A luminaire includes a housing (102) with an inner cavity a light source (122) mounted to an inner top surface of the housing. The luminaire also includes a door frame (104), wherein the door frame includes a first side rail (108), a second side rail (109), a third side rail (107), and a fourth side rail (110). The four side rails of the door frame define a light emitting opening for the luminaire. A film stack (116) is supported by the door frame and placed in the light emitting opening so that light from the light source passes through the film stack as it is emitted through the light emitting opening. The film stack (116) includes a diffuser film (129) and a photopolymer film (127). The photopolymer film (127) is embossed with optical structures that create a holographic pattern that appears to be three-dimensional.
|
1. A luminaire comprising:
a housing configured to be installed in a recess in a ceiling, the housing comprising an inner top surface to which a light source is mounted;
a frame attached to the housing, the frame comprising:
a first side rail;
a second side rail;
a third side rail;
a fourth side rail; and
a film stack comprising a plurality of films, the film stack supported by the first side rail, the second side rail, the third side rail, and the fourth side rail, wherein the plurality of films comprises a photopolymer film with optical structures that provide a holographic three-dimensional pattern, a diffuser film, and a textured acrylic film, wherein the diffuser film is stacked on top of the photopolymer film, and the photopolymer film is stacked on top of the textured acrylic film such that the diffuser film is the closest of the plurality of films to the light source.
2. The luminaire of
3. The luminaire of
4. The luminaire of
5. The luminaire of
6. The luminaire of
7. The luminaire of
8. The luminaire of
9. The luminaire of
10. The luminaire of
the horizontal portion having an outer surface that is parallel with a plane defined by a light emitting opening of the housing, and
the angled portion defining an outer acute angle between an outer surface of the angled portion and the plane defined by the light emitting opening of the housing and defining an inner obtuse angle between an inner surface of the horizontal portion of the front flange and an inner surface of the angled portion.
11. The luminaire of
12. The luminaire of
|
This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2021/070223, filed on Jul. 20, 2021, which claims the benefit of European Patent Application No. 20194821.3, filed on Sep. 7, 2020, and U.S. Provisional Patent Application No. 63/054,977, filed on Jul. 22, 2020. These applications are hereby incorporated by reference herein.
Embodiments described herein relate generally to light fixtures, and more particularly to systems, methods, and devices for a luminaire with a lens having a three-dimensional patterned layer.
When compared to conventional lighting technologies, such as incandescent, fluorescent, halogen, metal halide, or high pressure sodium light sources, light emitting diodes (LEDs) offer substantial benefits associated with their energy efficiency, light quality, and compact size. However, new technologies can help to realize the full potential benefits offered by light emitting diodes. For example, technologies that allow control over the direction of light emitted from LEDs would be beneficial. Additionally, technologies that permit luminaires to have unique patterns illuminated by LEDs would also be beneficial.
In one example embodiment, the present disclosure provides a luminaire with a lens that comprises at least one layer or film, the lens displaying a three-dimensional holographic pattern when illuminated. The luminaire comprises a housing that defines a cavity. The housing comprises an inner top surface to which a light source is mounted. The luminaire further comprises a frame attached to the housing. The frame can surround a light emitting opening of the luminaire. The lens is disposed in the light emitting opening and can be supported by the frame. The lens can comprise at least one layer that receives light emitted by the light source and processes the light for emission through the light emitting opening of the luminaire. The at least one layer of the lens can comprise a photopolymer layer. The photopolymer layer can be embossed with a pattern of optical structures. The pattern of optical structures appears as a three-dimensional pattern when the lens is illuminated by the light source.
In another example embodiment, the present disclosure provides a luminaire with a lens that displays a pattern on the lens when illuminated. The luminaire comprises a housing that defines a cavity. The housing comprises an inner top surface to which a light source is mounted. The luminaire further comprises a frame attached to the housing. The frame can comprise four side rails that surround a light emitting opening of the luminaire. A lens is disposed in the light emitting opening and can be supported by the frame. The lens can comprise a diffuser layer, a photopolymer layer, and a textured acrylic layer. The lens receives light emitted by the light source and processes the light for emission through the light emitting opening of the luminaire. The photopolymer layer can be embossed with a pattern of optical structures. The pattern of optical structures appears as a three-dimensional pattern when the lens is illuminated by the light source.
In another example embodiment, the present disclosure provides an approach for retrofitting a luminaire that comprises a frame with a lens. The luminaire comprises a housing that defines a cavity. The housing comprises an inner top surface to which a light source is mounted. The frame can surround a light emitting opening of the luminaire. The frame with the lens can be removed and replaced with a replacement frame comprising a lens that displays a three-dimensional holographic pattern when illuminated. The lens is disposed in the light emitting opening and can be supported by the replacement frame. The lens can comprise at least one layer that is a photopolymer layer. The lens receives light emitted by the light source and processes the light for emission through the light emitting opening of the luminaire. The photopolymer layer can be embossed with a pattern of optical structures. The pattern of optical structures appears as a holographic three-dimensional pattern when the lens is illuminated by the light source.
In another example embodiment, the present disclosure provides a luminaire with a lens that is a film stack, where the film stack displays a pattern on the film stack when illuminated. The luminaire comprises a housing that defines a cavity. The housing comprises an inner top surface to which a light source is mounted. The luminaire further comprises a door frame attached to the housing. The door frame can comprise four side rails that surround a light emitting opening of the luminaire. A film stack is disposed in the light emitting opening and can be supported by the door frame. The film stack can comprise a diffuser film and a photopolymer film. The plurality of films receive light emitted by the light source and process the light for emission through the light emitting opening of the luminaire. The photopolymer film can be embossed with a pattern of optical structures. The pattern of optical structures appears as a three-dimensional pattern when the film stack is illuminated by the light source. The door frame can comprise a first side rail, a second side rail, a third side rail, and a fourth side rail. The door frame can be positioned within the housing so that the first side rail fits into a first housing recess and the second side rail fits into a second housing recess. The four side rails of the door frame can be joined to surround the light emitting opening. Each of the four side rails can comprise a back flange and a front flange, wherein the back flange and the front flange are joined by a sidewall. A perimeter of the film stack can be placed between the back flange and the front flange of each of the four side rails of the door frame.
In another example embodiment, the present disclosure provides a luminaire with a lens that is a film stack, where the film stack displays a pattern on the film stack when illuminated. The luminaire comprises a housing that defines a cavity. The housing comprises an inner top surface to which a light source is mounted. The luminaire further comprises a door frame attached to the housing. The door frame can surround a light emitting opening of the luminaire. A film stack is disposed in the light emitting opening and can be supported by the door frame. The film stack can comprise a diffuser film and a photopolymer film. The film stack receives light emitted by the light source and processes the light for emission through the light emitting opening of the luminaire. The photopolymer film can be embossed with a pattern of optical structures. The pattern of optical structures appears as a holographic three-dimensional pattern when the film stack is illuminated by the light source. The door frame can comprise a first side rail, a second side rail, a third side rail, and a fourth side rail. Each of the four side rails can comprise a back flange and a front flange, wherein the back flange and the front flange are joined by a sidewall. The front flange can comprise a horizontal portion and an angled portion. The horizontal portion can have an outer surface that is parallel with a plane defined by the light emitting opening of the housing. The angled portion can define an outer acute angle between an outer surface of the angled portion and the plane defined by the light emitting opening of the housing. The angled portion can also define an inner obtuse angle between an inner surface of the horizontal portion of the front flange and an inner surface of the angled portion. A perimeter of the film stack can be placed between the back flange and the front flange of each of the four side rails of the door frame.
These and other aspects, objects, features, and embodiments, will be apparent from the following description and the appended claims.
The drawings illustrate only example embodiments and are therefore not to be considered limiting and may admit to other equally effective embodiments. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Additionally, certain dimensions or positions may be exaggerated to help visually convey such principles. In the drawings, reference numerals designate like or corresponding, but not necessarily identical, elements.
The example embodiments discussed herein are directed to luminaires such as troffer luminaires that are typically recessed into a ceiling. While the example embodiments described herein are directed to recessed troffer luminaires, it should be understood that the embodiments described herein can apply to a variety of luminaires. For instance, the example embodiments can be directed to other types of luminaires, including but not limited to surface mounted luminaires, suspended luminaires, highbay luminaires, downlight luminaires, emergency lighting, task lighting, and outdoor luminaires. The example embodiments described herein can be used with luminaires located in any environment (e.g., indoor, outdoor, hazardous, non-hazardous, high humidity, low temperature, corrosive, sterile, high vibration). Further, the luminaires described herein can use one or more of a number of different types of light sources, including but not limited to various light-emitting diode (LED) light sources such as discrete LEDs, LED arrays, chip on board LEDs, and organic LED light sources, as well as other types of light sources. Therefore, the example luminaires described herein, should not be considered limited to a particular type of light source.
The example embodiments described herein are directed to a luminaire that comprises a housing and a frame that attaches to the housing. The frame can support a lens comprising at least one layer. The lens can modify light that is emitted from the luminaire. The lens can include a photopolymer layer with optical structures. The photopolymer layer is created by embossing the photopolymer layer with a tool that creates the optical structures in the photopolymer layer. The photopolymer layer is then cured using, for example, ultraviolet light or another curing method. In one example embodiment, the optical structures in the photopolymer layer are an array of prisms designed to create a holographic three-dimensional pattern in the photopolymer layer.
The holographic three-dimensional pattern in the photopolymer layer can then be used in a variety of applications in luminaires. As one example, it can be desirable to have holographic three-dimensional patterns in luminaires for various aesthetic reasons. The holographic three-dimensional patterns in the luminaires can be customized to meet a particular customer's needs. For instance, the holographic three-dimensional pattern in the luminaires can match patterns or designs of other décor in a room.
As another example, holographic three-dimensional patterns in a luminaire can be used to display a logo or a symbol. For instance, holographic three-dimensional patterns in a luminaire can be used to convey a message or to serve as a sign.
In some example luminaires disclosed herein, the frame supporting the lens can be easily removed from the housing. Such removable frames can be referred to as a door frame. With the flexibility provided by a removable frame, luminaires can be designed so that different door frames containing lenses with different patterns can easily be swapped into and out of a luminaire. In the context of an existing installed recessed troffer luminaire, the embodiments described herein provide the ability to easily retrofit the existing installed recessed troffer luminaire with a replacement door frame providing a new holographic three-dimensional pattern created by a different lens or film stack. The existing door frame having an existing lens and illumination pattern can be removed from the existing installed luminaire housing without removing the entire housing from the ceiling or other installation. After removing the existing door frame and lens, the replacement door frame having a different film stack with a desired holographic three-dimensional pattern can then be installed into the existing luminaire housing. The ability to easily retrofit existing luminaires with a replacement door frame having a desired holographic three-dimensional pattern is another advantage of the embodiments described herein.
Referring now to
The troffer luminaire 100 comprises a housing 102 that would typically be recessed into a ceiling or other structure. The housing 102 defines an inner cavity in which a light source is disposed. The housing 102 comprises a top portion with two slanted sides. Extending from a first slanted side is a first housing recess 103 and a first outer flange 118 and extending from the opposite second slanted side is a second housing recess 105 and a second outer flange 119. As illustrated in
As illustrated in
Example luminaire 100 also comprises a removable door frame 104. As explained previously, the removability of the frame is optional and in alternate embodiments the frame may be fixed in the luminaire housing. In example luminaire 100, the door frame 104 comprises four side rails, namely a first side rail 108, a second side rail 109, a third side rail 107, and a fourth side rail 110. The four side rails of the door frame 104 are joined at their corners. In the example of
The door frame 104 can be attached to the housing 102 with any of a variety of coupling mechanisms. In the example shown in
As described previously, the lens disposed in the door frame 104 can comprise one or more layers. In the example luminaire 100, the lens is a film stack 116 comprising a plurality of films. At least one of the films of the plurality of films is a diffusing film that diffuses light emitted from the light source within the housing. At least another film of the plurality of films is the photopolymer film with optical structures. The plurality of films can also include one or more other layers of film that process the light emitted from the luminaire in a desired manner. As described further below in connection with
Referring now to
The cross-sectional view provided in
Referring now to
The design of the side rails further serves to minimize shadows and optimize the appearance of the holographic three-dimensional pattern created by the film stack 116. As shown in
An additional feature of the second side rail 109 is the shape of the front flange 134. As illustrated in
The details of the example film stack 116 are also shown in
Referring again to the example embodiment of
The acrylic film 125 may be textured to minimize glare as light is emitted from the luminaire. The diffuser film 129 can be made from acrylic or other materials that diffuse the light emitted from the light source 122. As described previously, the photopolymer film 127 comprises the optical structures that create the holographic three-dimensional pattern. In one example, the optical structures can be tiny prisms arranged to create the desired holographic three-dimensional pattern. When viewed by a person standing below the installed luminaire 100, the detail of the optical structures in the photopolymer film 127 is not discernable and instead the person sees the holographic three-dimensional pattern created by the optical structures of the photopolymer film 127.
Referring now to
Referring to
In certain example embodiments, the example luminaires are subject to meeting certain standards and/or requirements. For example, the National Electric Code (NEC), the National Electrical Manufacturers Association (NEMA), the International Electrotechnical Commission (IEC), the Federal Communication Commission (FCC), and the Institute of Electrical and Electronics Engineers (IEEE) set standards as to electrical enclosures (e.g., light fixtures), wiring, and electrical connections. As another example, Underwriters Laboratories (UL) sets various standards for light fixtures, including standards for heat dissipation. Use of example embodiments described herein meet (and/or allow a corresponding device to meet) such standards when required.
Referring generally to the foregoing examples, any luminaires, or components thereof (e.g., housings or door frames), described herein can be made from a single piece (e.g., as from a mold, injection mold, die cast, 3-D printing process, extrusion process, stamping process, or other prototype methods). In addition, or in the alternative, a luminaire (or components thereof) can be made from multiple pieces that are mechanically coupled to each other. In such a case, the multiple pieces can be mechanically coupled to each other using one or more of a number of coupling methods, including but not limited to epoxy, welding, fastening devices, compression fittings, mating threads, and slotted fittings. One or more pieces that are mechanically coupled to each other can be coupled to each other in one or more of a number of ways, including but not limited to fixedly, hingedly, removeably, slidably, and threadably.
A fastener or coupling feature (including a complementary coupling feature) as described herein can allow one or more components and/or portions of an example door frame, housing, or other component of a luminaire to become coupled, directly or indirectly, to another portion of the example door frame, housing, or other component of a luminaire. A coupling feature can include, but is not limited to, a snap, a latch, Velcro, a clamp, a portion of a hinge, an aperture, a recessed area, a protrusion, a slot, a spring clip, a tab, a detent, and mating threads. One portion of an example heat sink can be coupled to a light fixture by the direct use of one or more fasteners or coupling features.
In addition, or in the alternative, a portion of a luminaire can be fastened or coupled using one or more independent devices that interact with one or more coupling features disposed on a component of the heat sink. Examples of such devices can include, but are not limited to, a pin, a hinge, a fastening device (e.g., a bolt, a screw, a rivet), epoxy, glue, adhesive, tape, and a spring. One coupling feature described herein can be the same as, or different than, one or more other coupling features described herein. A complementary coupling feature (also sometimes called a corresponding coupling feature) as described herein can be a coupling feature that mechanically couples, directly or indirectly, with another coupling feature.
Terms such as “first”, “second”, “top”, “bottom”, “side”, “distal”, “proximal”, and “within” are used merely to distinguish one component (or part of a component or state of a component) from another. Such terms are not meant to denote a preference or a particular orientation, and are not meant to limit the embodiments described herein. In the following detailed description of the example embodiments, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Many modifications and other embodiments set forth herein will come to mind to one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the example embodiments are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of this application. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Hetrick, Westly Davis, Irizarry, Andre
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10012352, | Jul 30 2014 | Orion Energy Systems, Inc. | Troffer light fixture retrofit systems and methods |
10585229, | Nov 08 2016 | AUTRONIC PLASTICS, INC | Lighting system with particular sealing arrangement |
10684005, | Mar 14 2018 | BITRO GROUP, INC , | Ceiling mountable light box system |
7298533, | Mar 24 2003 | Wavefront Technology | Optical films for creating unique optical effects |
20080084693, | |||
20140240980, | |||
20170221393, | |||
20200370714, | |||
CN106996545, | |||
EP2629136, | |||
KR20080106656, | |||
WO2014045147, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 20 2021 | SIGNIFY HOLDING B.V. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 12 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Feb 20 2027 | 4 years fee payment window open |
Aug 20 2027 | 6 months grace period start (w surcharge) |
Feb 20 2028 | patent expiry (for year 4) |
Feb 20 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 20 2031 | 8 years fee payment window open |
Aug 20 2031 | 6 months grace period start (w surcharge) |
Feb 20 2032 | patent expiry (for year 8) |
Feb 20 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 20 2035 | 12 years fee payment window open |
Aug 20 2035 | 6 months grace period start (w surcharge) |
Feb 20 2036 | patent expiry (for year 12) |
Feb 20 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |