are spaced apart from each other such that a radially outwardly-protruding flange 20b on the drug storage container 20 is able to be placed into the container holder 31 (via insertion in the distal direction). In other words, when the container holder 31 is in the open position 29a the outwardly-protruding flange 20b on the drug storage container 20 is able to clear the gap between the inwardly-protruding flanges 31f, 31g. Once the drug storage container 20 is fully inserted within the container holder 31 (e.g., such that the shoulder portion 20a of the drug storage container 20 contacts the inwardly-protruding flanges 33) the container holder arms 31a, 31b are able to be moved into the closed position 29b, in which the inwardly-protruding flanges 31f, 31g prevent the drug storage container 20 from exiting the container holder 31 in the proximal direction. In other words, once the drug storage container 20 is inserted into the container holder 31 and the drug storage container 20 is in the closed position 29b, the drug storage container 20 is held within the container holder 31 by the inwardly protruding flanges 33 near the distal end of the container holder 31 and by the inwardly-protruding flanges 31f, 31g near the proximal end of the container holder 31.
As shown in
As shown in
It may be desirable for the annular ring 31c to be positioned generally opposite (along axis A) of the mating connectors 31d, 31e to facilitate opening and closing of the container holder arms 31a, 31b. For example, the distance between the annular ring 31c and the inwardly-protruding flanges 31f, 31g may be proportional to the clearance gap between the inwardly-protruding flanges 31f, 31g when the container holder 31 is in the open position 29a. Therefore, to maximize the gap between the inwardly-protruding flanges 31f, 31g when the container holder 31 is in the open position 29a, one can maximize the distance between the annular ring 31c and the inwardly-protruding flanges 31f, 31g (e.g., the effective length of the arms 31a, 31b). Additionally, the thickness, height, and material properties of the annular ring 31c may each affect the flex of the arms 31a, 31b and/or the gap between the inwardly-protruding flanges 31f, 31g when the container holder 31 is in the open position 29a. As discussed above, the gap 33b between the flanges may also facilitate and/or define the amount of flex of the arms 31a, 31b and/or the gap between the inwardly-protruding flanges 31f, 31g when the container holder 31 is moved into the open position 29a. For example, as the arms 31a, 31b flex outwardly, the flanges 33 may move inwardly.
The container holder 31 shown in the drawings may include an alignment ridge 31n that abuts an inner surface of the housing 12, to radially align the container holder 31 within the housing 12 during assembly and to prevent and/or restrict radial movement between the respective components 12, 31. As an example, the housing 12 may include a slot 12a formed on the inner surface of the housing to receive the alignment ridge 31n. The housing 12 may include multiple slots and the container holder 31 may include multiple alignment ridges to radially align the respective components 12, 31. For example, the container holder 31 shown in the figures includes two alignment ridges 31n and the housing 12 includes two slots 12a. The slots 12a are spaced apart from each other and sized such as to receive the respective alignment ridges 31n when the container holder 31 is inserted into the housing 12. The slots 12a shown in the figures are defined by a generally annular collar 12d portion that is integral with the housing 12 (although the collar portion may alternatively be one or more components coupled or fixed to the housing). The annular collar 12d may not extend around the entire inner surface of the housing 12 and instead has cut-outs or gaps to permit portions of the guard member 32 to extend between respective portions of the annular collar 12d. Alternatively, the annular collar 12d may be radially inwardly spaced apart from the inner surface of the housing 12 in at least one or more locations to facilitate portions of the guard member to extend past the collar 12d.
The annular collar 12d may further define sloped surfaces 12e on opposite sides of each of the lock slots 12c to further assist with alignment between the container holder 31 and the housing 12.
The components shown in
The drug storage container 20 may be further or more securely coupled with the container holder 31 (and as a result, to the housing 12) such that the drug storage container 20 and the container holder 31 are prevented from moving relative to the housing 12 during operation of the drug delivery device 10. For example, as shown in
The container holder 31 inner surface may include a compressible component such as an elastomeric component that is positioned between the inner surface of the container holder 31 and the drug product container 20. As a more specific example, the elastomeric component may be a rubber ring. Alternatively or additionally, the natural flex of the flanges 33 may function as the compressible component.
The lock ridges 33c may give audible and/or tactile feedback to the user or an assembly worker as they snap into the corresponding lock slots 12c, thereby indicating to the assembler(s) that the respective components 12, 31 are positioned as desired. Additionally, the respective components may be sized and positioned such that the feedback only occurs when the drug product container 20 is also positioned as desired. For example, if the drug product container 20 is positioned too far in the distal direction with respect to the container holder 31, such that the main body of the drug product container 20 is aligned with the flanges 33 instead of the shoulder portion 20a being aligned with the flanges 33, then the lock ridges 33c may not be able to radially compress enough for the lock ridges 33c to fit within the lock slots 12c. Conversely, if the drug product container 20 is not inserted far enough in the distal direction with respect to the container holder 31, such that the sterile barrier 21 is aligned with the flanges 33 instead of the shoulder portion 20a being aligned with the flanges 33, then the lock ridges 33c will be able to radially compress inward to an extent that the lock ridges 33c will be able to slide radially inward of the lock slots 12c or the lock ridges 33c will enter the lock slots 12c but may not cause enough radially-outward force to generate the audible and/or tactile feedback. While the audible and/or tactile feedback may be advantageous during manual assembly of the container holder 31, assembly of the container holder 31 need not be performed manually and may in some embodiments be performed partially or entirely by manufacturing equipment.
The housing 12, container holder 31, and their respective components as described above offer many advantages. For example, by securely coupling the drug product container 20 with respect to the housing 12 via the shoulder portion 20a (as opposed to the flange portion) the device 10 may have reduced incidence of glass breakage or other damage. As a more specific example, drug product containers such as syringes are often have a shoulder portion that is stronger and/or able to handle higher forces than a flange portion. In other words, it may be advantageous for the force concentration on the drug product container to be higher at the shoulder than at the flange because the shoulder may be stronger and more resistant to breakage than the flange.
As another potential advantage to this configuration, by securely coupling the drug product container 20 with respect to the housing 12 via a distal portion (e.g., the shoulder portion 20a) the device 10 may have a more predictable, repeatable, and/or consistent injection depth than designs that secure the drug product container 20 via the flange (e.g. a “hanging” design). For example, the distance between the shoulder portion 20a and the delivery member 16 for a syringe is typically more predictable and/or has a smaller manufacturing tolerance than the distance between the flange 20b and the delivery member 16 because barrel length of a drug product container 20 can vary more widely than the barrel shoulder length. Additionally or alternatively, the distance between the flange 20b and the delivery member 16 includes any tolerances/variances in the distance between the shoulder portion 20a and the delivery member 16, so any tolerances/variances are “stacked.”
As shown in
As with the container holder 31 shown in
In yet another exemplary design, the container holder may have a fixed state, rather than having arms that open and closed. As a more specific example, the container holder may have a proximal opening sufficiently sized to permit receipt of the syringe. The container holder may still have distally-located flanges for receiving and securing the shoulder portion of the syringe, particularly when the container holder is coupled with the injector housing.
The flexible arm 60a may have a size, shape, and material type that promotes and/or permits flexure of the flexible arm 60a. As a more specific example, the flexible arm 60a is preferably flexible in the radial direction, so that when the drug product container 20 and the plunger guide 60 are inserted within the housing, the flexible arm 60a is aligned with the flange 20b and applies at least a gentle radial force (radially inwardly) on the drug product container 20. In this configuration, the drug product container 20 is primarily supported at its distal portion (e.g., the shoulder portion 20a) by the container holder 31 and is also, at least secondarily, supported at its proximal portion (e.g., the flange portion 20b) by the plunger guide 60. As a more specific example, the flexible arm 60a may provide radial support to the flange portion 20b and prevent and/or resist transverse movement of the drug product container 20 with respect to the housing 12. Such a configuration may reduce or eliminate rattling noises from the device 10 and/or may facilitate proper alignment of the drug product container 20 during assembly. As another more specific example, the flexible arm 60a may provide axial support (e.g., in the distal direction) to prevent undesirable axial movement of the drug product container 20 with respect to the housing 12. The device 10 may have any suitable number of flexible arms 60a, such as one, two, three, four, or more.
The container holder 31 may also include at least one support flange 31r that has a size, shape, and material type that promotes and/or permits flexure thereof. As a more specific example, the support flange 31r is preferably flexible in the radial direction, so that when the drug product container 20 and the container holder 31 are inserted within the housing, the support flange 31r is aligned with the body portion 20g of the drug product container and applies at least a gentle radial force (radially inwardly) on the drug product container 20. In this configuration, the drug product container 20 is primarily supported at its distal portion (e.g., the shoulder portion 20a) by the container holder 31 and is also, at least secondarily, supported at a central or proximal region of the body portion 20g by the container holder 31. As a more specific example, the support flange 31r may provide radial support to the drug product container 20 and prevent and/or resist transverse movement of the drug product container 20 with respect to the housing 12. Such a configuration may reduce or eliminate rattling noises from the device 10 and/or may facilitate proper alignment of the drug product container 20 during assembly. As another more specific example, the support flange 31r may but is not required to provide axial support (e.g., in the distal direction) to prevent undesirable axial movement of the drug product container 20 with respect to the housing 12. The device 10 may have any suitable number of support flanges 31r, such as one, two, three, four, or more. The container holder 31 shown in the figures includes four support flanges 31r that are equally spaced about the circumference thereof.
Although the flexible arm 60a and/or the support flanges 31r shown in the figures provides at least some support for the drug storage container 20, the container holder substantially completely supports the drug storage container 20 with respect to the housing 12 by the distal end of the body portion 20g of the drug storage container 20, as discussed above. As a more specific example, the flexible arm 60a and/or the support flanges 31r may provide little or no support along the longitudinal axis A and only provide support in a direction transverse to Axis A. As an even more specific example, the container holder 31 substantially completely supports the drug storage container 20 with respect to the housing 12 by the distal end of the body portion 20g of the drug storage container 20 for forces along the Axis A, such as forces experienced during the injection process.
As indicated above, the plunger guide 60 shown in
As shown in
As shown in
The plunger 26 (as best illustrated in
The hollow rod 46 may additionally or alternatively facilitate and/or provide more flexibility in spring design. For example, it may be desirable or advantageous to use the device with different springs depending on the characteristics of the drug and/or the desired drug delivery profile. For example, a higher viscosity drug may require a spring with a higher spring rate and/or spring force and it thus may be desirable or advantageous to have flexibility in physical characteristics of the spring. As a more specific example, various physical characteristics of a spring may affect the spring rate, and thus the spring force, such as wire diameter of the spring (typically increasing the wire diameter increases the spring rate), mean diameter of the spring (typically increasing the mean diameter decreases the spring rate), the number of spring coils (typically increasing the number of coils increases the spring rate), and the spring material. These physical characteristics may be adjusted to deliver different spring rates, while also potentially adjusting the thickness of the hollow rod 46, to maintain a constant or relatively constant outer diameter of the overall plunger 26 so as to keep constant the remaining parts of the device, such as the plunger guide 60 and the stopper 24. The hollow rod 46 may additionally or alternatively facilitate and/or provide more longitudinal stability for the plunger biasing member 50, such as by preventing or reducing buckling or other transverse movement.
The plunger biasing member 50 shown in the figures may include the following dimensions: 0.65 mm wire diameter, 5.40 mm outer diameter of the spring, and 80 to 86 number of coils (depending on pitch), but other suitable spring characteristics may be utilized. The plunger biasing member 50 shown in the figures may be formed of stainless steel strength 2300 n/mm, but other suitable materials may be utilized. The hollow rod 46 shown in the figures may include the following dimensions and materials: 63 mm length, 6 mm outer diameter, 0.20 mm wall thickness, and stainless steel strength 600 to 750 n/mm material, but other suitable dimensions and materials may be utilized.
As described below in more detail, the plunger 26 may be configured to selectively rotate relative to the housing 12 and translate linearly relative to the housing 12 during operation of the drug delivery device 10.
The plunger 26 may be constructed of multiple, interconnected pieces, or alternatively, have a one-piece construction. In the present embodiment, the plunger 26 is constructed of three separate and interconnected structures: a top ring 45 defining a proximal end of the plunger 26; a base 47 defining a distal end of the plunger 26; and a hollow rod 46 positioned between and rigidly connecting the top ring 45 and the base 47. The positions of the top ring 45, the hollow rod 46, and the base 47 may be fixed relative to each other such that these components are immoveable relative to each other. The top ring 45, the hollow rod 46, and the base 47 may each have an annular construction and be centered about the longitudinal axis A. The top ring 45 and the hollow rod 46 may each have a respective central opening extending from end to end of the component to define an axial chamber; whereas, the base 47 may have a central opening extending through the proximal end of the base 47 but which is closed off at the distal end of the base 47. The closed off end of the base 47 may define seat or abutment surface for the plunger biasing member 50. In alternative embodiments, the central opening may extend through the base 47 from end to end. In such alternative embodiments, an inner diameter of the central opening of the base 47 may be smaller than an outer diameter of the plunger biasing member 50 such that the base 47 retains a distal end of the plunger biasing member 50 within the plunger 26. When the drive mechanism 30 is activated, the base 47 may be the portion of the plunger 46 that comes into contact with the stopper 24 to push the stopper 24 in the distal direction.
The top ring 45 may include one or more flanges or projections 48 which extend radially outwardly from a central portion of the top ring 45. Each of the projections 48 may include a distally facing camming surface 49. As described below in more detail, the distally facing camming surface 49 may interact with a counterpart camming surface on a plunger guide 60 in order to release the plunger biasing member 50. In some embodiments, the distally facing camming surface 49 may arranged at angle relative to, or is otherwise non-parallel to, an imaginary plane perpendicular to the longitudinal axis A.
In some embodiments, the top ring 45 and/or the base 47 may be constructed of a different material than the hollow rod 46. In some embodiments, the top ring 45 and/or the base 47 made be constructed of plastic whereas the hollow rod 46 may be constructed of metal. So configured, the plastic material used for the top ring 45 may facilitate the camming action described below by providing a relatively low coefficient of friction, the plastic material used for the base 47 may help absorb or attenuate any shock or vibrations associated with base 47 striking the stopper 24. The metal material used for the hollow rod 46 may provide sufficient rigidity to avoid buckling under the biasing force exerted by the plunger biasing member 50. In alternative embodiments, the top ring 45, hollow rod 46, and/or base 47 may be made of the same material, including, for example, metal or plastic. In certain such embodiments, the top ring 45, hollow rod 46, and base 47 may be integrally formed in one piece so as to define single, monolithic structure.
The drug delivery device 10 may further include a guard mechanism for preventing contact with the insertion end 28 of the delivery member 16 when the drug delivery device 10 is not being used to administer an injection. The guard mechanism may include a guard member 32 moveably disposed at or near the distal end of the housing 12 adjacent to the opening 14. The guard member 32 may have a hollow and generally tubular-shaped or cylindrical portion 32a centered about the longitudinal axis A, and may have a pair of arms 32b extending proximally from the cylindrical portion 32a. The guard member 32 further includes a distal end 32c that may generally include the cylindrical portion 32a and a proximal end 32d that may be defined by the arms 32b. The arms 32b may be substantially or completely received within the housing 12 such that no part thereof extends from the housing 12. The cylindrical portion 32a may be at least partially and/or selectively received within the housing 12. For example, the guard member 32 may be configured to move relative to the housing 12 such that portions of the guard member 32 are received within the housing 12 in some stages/states and are extending from the housing 12 in other stages/states, as is discussed below in more detail.
As one exemplary configuration, shown in
As indicated above, the guard member 32 may be configured to move relative to the housing 12 between an extended position wherein at least a portion of the cylindrical portion 32a of the guard member 32 extends through the opening 14 in the housing 12 and a retracted position wherein a shorter length of the cylindrical portion 32a or no part of the cylindrical portion 32a extends through the opening 14 in the housing 12. In other words, in the extended position, a length X of the cylindrical portion 32a extends from through the opening 14 in the housing 12 and in the retracted position, a length Y of the cylindrical portion 32a extends through the opening 14 in the housing 12, wherein X is a value greater than Y. The length X may be any suitable number such as 10 mm, 8 mm, 6 mm, 4 mm, 2 mm, 1 mm, or another value. The length Y may be any suitable number that is less than X, such as 3 mm, 2 mm, 1 mm, 0.5 mm, 0 mm, or another value.
The guard member 32 may also be configured to move in the opposite direction, namely from the retracted position to the extended position. When moving from the extended position to the retracted position, the guard member 32 may translate linearly in the proximal direction; and when moving from the retracted position to the extended position, the guard member 32 may translate linearly in the distal direction. In at least the extended position, the guard member 32 may extend beyond and surround the insertion end 28 of the delivery member 16. As a further illustration,
During the injection process the guard member 32 may remain stationary with respect to the users skin 5 while the housing 12 and several components disposed therein are moving with respect to the guard member 32 and the skin 5. Nonetheless, this disclosure refers to moving, retracting, translating, and depressing the guard member 32. These references and descriptions may be considered to refer to relative movement between the guard member 32 and the housing 12, regardless of which component (guard member 32 or housing 12) is moving with respect to the users skin 5.
The delivery device 10 may utilize inertial-driven design, rather than a spring-driven design, to insert the needle into the patient's subcutaneous tissue. As a more specific example, when the patient presses the distal end of the guard member 32 against the patient's skin at the injection site, the delivery device 10 housing 12 may advance toward the injection site. As the patient presses down a predetermined distance or with a predetermined force, the delivery device 10 achieves a quick release to harness the energy stored in the patient's muscles while compressing the needle cover and its spring to a defined release point. The release mechanism is designed such that the resulting needle insertion speed exceeds the patient's reaction speed, and the combination of this speed and the device's mass cause the needle to quickly and fully penetrate the skin to the subcutaneous depth. Compared to known injectors, where the entire primary container is moved forward with respect to the housing, this embodiment prevents relative movement between the drug storage container 20 and the housing and therefore may provide a simplified, more robust design.
In alternative embodiments, the drug storage container 20 may be moveably coupled to the housing 12 such that the drug storage container 20 is able to move relative to the housing 12 during operation of the drug delivery device 10. In certain such alternative embodiments, the insertion end 28 of the delivery member 16 may be retracted within the opening 14 in the housing 12 in the pre-delivery state. Subsequently, during operation of the injection device 10, the insertion end 28 of the delivery member 16 may be deployed through the opening 14 in the housing 12 for insertion into the patient. This motion may, in some embodiments, be the result of the drug storage container 20 having been driven in the distal direction relative to the housing 12.
In some embodiments, the guard member 32 may be rotationally fixed or rotationally restricted relative to the housing 12. Therefore, although the guard member 32 may able to translate linearly relative to the housing 12, the guard member 32 may be substantially or completely prevented from rotating relative to the housing 12. As a more specific example, the cylindrical portion 32a of the guard member 32 may include a protrusion extending therefrom, for example a ridge 32h, that aligns with a corresponding feature on the inner surface of the housing 12. For example, the inner surface of the housing, adjacent to the distal end of the housing 12 may include a slot, a pair of adjacent ridges, or another component or set of components that cooperate with the ridge 32h to substantially or completely prevent rotation of the guard member 32. This arrangement may also help align the respective components 32, 12 with each other during assembly.
The device 10 may further include an extender biasing member 35 and a guard extension 37. The guard extension 37 may be positioned proximal to the guard member 32; and the extender biasing member 35 shown in the figures is positioned proximal to the guard extension 37. The guard extension 37 may have a hollow and generally cylindrical or tubular shape centered about the longitudinal axis A. As a more specific example, the guard extension 37 may include a generally cylindrical body 37a. The guard extension 37 may also include arms 37b for receiving, supporting, and/or retaining a distal portion of the extender biasing member 35. Furthermore, the guard extension 37 may be moveable in a linear direction along the longitudinal axis A relative to the housing 12. In the present embodiment, the guard extension 37 is a separate structure from the guard member 32. However, in alternative embodiments, the guard extension 37 and the guard member 32 may be integrally formed in one piece to define a single, monolithic structure. In such alternative embodiments, the proximal end of the guard member 32 may correspond to the guard extension 37.
Similar to the guard member 32, the guard extension 37 may be rotationally fixed relative to the housing 12. Therefore, although the guard extension 37 may able to translate linearly relative to the housing 12, the guard extension 37 may be prevented from rotating relative to the housing 12. To achieve this effect, in some embodiments the guard extension 37 may cooperate with the plunger guide 60 to restrict or prevent rotation between the respective components 37, 60. As a result, and because the plunger guide 60 is fixedly connected with the housing 12, the guard extension 37 may be rotationally fixed to the housing 12 through the plunger guide 60. For example, the plunger guide 60 may include a longitudinal ridge 60c near a distal portion of the plunger guide 60. The ridge may be received within a longitudinal channel on the inside surface of the guard extension 37 and/or a pair or corresponding features that cooperate to receive the ridge 60c. In alternative embodiments, the ridge-and-slot arrangement may be reversed, such that the guard extension 37 has one or more radially inwardly extending ridges and plunger guide has one or more slots or other recesses to matingly or snugly receive the one or more ridges. As yet another alternative, the guard extension 37 may include an anti-rotation feature that mates with a corresponding feature on the inner surface of the housing 12.
The guard extension 37 and/or the releaser member 52 may have axial travel limits that limit the distance they are able to travel in the distal direction. For example, as illustrated in
As is best illustrated in
During operation of the device, a user may cause the guard member 32 to translate (with respect to the housing 12) in the proximal direction by pressing the guard member 32 against the injection site. In doing so, the guard member 32 will move towards the guard extension 37 and close the gap 37g therebetween (
However, in some alternative embodiments, the extender biasing member 35 may be in non-energized (natural) state when the device is in a pre-delivery state. In these embodiments, the biasing member 35 may become compressed or energized upon deflection of the guard member 32 in the proximal direction.
After drug delivery is complete and the guard member 32 has been re-deployed to the extended position, it may be desirable to lock the guard member 32 in the extended position to prevent subsequent user contact with the insertion end 28 of the delivery member 16 and/or to prevent re-use of the drug delivery device 10. Pursuant to these ends, some embodiments of the drug delivery device 10 may include a lock ring 40 configured to selectively rotate, depending on the axial position of the guard member 32, in order to lock the guard member 32 in the extended position once the guard member 32 has moved from the retracted position to the extended position, as will be discussed in more detail below.
As discussed above, the plunger biasing member 50 may be disposed at least partially within the plunger 26, and may have a distal end abutting against a proximally facing inner surface of the plunger 26 and/or may be fixedly attached to an inner surface of the plunger 26. So that the plunger biasing member 50 may be received within the plunger 26, an outer diameter or other dimension of the plunger biasing member 50 may be equal to or less than an inner diameter of the top ring 45 and/or equal to or less than an inner diameter of the hollow rod 46. In some embodiments, the distal end of the plunger biasing member 50 may abut against a proximally facing inner surface of the base 47 of the plunger 26. Furthermore, as best illustrated in
Referring to
The channel surfaces 52b are each configured to receive the projections 48 of the top ring 45 and permit axial movement of the plunger 26 with respect to the releaser member 52 but to resist or prevent rotational movement between the plunger 26 and the releaser member 52. As shown in the figures, although the channel surface 52 extends adjacent to the inner surface of the releaser member 52, the channel surface 52 does not have an arcuate shape and instead has a generally squared-off shape (as best illustrated in
The releaser member 52 includes a channel surface 52b that extends proximally past the proximal-most (e.g., top) surface of the tubular body of the releaser member 52. For example, the releaser member 52 includes a proximally facing contact surface 52d for end-of-dose notification, which will be described in more detail below, and the channel surfaces 52b each extend past the contact surface 52 so as to provide a continuous path with respect for the top ring 45 while also permitting a sufficient gap between the proximally facing contact surface 52d and the corresponding surface involved in end-of-dose notification.
The releaser member 52 may be configured to rotate relative to the housing 12 and/or translate linearly relative to the housing 12, depending on the stage of operation of the drug delivery device 10. Initial rotation of the releaser member 52 associated with activation may be powered by the plunger biasing member 50 and/or the extender biasing member 35; whereas later rotation of the releaser member 52 associated with generation of the end-of-dose signal may be powered solely by the extender biasing member 35. Any linear translation of the releaser member 52 without rotation may be powered solely by the extender biasing member 35. In some embodiments, the releaser member 52 may translate linearly only in the proximal direction; however, alternative embodiments may permit linear translation of the releaser member 52 in both the proximal and distal directions.
Having described the general configuration of the drug delivery device 10, a method of using the drug delivery device 10 to perform an injection will now be described with reference to
Several of the device components include various features, surfaces, and openings for interacting with and controlling the release movement of the plunger 26 (e.g. the injection sequence). Generally, the injection sequence begins with retraction/axial movement of the guard member 32 in the proximal direction (upward in
The pre-injection stage is shown in
In the pre-delivery state prior to retraction of the needle guard 32, the plunger 26 and the releaser member 52 each may be arranged in a respective initial rotational position, as illustrated in
As best shown in
The unlocking stage is shown in
The unlocked stage is shown in
The downward stroke stage is shown in
In some embodiments, the camming action between the distally facing camming surface 49 on the projection 48 and the proximally facing camming surface 60j of the plunger guide 60 may provide a damping effect. More particularly, a sliding friction between these two surfaces may be selected to slow initial expansion of the plunger biasing member 50. As a consequence, the velocity of the plunger 26 may be reduced during the initial expansion of the plunger biasing member 50, as compared to free uninhibited expansion of the plunger biasing member 50. The reduced velocity of the plunger 26 may cause the plunger 26 to strike the stopper 24 with less force, which reduces the chances of structural damage to the drug storage container 20 and/or facilitates a more comfortable injection for the user.
The end-of-dose stage is shown in
As a more specific example of the camming surface arrangement between the releaser member 52 and the plunger guide 60, and as discussed above, the rib 60n of the plunger guide 60 is aligned with the inner surface of the releaser member 52 that is indicated by 52c in
Once the patient and/or health care provider hears the audible sound, he/she/they may be notified that the dose is complete. In some embodiments, the user may be informed of the significance of the audible signal by way of instructions provided with the drug delivery device 10. In some embodiments, these instructions may take the form of an Instructions for Use (IFU) pamphlet packaged together with the drug delivery device 10. In some embodiments, the user may obtain additional confirmation that drug delivery is complete by watching movement of the stopper 24 and/or plunger 26 through the window 17. In some embodiments, the audible signal may be accompanied by a vibration or other tactile feedback produced as a result of the releaser member 52 striking the plunger guide 60. The audible notification may be in the form of a click or slap sound, or any other suitable audible signal that is perceptible to the user. The audible signal may be generated simultaneously, or substantially simultaneously, with the stopper 24 reaching the end-of-dose position.
As described above, in addition to its retaining function, the releaser member 52 may also be used to generate an audible signal indicating to the user that drug delivery or dosing is complete. This dual-function role may reduce part quantity and/or design complexity. Alternatively, the releaser member 52 does not need to have this indicator function. In alternative embodiments, the indicator may be defined by a structure that is separate from but rigidly attached to the releaser member 52.
While the foregoing descriptions may utilize the extender biasing member 35 to provide the actuation energy needed generating the end-of-dose signal, alternative embodiments may utilize a biasing member that is separate from extender biasing member 35 for this purpose. In certain such embodiments, this additional biasing member may have a distal end fixed relative to the housing 12 and a proximal end abutting against a distally facing surface of the releaser member 52. As such, the biasing member may push off of the housing 12 to exert a biasing force in the proximal direction against the releaser member 52. Furthermore, this biasing member may operate independently of the plunger biasing member 50 and the extender biasing member 35.
In any case, once the user receives some assurance that drug delivery is complete, the user may then lift the drug delivery deice 10 off of the injection site. With nothing to resist it, the extender biasing member 35 may push the guard member 32 from the retracted position to the extended position to cover the insertion end 28 of the delivery member 16. In some embodiments, this movement of the guard member 32 may cause the lock ring 40 to rotate to a position where it prevents subsequent retraction of the guard member 32.
For example, as discussed above, in some embodiments of the drug delivery device 10 may include a lock ring 40 configured to lock the guard member 32 in the extended position once the guard member 32 has moved from the retracted position to the extended position In the present embodiment, the lock ring 40 is centered and rotates about the longitudinal axis A. As illustrated in
The lock ring 40 may also serve to provide an initial resistance to movement of the guard member 32. As discussed above, the device 10 may be inserted into the patient by utilizing, harness, or otherwise taking advantage of inertial forces. The lock ring 40 and/or other components may provide an initial resistance to movement of the guard member 32 to build-up the user inputted force, as is discussed in more detail below.
In the example shown in
In order for the components of the device to move from the stage shown in
During operation, when the patient presses the distal end of the guard member 32 against the patient's skin at the injection site, the delivery device 10 housing 12 may advance toward the injection site by a relatively small distance (e.g. 2-4 mm). The patient may then feel resistance between the inertial rib 32k and the ridge 40c. As the patient presses down with more force, the ridge 40c will clear the inertial rib 32k and the delivery device 10 will achieve a quick release to harness the energy stored in the patient's muscles while compressing the needle cover and its spring to a defined release point. The release mechanism, such as the above-described flex of the locking arm 40b, the degree of rotation required to clear the inertial rib 32, and other parameters, may be designed such that when the ridge 40c clears the inertial rib 32k, the resulting needle insertion speed exceeds the patient's reaction speed, and the combination of this speed and the device's mass cause the needle to quickly and fully penetrate the skin to the subcutaneous depth. In other words, once the guard member 32 reaches the position shown in
As shown in
In some embodiments, prior to removal of the removable cap 19, the gripper 13 may be configured to prevent deflection of the locking arm 40b. As an example, an outer surface of the gripper 13 may be configured to abut against an inner surface of the locking arm 40b to prevent radially inward deflection of the locking arm 40b prior to removal of the removable cap 19. This configuration may reduce the possibility of unintended lockout caused by vibrations or sudden movements during transport or storage of the drug delivery device 10 prior to use. When the removable cap 19 with the gripper 13 is removed, the locking arm 40b may be allowed to deflect in the manner described above.
The lock ring 40 and the housing 12 have respective stop surfaces that abut each other and prevent rotation therebetween. For example, the lock ring 40 may have stop surfaces 40g and 40h (
The circular cross-section of the housing 12 may make it prone to rolling across a surface when placed on its side. To inhibit or prevent such rolling, a portion or the entirety of the removable cap 19 may have a non-circular cross-section. In the embodiment illustrated in the figures, the removable cap 19 has a distal end with a non-circular cross-section and a proximal end with a circular cross-section. As such, the cross-section of the removable cap 19 gradually transitions from a circular cross-section to a non-circular cross-section when moving from the proximal end of the removable cap 19 to the distal end of the removable cap 19. In the illustrated embodiment, the non-circular cross-section of the distal end of the removable cap 19 generally takes the form of a square. In other embodiments, the non-circular cross-section may be rectangular, triangular, or any other polygonal or partially polygonal shape, so long one or more sides removable cap 19 are flat or substantially flat to inhibit or prevent rolling. Furthermore, the non-circular cross-section of the distal end of the removable cap 19 may gradually increase in size moving in the distal direction, such that the distal-most portion of the distal end of the removable cap 19 has a larger cross-sectional area than a proximal-most portion of the distal end of the removable cap 19. This configuration gives the distal end of the removable cap 19 a flared shape, which, in turn, may help a user grip and pull the removable cap 19 off of the housing 12.
In some embodiments, the housing 12 and the removable cap 19 may each include a respective anti-rotation feature. These anti-rotation features may engage each other to prevent or inhibit the removable cap 19 from rotating relative to the housing 12 when the removable cap 19 is in a storage position. In some embodiments, the anti-rotation feature of the housing 12 may be adjacent to and generally in-line with the anti-rotation feature of the removable cap 19 when the removable cap 19 is in the storage position. For example, a radial protrusion 9 shown in
In other embodiments, the removable cap may be permitted and/or intended to rotate with respect to the housing. For example, the removable cap may include feature(s) that translate rotational movement of the removable cap into an axial assist force that helps urge the cap away from the housing. As a more specific example, the removable cap and/or the housing may have a camming surface, such as a wave-shaped surface, that converts rotational movement of the removable cap with respect to the housing into distal axial movement of the removable cap with respect to the housing. The axial assist force provided by such an arrangement may benefit various users including those having limited dexterity and/or strength due to, for example, an illness.
Nonetheless, as shown in the exemplary force profile in
To facilitate rotation of the lock ring 640 relative to the housing 612 and/or the guard member 632, any two or combination of the following may be parallel to each other: the distally-facing camming surface(s) 612x of the housing 612, the proximally-facing camming surface(s) 632y of the guard member 632, the distally-facing camming surface(s) 640z of the lock ring 640, and the proximally-facing camming surface(s) 640y of the lock ring 640.
Continuing with
From the foregoing, it can be seen that the present disclosure advantageously provides a streamlined design for a drug delivery device having automated features. Various mechanisms and components of the drug delivery device may interact with each other in synergistic ways so as to limit the number of moving parts required by the drug delivery device, thereby improving the reliability of the drug delivery device and saving costs, as well as providing other benefits and advantages.
As will be recognized, the devices and methods according to the present disclosure may have one or more advantages relative to conventional technology, any one or more of which may be present in a particular embodiment in accordance with the features of the present disclosure included in that embodiment. Other advantages not specifically listed herein may also be recognized as well.
The above description describes various devices, assemblies, components, subsystems and methods for use related to a drug delivery device. The devices, assemblies, components, subsystems, methods or drug delivery devices can further comprise or be used with a drug including but not limited to those drugs identified below as well as their generic and biosimilar counterparts. The term drug, as used herein, can be used interchangeably with other similar terms and can be used to refer to any type of medicament or therapeutic material including traditional and non-traditional pharmaceuticals, nutraceuticals, supplements, biologics, biologically active agents and compositions, large molecules, biosimilars, bioequivalents, therapeutic antibodies, polypeptides, proteins, small molecules and generics. Non-therapeutic injectable materials are also encompassed. The drug may be in liquid form, a lyophilized form, or in a reconstituted from lyophilized form. The following example list of drugs should not be considered as all-inclusive or limiting.
The drug will be contained in a reservoir. In some instances, the reservoir is a primary container that is either filled or pre-filled for treatment with the drug. The primary container can be a vial, a cartridge or a pre-filled syringe.
In some embodiments, the reservoir of the drug delivery device may be filled with or the device can be used with colony stimulating factors, such as granulocyte colony-stimulating factor (G-CSF). Such G-CSF agents include but are not limited to Neulasta® (pegfilgrastim, pegylated filgastrim, pegylated G-CSF, pegylated hu-Met-G-CSF) and Neupogen® (filgrastim, G-CSF, hu-MetG-CSF), UDENYCA® (pegfilgrastim-cbqv), Ziextenzo® (LA-EP2006; pegfilgrastim-bmez), or FULPHILA (pegfilgrastim-bmez).
In other embodiments, the drug delivery device may contain or be used with an erythropoiesis stimulating agent (ESA), which may be in liquid or lyophilized form. An ESA is any molecule that stimulates erythropoiesis. In some embodiments, an ESA is an erythropoiesis stimulating protein. As used herein, “erythropoiesis stimulating protein” means any protein that directly or indirectly causes activation of the erythropoietin receptor, for example, by binding to and causing dimerization of the receptor. Erythropoiesis stimulating proteins include erythropoietin and variants, analogs, or derivatives thereof that bind to and activate erythropoietin receptor; antibodies that bind to erythropoietin receptor and activate the receptor; or peptides that bind to and activate erythropoietin receptor. Erythropoiesis stimulating proteins include, but are not limited to, Epogen® (epoetin alfa), Aranesp® (darbepoetin alfa), Dynepo® (epoetin delta), Mircera® (methyoxy polyethylene glycol-epoetin beta), Hematide®, MRK-2578, INS-22, Retacrit® (epoetin zeta), Neorecormon® (epoetin beta), Silapo® (epoetin zeta), Binocrit® (epoetin alfa), epoetin alfa Hexal, Abseamed® (epoetin alfa), Ratioepo® (epoetin theta), Eporatio® (epoetin theta), Biopoin® (epoetin theta), epoetin alfa, epoetin beta, epoetin iota, epoetin omega, epoetin delta, epoetin zeta, epoetin theta, and epoetin delta, pegylated erythropoietin, carbamylated erythropoietin, as well as the molecules or variants or analogs thereof.
Among particular illustrative proteins are the specific proteins set forth below, including fusions, fragments, analogs, variants or derivatives thereof: OPGL specific antibodies, peptibodies, related proteins, and the like (also referred to as RANKL specific antibodies, peptibodies and the like), including fully humanized and human OPGL specific antibodies, particularly fully humanized monoclonal antibodies; Myostatin binding proteins, peptibodies, related proteins, and the like, including myostatin specific peptibodies; IL-4 receptor specific antibodies, peptibodies, related proteins, and the like, particularly those that inhibit activities mediated by binding of IL-4 and/or IL-13 to the receptor; Interleukin 1-receptor 1 (“IL1-R1”) specific antibodies, peptibodies, related proteins, and the like; Ang2 specific antibodies, peptibodies, related proteins, and the like; NGF specific antibodies, peptibodies, related proteins, and the like; CD22 specific antibodies, peptibodies, related proteins, and the like, particularly human CD22 specific antibodies, such as but not limited to humanized and fully human antibodies, including but not limited to humanized and fully human monoclonal antibodies, particularly including but not limited to human CD22 specific IgG antibodies, such as, a dimer of a human-mouse monoclonal hLL2 gamma-chain disulfide linked to a human-mouse monoclonal hLL2 kappa-chain, for example, the human CD22 specific fully humanized antibody in Epratuzumab, CAS registry number 501423-23-0; IGF-1 receptor specific antibodies, peptibodies, and related proteins, and the like including but not limited to anti-IGF-1R antibodies; B-7 related protein 1 specific antibodies, peptibodies, related proteins and the like (“B7RP-1” and also referring to B7H2, ICOSL, B7h, and CD275), including but not limited to B7RP-specific fully human monoclonal IgG2 antibodies, including but not limited to fully human IgG2 monoclonal antibody that binds an epitope in the first immunoglobulin-like domain of B7RP-1, including but not limited to those that inhibit the interaction of B7RP-1 with its natural receptor, ICOS, on activated T cells; IL-15 specific antibodies, peptibodies, related proteins, and the like, such as, in particular, humanized monoclonal antibodies, including but not limited to HuMax IL-15 antibodies and related proteins, such as, for instance, 145c7; IFN gamma specific antibodies, peptibodies, related proteins and the like, including but not limited to human IFN gamma specific antibodies, and including but not limited to fully human anti-IFN gamma antibodies; TALL-1 specific antibodies, peptibodies, related proteins, and the like, and other TALL specific binding proteins; Parathyroid hormone (“PTH”) specific antibodies, peptibodies, related proteins, and the like; Thrombopoietin receptor (“TPO-R”) specific antibodies, peptibodies, related proteins, and the like; Hepatocyte growth factor (“HGF”) specific antibodies, peptibodies, related proteins, and the like, including those that target the HGF/SF:cMet axis (HGF/SF:c-Met), such as fully human monoclonal antibodies that neutralize hepatocyte growth factor/scatter (HGF/SF); TRAIL-R2 specific antibodies, peptibodies, related proteins and the like; Activin A specific antibodies, peptibodies, proteins, and the like; TGF-beta specific antibodies, peptibodies, related proteins, and the like; Amyloid-beta protein specific antibodies, peptibodies, related proteins, and the like; c-Kit specific antibodies, peptibodies, related proteins, and the like, including but not limited to proteins that bind c-Kit and/or other stem cell factor receptors; OX40L specific antibodies, peptibodies, related proteins, and the like, including but not limited to proteins that bind OX40L and/or other ligands of the OX40 receptor; Activase® (alteplase, tPA); Aranesp® (darbepoetin alfa) Erythropoietin [30-asparagine, 32-threonine, 87-valine, 88-asparagine, 90-threonine], Darbepoetin alfa, novel erythropoiesis stimulating protein (NESP); Epogen® (epoetin alfa, or erythropoietin); GLP-1, Avonex® (interferon beta-1a); Bexxar® (tositumomab, anti-CD22 monoclonal antibody); Betaseron® (interferon-beta); Campath® (alemtuzumab, anti-CD52 monoclonal antibody); Dynepo® (epoetin delta); Velcade® (bortezomib); MLN0002 (anti-α4β7 mAb); MLN1202 (anti-CCR2 chemokine receptor mAb); Enbrel® (etanercept, TNF-receptor/Fc fusion protein, TNF blocker); Eprex® (epoetin alfa); Erbitux® (cetuximab, anti-EGFR/HER1/c-ErbB-1); Genotropin® (somatropin, Human Growth Hormone); Herceptin® (trastuzumab, anti-HER2/neu (erbB2) receptor mAb); Kanjinti™ (trastuzumab-anns) anti-HER2 monoclonal antibody, biosimilar to Herceptin®, or another product containing trastuzumab for the treatment of breast or gastric cancers; Humatrope® (somatropin, Human Growth Hormone); Humira® (adalimumab); Vectibix® (panitumumab), Xgeva® (denosumab), Prolia® (denosumab), Immunoglobulin G2 Human Monoclonal Antibody to RANK Ligand, Enbrel® (etanercept, TNF-receptor/Fc fusion protein, TNF blocker), Nplate® (romiplostim), rilotumumab, ganitumab, conatumumab, brodalumab, insulin in solution; Infergen® (interferon alfacon-1); Natrecor® (nesiritide; recombinant human B-type natriuretic peptide (hBNP); Kineret® (anakinra); Leukine® (sargamostim, rhuGM-CSF); LymphoCide® (epratuzumab, anti-CD22 mAb); Benlysta™ (lymphostat B, belimumab, anti-BlyS mAb); Metalyse® (tenecteplase, t-PA analog); Mircera® (methoxy polyethylene glycol-epoetin beta); Mylotarg® (gemtuzumab ozogamicin); Raptiva® (efalizumab); Cimzia® (certolizumab pegol, CDP 870); Solids™ (eculizumab); pexelizumab (anti-C5 complement); Numax® (MEDI-524); Lucentis® (ranibizumab); Panorex® (17-1A, edrecolomab); Trabio® (lerdelimumab); TheraCim hR3 (nimotuzumab); Omnitarg (pertuzumab, 2C4); Osidem® (IDM-1); OvaRex® (B43.13); Nuvion® (visilizumab); cantuzumab mertansine (huC242-DM1); NeoRecormon® (epoetin beta); Neumega® (oprelvekin, human interleukin-11); Orthoclone OKT3® (muromonab-CD3, anti-CD3 monoclonal antibody); Procrit® (epoetin alfa); Remicade® (infliximab, anti-TNFα monoclonal antibody); Reopro® (abciximab, anti-GP IIb/IIia receptor monoclonal antibody); Actemra® (anti-IL6 Receptor mAb); Avastin® (bevacizumab), HuMax-CD4 (zanolimumab); Mvasi™ (bevacizumab-awwb); Rituxan® (rituximab, anti-CD20 mAb); Tarceva® (erlotinib); Roferon-A®-(interferon alfa-2a); Simulect® (basiliximab); Prexige® (lumiracoxib); Synagis® (palivizumab); 145c7-CHO (anti-IL15 antibody, see U.S. Pat. No. 7,153,507); Tysabri® (natalizumab, anti-α4integrin mAb); Valortim® (MDX-1303, anti-B. anthracis protective antigen mAb); ABthrax™; Xolair® (omalizumab); ETI211 (anti-MRSA mAb); IL-1 trap (the Fc portion of human IgG1 and the extracellular domains of both IL-1 receptor components (the Type I receptor and receptor accessory protein)); VEGF trap (Ig domains of VEGFR1 fused to IgG1 Fc); Zenapax® (daclizumab); Zenapax® (daclizumab, anti-IL-2Rα mAb); Zevalin® (ibritumomab tiuxetan); Zetia® (ezetimibe); Orencia® (atacicept, TACI-Ig); anti-CD80 monoclonal antibody (galiximab); anti-CD23 mAb (lumiliximab); BR2-Fc (huBR3/huFc fusion protein, soluble BAFF antagonist); CNTO 148 (golimumab, anti-TNFα mAb); HGS-ETR1 (mapatumumab; human anti-TRAIL Receptor-1 mAb); HuMax-CD20 (ocrelizumab, anti-CD20 human mAb); HuMax-EGFR (zalutumumab); M200 (volociximab, anti-α5β1 integrin mAb); MDX-010 (ipilimumab, anti-CTLA-4 mAb and VEGFR-1 (IMC-18F1); anti-BR3 mAb; anti-C. difficile Toxin A and Toxin B C mAbs MDX-066 (CDA-1) and MDX-1388); anti-CD22 dsFv-PE38 conjugates (CAT-3888 and CAT-8015); anti-CD25 mAb (HuMax-TAC); anti-CD3 mAb (NI-0401); adecatumumab; anti-CD30 mAb (MDX-060); MDX-1333 (anti-IFNAR); anti-CD38 mAb (HuMax CD38); anti-CD40L mAb; anti-Cripto mAb; anti-CTGF Idiopathic Pulmonary Fibrosis Phase I Fibrogen (FG-3019); anti-CTLA4 mAb; anti-eotaxin1 mAb (CAT-213); anti-FGF8 mAb; anti-ganglioside GD2 mAb; anti-ganglioside GM2 mAb; anti-GDF-8 human mAb (MYO-029); anti-GM-CSF Receptor mAb (CAM-3001); anti-HepC mAb (HuMax HepC); anti-IFNα mAb (MEDI-545, MDX-198); anti-IGF1R mAb; anti-IGF-1R mAb (HuMax-Inflam); anti-IL12 mAb (ABT-874); anti-IL12/IL23 mAb (CNTO 1275); anti-IL13 mAb (CAT-354); anti-IL2Ra mAb (HuMax-TAC); anti-IL5 Receptor mAb; anti-integrin receptors mAb (MDX-018, CNTO 95); anti-IP10 Ulcerative Colitis mAb (MDX-1100); BMS-66513; anti-Mannose Receptor/hCGβ mAb (MDX-1307); anti-mesothelin dsFv-PE38 conjugate (CAT-5001); anti-PD1mAb (MDX-1106 (ONO-4538)); anti-PDGFRα antibody (IMC-3G3); anti-TGFβ mAb (GC-1008); anti-TRAIL Receptor-2 human mAb (HGS-ETR2); anti-TWEAK mAb; anti-VEGFR/Flt-1 mAb; and anti-ZP3 mAb (HuMax-ZP3).
In some embodiments, the drug delivery device may contain or be used with a sclerostin antibody, such as but not limited to romosozumab, blosozumab, BPS 804 (Novartis), Evenity™ (romosozumab-aqqg), another product containing romosozumab for treatment of postmenopausal osteoporosis and/or fracture healing and in other embodiments, a monoclonal antibody (IgG) that binds human Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). Such PCSK9 specific antibodies include, but are not limited to, Repatha® (evolocumab) and Praluent® (alirocumab). In other embodiments, the drug delivery device may contain or be used with rilotumumab, bixalomer, trebananib, ganitumab, conatumumab, motesanib diphosphate, brodalumab, vidupiprant or panitumumab. In some embodiments, the reservoir of the drug delivery device may be filled with or the device can be used with IMLYGIC® (talimogene laherparepvec) or another oncolytic HSV for the treatment of melanoma or other cancers including but are not limited to OncoVEXGALV/CD; OrienX010; G207, 1716; NV1020; NV12023; NV1034; and NV1042. In some embodiments, the drug delivery device may contain or be used with endogenous tissue inhibitors of metalloproteinases (TIMPs) such as but not limited to TIMP-3. In some embodiments, the drug delivery device may contain or be used with Aimovig® (erenumab-aooe), anti-human CGRP-R (calcitonin gene-related peptide type 1 receptor) or another product containing erenumab for the treatment of migraine headaches. Antagonistic antibodies for human calcitonin gene-related peptide (CGRP) receptor such as but not limited to erenumab and bispecific antibody molecules that target the CGRP receptor and other headache targets may also be delivered with a drug delivery device of the present disclosure. Additionally, bispecific T cell engager (BITE®) antibodies such as but not limited to BLINCYTO® (blinatumomab) can be used in or with the drug delivery device of the present disclosure. In some embodiments, the drug delivery device may contain or be used with an APJ large molecule agonist such as but not limited to apelin or analogues thereof. In some embodiments, a therapeutically effective amount of an anti-thymic stromal lymphopoietin (TSLP) or TSLP receptor antibody is used in or with the drug delivery device of the present disclosure. In some embodiments, the drug delivery device may contain or be used with Avsola™ (infliximab-axxq), anti-TNF α monoclonal antibody, biosimilar to Remicade® (infliximab) (Janssen Biotech, Inc.) or another product containing infliximab for the treatment of autoimmune diseases. In some embodiments, the drug delivery device may contain or be used with Kyprolis® (carfilzomib), (2S)—N—((S)-1-((S)-4-methyl-1-((R)-2-methyloxiran-2-yl)-1-oxopentan-2-ylcarbamoyl)-2-phenylethyl)-2-((S)-2-(2-morpholinoacetamido)-4-phenylbutanamido)-4-methylpentanamide, or another product containing carfilzomib for the treatment of multiple myeloma. In some embodiments, the drug delivery device may contain or be used with Otezla® (apremilast), N-[2-[(1S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-2,3-dihydro-1,3-dioxo-1H-isoindol-4-yl]acetamide, or another product containing apremilast for the treatment of various inflammatory diseases. In some embodiments, the drug delivery device may contain or be used with Parsabiv™ (etelcalcetide HCl, KAI-4169) or another product containing etelcalcetide HCl for the treatment of secondary hyperparathyroidism (sHPT) such as in patients with chronic kidney disease (KD) on hemodialysis. In some embodiments, the drug delivery device may contain or be used with ABP 798 (rituximab), a biosimilar candidate to Rituxan®/MabThera™, or another product containing an anti-CD20 monoclonal antibody. In some embodiments, the drug delivery device may contain or be used with a VEGF antagonist such as a non-antibody VEGF antagonist and/or a VEGF-Trap such as aflibercept (Ig domain 2 from VEGFR1 and Ig domain 3 from VEGFR2, fused to Fc domain of IgG1). In some embodiments, the drug delivery device may contain or be used with ABP 959 (eculizumab), a biosimilar candidate to Soliris®, or another product containing a monoclonal antibody that specifically binds to the complement protein C5. In some embodiments, the drug delivery device may contain or be used with Rozibafusp alfa (formerly AMG 570) is a novel bispecific antibody-peptide conjugate that simultaneously blocks ICOSL and BAFF activity. In some embodiments, the drug delivery device may contain or be used with Omecamtiv mecarbil, a small molecule selective cardiac myosin activator, or myotrope, which directly targets the contractile mechanisms of the heart, or another product containing a small molecule selective cardiac myosin activator. In some embodiments, the drug delivery device may contain or be used with Sotorasib (formerly known as AMG 510), a KRASG12C small molecule inhibitor, or another product containing a KRASG12C small molecule inhibitor. In some embodiments, the drug delivery device may contain or be used with Tezepelumab, a human monoclonal antibody that inhibits the action of thymic stromal lymphopoietin (TSLP), or another product containing a human monoclonal antibody that inhibits the action of TSLP. In some embodiments, the drug delivery device may contain or be used with AMG 714, a human monoclonal antibody that binds to Interleukin-15 (IL-15) or another product containing a human monoclonal antibody that binds to Interleukin-15 (IL-15). In some embodiments, the drug delivery device may contain or be used with AMG 890, a small interfering RNA (siRNA) that lowers lipoprotein(a), also known as Lp(a), or another product containing a small interfering RNA (siRNA) that lowers lipoprotein(a). In some embodiments, the drug delivery device may contain or be used with ABP 654 (human IgG1 kappa antibody), a biosimilar candidate to Stelara®, or another product that contains human IgG1 kappa antibody and/or binds to the p40 subunit of human cytokines interleukin (IL)-12 and IL-23. In some embodiments, the drug delivery device may contain or be used with Amjevita™ or Amgevita™ (formerly ABP 501) (mab anti-TNF human IgG1), a biosimilar candidate to Humira®, or another product that contains human mab anti-TNF human IgG1. In some embodiments, the drug delivery device may contain or be used with AMG 160, or another product that contains a half-life extended (HLE) anti-prostate-specific membrane antigen (PSMA)×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 119, or another product containing a delta-like ligand 3 (DLL3) CART (chimeric antigen receptor T cell) cellular therapy. In some embodiments, the drug delivery device may contain or be used with AMG 119, or another product containing a delta-like ligand 3 (DLL3) CART (chimeric antigen receptor T cell) cellular therapy. In some embodiments, the drug delivery device may contain or be used with AMG 133, or another product containing a gastric inhibitory polypeptide receptor (GIPR) antagonist and GLP-1R agonist. In some embodiments, the drug delivery device may contain or be used with AMG 171 or another product containing a Growth Differential Factor 15 (GDF15) analog. In some embodiments, the drug delivery device may contain or be used with AMG 176 or another product containing a small molecule inhibitor of myeloid cell leukemia 1 (MCL-1). In some embodiments, the drug delivery device may contain or be used with AMG 199 or another product containing a half-life extended (HLE) bispecific T cell engager construct (BITE®). In some embodiments, the drug delivery device may contain or be used with AMG 256 or another product containing an anti-PD-1×IL21 mutein and/or an IL-21 receptor agonist designed to selectively turn on the Interleukin 21 (IL-21) pathway in programmed cell death-1 (PD-1) positive cells. In some embodiments, the drug delivery device may contain or be used with AMG 330 or another product containing an anti-CD33×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 404 or another product containing a human anti-programmed cell death-1(PD-1) monoclonal antibody being investigated as a treatment for patients with solid tumors. In some embodiments, the drug delivery device may contain or be used with AMG 427 or another product containing a half-life extended (HLE) anti-fms-like tyrosine kinase 3 (FLT3)×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 430 or another product containing an anti-Jagged-1 monoclonal antibody. In some embodiments, the drug delivery device may contain or be used with AMG 506 or another product containing a multi-specific FAP×4-1BB-targeting DARPin® biologic under investigation as a treatment for solid tumors. In some embodiments, the drug delivery device may contain or be used with AMG 509 or another product containing a bivalent T-cell engager and is designed using XmAb® 2+1 technology. In some embodiments, the drug delivery device may contain or be used with AMG 562 or another product containing a half-life extended (HLE) CD19×CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with Efavaleukin alfa (formerly AMG 592) or another product containing an IL-2 mutein Fc fusion protein. In some embodiments, the drug delivery device may contain or be used with AMG 596 or another product containing a CD3×epidermal growth factor receptor vIII (EGFRvIII) BiTE® (bispecific T cell engager) molecule. In some embodiments, the drug delivery device may contain or be used with AMG 673 or another product containing a half-life extended (HLE) anti-CD33×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 701 or another product containing a half-life extended (HLE) anti-B-cell maturation antigen (BCMA)×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 757 or another product containing a half-life extended (HLE) anti-delta-like ligand 3 (DLL3)×anti-CD3 BiTE® (bispecific T cell engager) construct. In some embodiments, the drug delivery device may contain or be used with AMG 910 or another product containing a half-life extended (HLE) epithelial cell tight junction protein claudin 18.2×CD3 BiTE® (bispecific T cell engager) construct.
Although the drug delivery devices, assemblies, components, subsystems and methods have been described in terms of exemplary embodiments, they are not limited thereto. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the present disclosure. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent that would still fall within the scope of the claims defining the invention(s) disclosed herein.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention(s) disclosed herein, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept(s).
Eilertsen, Lars, Melander, Matias, Jensen, Jan, Finkelstein, Emil, Skall, Soren Forbech
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3494358, | |||
3890971, | |||
4717383, | Jul 31 1984 | N J PHILLIPS PTY LIMITED | Injector |
4902279, | Oct 05 1988 | Autoject Systems Inc.; AUTOJECT SYSTEMS INC , 1001 EAST MORTON PLACE, SUITE B, HEMET | Liquid medicament safety injector |
4946446, | Jun 14 1989 | Retractable needle | |
5593388, | Nov 11 1993 | N J PHILLIPS PTY LIMITED | Injector with retractable shroud |
5599309, | Mar 24 1993 | Owen Mumford Limited | Injection devices |
5681291, | Nov 19 1992 | Tebro S.A. | Disposable auto-injector for prefilled syringes |
5709662, | Aug 23 1996 | BECTON DICKINSON FRANCE, S A | Cartridge for an injection device |
6120479, | Jul 27 1997 | CAMPBELL, DOUGLAS C V | Auto-destruct disposable syringe |
6183446, | Dec 11 1997 | TecPharma Licensing AG | Needle protection injection devices |
6620137, | May 15 1998 | TecPharma Licensing AG | Automatic injection device |
6676641, | Sep 05 2001 | HYPOGUARD USA INC | Retractable hypodermic syringe |
7112187, | Sep 24 2002 | SHL MEDICAL AG | Injecting device |
7597685, | Nov 24 2004 | SHL MEDICAL AG | Injection device |
8591465, | Nov 05 2003 | Ypsomed AG | Device for administering an injectable product |
8932254, | Sep 02 2008 | Owen Mumford Limited | Syringe safety shields and autoinjector |
9408976, | Nov 24 2004 | SHL MEDICAL AG | Injection device |
20050165353, | |||
20060264830, | |||
20110218500, | |||
20120123350, | |||
20130281938, | |||
20130317432, | |||
20160089498, | |||
20170246400, | |||
20180315345, | |||
20190050375, | |||
EP734738, | |||
EP1259274, | |||
EP2438948, | |||
EP2781230, | |||
EP2823838, | |||
EP2823840, | |||
JP4699192, | |||
WO2004028598, | |||
WO2010084306, | |||
WO2011047298, | |||
WO2012022810, | |||
WO2012032411, | |||
WO2012045350, | |||
WO2016193374, | |||
WO2017071909, | |||
WO2018166985, | |||
WO2019081578, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 21 2020 | JENSEN, JAN | Amgen Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054220 | /0510 | |
Sep 22 2020 | SKALL, SOREN FORBECH | Amgen Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054220 | /0510 | |
Sep 22 2020 | EILERTSEN, LARS | Amgen Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054220 | /0510 | |
Sep 24 2020 | MELANDER, MATIAS | Amgen Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054220 | /0510 | |
Sep 27 2020 | FINKELSTEIN, EMIL | Amgen Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054220 | /0510 | |
Sep 29 2020 | Amgen Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 29 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jan 23 2027 | 4 years fee payment window open |
Jul 23 2027 | 6 months grace period start (w surcharge) |
Jan 23 2028 | patent expiry (for year 4) |
Jan 23 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 23 2031 | 8 years fee payment window open |
Jul 23 2031 | 6 months grace period start (w surcharge) |
Jan 23 2032 | patent expiry (for year 8) |
Jan 23 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 23 2035 | 12 years fee payment window open |
Jul 23 2035 | 6 months grace period start (w surcharge) |
Jan 23 2036 | patent expiry (for year 12) |
Jan 23 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |